Novel Friendly Environment Cellulose Based Derivatives for Tetraconazole Removal from Aqueous Solution

Bayan Khalaf¹, Othman Hamed^{1,*}, Shehdeh Jodeh^{1,*}, Erwin Klumpp², Ghadir Hanbali¹, Roland Bol², Liming Wang², Nina Siebers²

¹Department of Chemistry, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus, Palestine.

² Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

*Correspondence: sjodeh@hotmail.com, Tel.: +970-599-590-498; ohamed@najah.edu

+970-594-466-271

Figure S1: IR Spectra of Cell-F.

Figure S2: IR Spectra of CMC.

Figure S3: Freundlich (A) and Langmuir (B) plots for tetraconazole adsorption on CNC (pH = 4, temperature = 20 °C, contact time = 30 minute, adsorbent dose = 10 mg, solution volume = 10 mL).

Figure S4: Freundlich (A) and Langmuir (B) plots for Tetraconazole adsorption on Cellulose Modified with Furan-2-carbonyl chloride (pH = 4, temperature = 20 °C, contact time = 15 minute, adsorbent dose = 10 mg, solution volume = 10 mL).

Figure S5: Freundlich (A) and Langmuir (B) plots for Tetraconazole adsorption on Cellulose Modified with Pyridine-2,6-dicarbonyl dichloride (pH = 6, temperature = 20 °C, contact time = 20 minute, adsorbent dose = 10 mg, volume of solution = 10 mL).

Figure S6: Pseudo first-order (A), Pseudo second order (B), and Intraparticle diffusion kinetic model (C) for Tetraconazole adsorption on NanoCellulose ($C_I = 10$ ppm, pH = 7, temperature = 20 °C, adsorbent dose = 10 mg, volume = 10 mL).

Figure S7: Pseudo first-order (A), Pseudo second order (B), and Intraparticle diffusion kinetic model (C) for Tetraconazole adsorption on Cellulose Modified with Furan-2-carbonyl chloride ($C_I = 10$ ppm, pH = 7, temperature = 20 °C, adsorbent dose = 10 mg, volume = 10 mL).

Figure S8: Pseudo first-order (A), Pseudo second order (B), and Intraparticle diffusion kinetic model (C) for Tetraconazole adsorption on Cellulose Modified with Pyridine-2,6-dicarbonyl dichloride ($C_I = 10$ ppm, pH = 7, temperature = 20 °C, adsorbent dose = 10 mg, volume = 10 mL).

Figure S9: Van't Hoff plot for the adsorption of Tetraconazole adsorption on NanoCellulose ($C_1 = 4$ ppm, pH = 4, contact time = 30 minute, adsorbent dose = 10 mg, volume = 10 mL).

Figure S10: Van't Hoff plot for Tetraconazole adsorption on Cell-F ($C_I = 4$ ppm, pH = 4, contact time = 15 minute, adsorbent dose = 10 mg, volume = 10 mL).

Figure S11: Van't Hoff plot for Tetraconazole adsorption on Cellulose Modified with Pyridine-2,6dicarbonyl dichloride ($C_I = 6$ ppm, pH = 6, contact time = 20 minute, adsorbent dose = 10 mg, volume = 10 mL).