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Abstract: A series of poly(hexamethylene 2,5-furanodicarboxylate)-block-poly(tetrahydrofuran)
(PHF-b-F-pTHF) copolymers were synthesized using a two-stage procedure, employing transesterifi-
cation and polycondensation. The content of pTHF flexible segments varied from 25 to 75 wt.%. 1H
nuclear magnetic resonance (NMR) and Fourier transformed infrared spectroscopy (FTIR) analyses
were applied to confirm the molecular structure of the materials. Differential scanning calorimetry
(DSC), dynamic mechanical measurements (DMTA), and X-ray diffraction (XRD) allowed charac-
terizing the supramolecular structure of the synthesized copolymers. SEM analysis was applied to
show the differences in the block copolymers’ morphologies concerning their chemical structure. The
influence of the number of flexible segments in the copolymers on the phase transition temperatures,
thermal properties, as well as the thermo-oxidative and thermal stability was analyzed. TGA analysis,
along with tensile tests (static and cyclic), confirmed the utilitarian performance of the synthesized
bio-based materials. It was found that an increase in the amount of pTHF caused the increase of both
number-average and weight-average molecular weights and intrinsic viscosities, and at the same
time causing the shift of the values of phase transition temperatures toward lower ones. Besides,
PHF-b-F-pTHF containing 75 wt.% of F-pTHF units was proved to be a promising thermoplastic
shape memory polymer (SMP) with a switching temperature of 20 ◦C.

Keywords: furan-based copolymers; biocopolyesters; poly(hexamethylene 2,5-furanodicarboxylate);
bio-poly(tetrahydrofuran); melt polycondensation; phase structure; morphology; thermal properties;
mechanical performance

1. Introduction

Thermoplastic elastomers are widely used as soft materials in both industry and
medicine. One can find multi-blocks segmented poly(ether-ester)s (PEE)s as engineering
thermoplastic elastomers due to their attractive combination of strength, cold-temperature
flexibility, high entropy elasticity, melt stability, high crystallization rates, and many
more [1,2]. Such great attention from many scientific groups results from the combi-
nation of rubber-like properties in the solid-state and melt processability [3]. PEEs are
composed of rigid segments with a high glass transition (Tg) and a rubbery segment
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with low Tg, whereas the domains of hard crystalline segments are interconnected by the
soft matrix segments [1]. The most prominent representative of this type of materials is
Hytrel® (Dupont, Wilmington, DE, USA), a whole group of copolymers where the rigid
segment is based on poly(butylene terephthalate) (PBT) and the rubbery segment is polyte-
trahydrofuran (pTHF), also called poly(tetramethylene oxide) (PTMO). However, for the
next generation elastomers, environmentally friendly materials are needed [4]. To make
it accomplish, several strategies included replacing petrochemicals with biobased and
renewable raw materials, replacing conventional metal catalysts with environmentally
friendly or renewable catalysts, and incorporating chemical recyclability and environmen-
tal biodegradability into the elastomers, have been applied. In 2015, for the first time,
BASF has made available bio-based polyTHF with a molecular weight of 1000 g/mol
(PolyTHF®1000) [5]. The bio-based polyTHF®1000, which is derived entirely from biomass
feedstocks, is found to be identical in quality to the petrochemical-based product. The
process hinges on a microbial fermentation of sugars to produce 1,4-butanediol (BDO),
which is then purified and polymerized. PolyTHF is primarily used as a component of
thermoplastic polyurethanes, poly(ether-esters), and poly(ether-amides) [6].

Polyesters based on 2,5-furan dicarboxylic acid (FDCA) or its ester derivatives (for
instance, dimethyl 2,5-furan dicarboxylate, DMFDC) like poly(ethylene 2,5-furan dicar-
boxylate) (PEF), poly(propylene 2,5-furan dicarboxylate) (PPF), and poly(butylene 2,5-furan
dicarboxylate) (PBF) can be successfully treated as the biobased alternatives to the tereph-
thalic acid (TPA)–based polyesters, like poly(ethylene terephthalate) (PET), poly(propylene
terephthalate) (PPT), and poly(butylene terephthalate) (PBT), which are produced and ap-
plied in a vast amount of commercial applications [7–13]. Therefore, even though polyesters
based on furan derivatives have been known for years, the challenge remains to obtain
high molecular weight materials without changing the color to brown-black, resulting
from thermal decomposition of FDCA [14,15]. Almost a decade ago, Gandini et al. [11,16]
reported the successful synthesis of high molecular weight polyesters and copolyesters
based on FDCA and various diols prepared by straightforward routes, using mild condi-
tions. It is of foremost importance that the structure of FDCA is quite similar to the one
of TPA, however, one can produce FDCA from biomass or its derived sugars or platform
chemicals, which generally involves chemical, biological, and electrochemical methods [17].
Therefore FDCA has been considered as a replacement for fossil-based TPA [18–20]. FDCA
has a large potential as a bio-based monomer for the synthesis of polyesters, polyamides,
polyurethanes, and their copolymers [7,16], and thus it is one of the most important build-
ing blocks or top value-added chemicals derived from biomass by the US Department of
Energy [21,22].

Poly(hexamethylene terephthalate) (PHT) is, so far, a noncommercial aromatic polyester
of both academic and applied interest [21,23–25], which, similarly to other aromatic
polyesters, exhibits fair mechanical properties and an excellent chemical resistance [26].
Due to the presence of the flexible segment composed of six methylene groups in the
polyester chain, PHT exhibits a relatively low melting temperature (Tm ≈ 140 ◦C), which
one can find as advantageous for more economical and easier processing procedures [27].
In turn, a furanoate homolog of PHT is poly(hexamethylene 2,5-furan dicarboxylate) (PHF).
Synthesis of PHF was first reported in 1978 by Moore and Kelly [28], while recently, a
series of poly(alkylene 2,5- furan dicarboxylate)s including PHF were synthesized and
characterized [21,29–32]. In turn, Zhang et al. [33] systematically summarized recent
progress in the making of FDCA-based polyesters and their copolyesters (including PHF),
especially highlighting the progress and fundamental aspects for their synthesis and prop-
erties. PHF is a polyester that is synthesized from monomers produced from renewable
resources, especially concerning FDCA. But, since Rennovia announced the successfully
operating core pilot plant processes for the cost-advantaged production of 1,6-hexanediol
(1,6-HDO) from renewable feedstocks (in this case, sugars) [34,35], one can synthesize PHF
entirely from renewable raw materials. 1,6-HDO, which is widely used today in a variety
of formulated products, including coatings, adhesives, and elastomers, is anticipated to
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have greatly reduced greenhouse gas and environmental impacts versus petroleum-based
1,6-HDO. For instance, Zhang et al. [32] synthesized PHF from FDCA and 1,6-HDO via
direct esterification. PHF characteristics are considered to be quite satisfactory as it exhibits
comparable or higher thermal properties, but also higher mechanical properties, compared
to several other aliphatic polyesters, such as poly(L-lactic acid) (PLLA) or poly(butylene
succinate) (PBS) [29] or even PET or PEF [32]. For example, the PEF synthesized by
Jiang et al. [29] with Mw of 66,700 g/mol exhibits a tensile modulus, tensile strength, and
elongation at break of 493 MPa, 35.5 MPa, and 210%, respectively, and Tg and Tm of 28.1
and 148.2 ◦C, respectively. While, the PHF obtained by Zhang et al. [32] exhibited a typical
(110) plane, (010) plane, and (111) plane at 2θ = 13.78◦ (d = 6.42 Å), 17.06◦ (d = 5.19 Å),
and 24.9◦ (d = 3.58 Å) with an intrinsic viscosity of 0.803 dL/g, average Young’s modulus
of 479 MPa, and maximum tensile strength of 36.5 MPa. In turn, Papageorgiou et al. [21],
who studied the crystallization and thermal degradation behavior of PHF, found that
the Tm and Tg of the obtained PHF were 145 ◦C and 7 ◦C, respectively, and that PHF
exhibited multiple melting behavior after the crystallization process, which was mainly
due to partial melting, recrystallization, and final melting. Therefore, it can be used in
some applications, where up to this time point, fossil-based polyesters like terephthalates
were most commonly used. However, due to, among others, the flammability, the applica-
tions of PHF, despite excellent mechanical properties, have been limited. Therefore, the
copolyesters of PHF also attracted much attention [32,36,37]. For instance, Wang et al. [37]
synthesized phosphorus-containing PHF (PHFCs) with good thermal performance, where
Tg value decreased slightly along with the increasing molar content of 2-carboxyethyl
(phenyl)phosphinic acid. Whereas, Wang et al. [36] prepared via the two-step melt poly-
condensation method PHF-b-poly(ethylene glycol) with excellent thermal stability with
excellent shape-memory ability. In addition, Xie et al. [38], also via the melt polycondensa-
tion method, prepared poly(ethylene-co-hexamethylene 2,5-furandicarboxylate) (PEHF)
copolyesters, in which, depending on the synthesis conditions and amount of PHF, the
copolyesters were amorphous or semicrystalline. The synthesized copolyesters exhib-
ited better thermal properties had a single Tg, which decreased along with the increasing
content of PHF in the copolyester, and good mechanical performance, where the tensile
modulus and tensile strength of the non-crystalline copolyester decreased. However, the
elongation at break and impact strength increased along with the increase of the molar
content of PHF. The tensile properties of PEHF copolyesters were similar to those of bottle
grade PET.

To the best of our knowledge, for the first time, we will present the structure-property
relationship of PHF-b-F-pTHF copoly(ether-esters) synthesized via a melt polycondensation
process entirely from renewable raw materials. The composition and chemical structure
of the series of block copolymers were determined by 1H quantitative nuclear magnetic
resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The temperatures
corresponding to phase transition changes were characterized by differential scanning
calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). On the basis of
preliminary DSC and DMTA tests, materials that can exhibit a thermally-activated shape
memory behavior were preselected and investigated via cyclic thermo-mechanical analysis.
The crystallization behavior of the materials was characterized by X-ray diffraction. The
changes in the morphology resulting from the changes in the phase structure and com-
position were characterized using scanning electron microscopy (SEM). Additionally, the
influence of the bio-based pTHF segment on the tensile properties (static and cyclic) and
thermal and thermo-oxidative stability has been analyzed.

2. Materials and Methods
2.1. Synthesis of PHF-b-F-pTHF Copolymers

The series PHF-b-F-pTHF copolymers were prepared from renewable raw mate-
rials: dimethyl 2,5-furanodicarboxylate (DMFDC, 99%, Henan Coreychem Co., Ltd.,
Zhengzhou, China), 1,6-hexylene glycol (HDO, Rennovia Inc., Santa Clara, CA, USA),
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and poly(tetrahydrofuran) (pTHF, polyTHF®1000, Ludwigshafen, BASF, Germany)
with a molecular weight of 1000 g/mol. The synthesis procedure consisted of two stages:
(i) the first step involved the transesterification of DMFDC by HDO in the presence of the
first portion of catalyst (tetrabuthyl orthotitanate, Ti(OBu)4, (Fluka)), and (ii) the second
step which was polycondensation, where polyTHF®1000 was added in the presence of the
second portion of catalyst (also Ti(OBu)4) and thermal stabilizer, Irganox 1010 (Ciba–Geigy,
Basel, Switzerland). The reaction was carried out in a 1 dm3 high-pressure reactor (Au-
toclave Engineers, Erie, PA, USA) equipped with a vacuum pump, condenser, and cold
trap for collecting the by-products. In the first step, the reactor was charged with DMFDC
and HDO, with the molar ratio of the diester (DMFDC) and glycol (HDO) of 1:1.5, and
catalyst. The transesterification reaction was carried out under a constant flow of nitrogen
at the temperature of 160–180 ◦C for ca. two hours. During this stage, one distilled and
collected the first by-product, methanol. The progress of the transesterification reaction
was monitoring based on the amount of effluent by-product. When the distillation of
methanol has ceased (ca. 90% of the stoichiometric amount), the reaction was completed,
and we gradually increased the temperature up to 210 ◦C. Subsequently, polyTHF®1000,
thermal stabilizer, and the second portion catalyst were introduced to the reactor. The
reaction temperature was increased to 240 ◦C (for neat polyester, PHF) and 235 ◦C (for the
series of block copolymers). The vacuum was applied gradually in order to facilitate HDO
excess removal and the final pressure was lower than 25 Pa. The stirring torque change was
monitored to evaluate the melt viscosity of the product, and thus the progress of this step
of the synthesis. The polycondensation process was found to be finished when the reaction
mixture reached the appropriate value of melt viscosity (referring to a high molecular mass
of the polymer material). Finally, the material was extruded from the reactor into the water
bath using compressed nitrogen. The second stage reaction time was 4–6 h, dependent on
the weight content of pTHF segments. The PHF-b-F-pTHF copolymers with several weight
ratios of rigid (PHF) to flexible (F-pTHF) segments (75/25, 65/35, 50/50, 35/65, 25/75)
were prepared. The homopolymer PHF was synthesized following the same procedure
(without the addition of pTHF in the second step).

All of the obtained materials were pelletized and injection moulded using Boy 15 (Dr
BOY GmbH&Co., Neustadt, Germany) to obtain dumbbell shape samples, type A3, for
DMTA and tensile measurements. Samples before the injection molding were dried for
24 h under a vacuum at the temperature of 50 ◦C. The following parameters were used:
injection pressure 50 MPa; melt temperature: 15 ◦C higher than the melting point of the
polymer determined by DSC; mold temperature 30 ◦C, holding down pressure of 20 MPa
for 15 s and cooling time of 10 s.

2.2. Characterization Methods

Attenuated total reflectance—Fourier Transform Infrared (ATR-FTIR) spectra of PHF
and PHF-b-F-pTHF copolymers were recorded using FTIR spectrophotometer Tensor
27 (Bruker OptikGmbH) with 32 scans and a resolution of 2 cm−1 over the frequency range
of 4000–400 cm−1.

The molecular structure and composition of the prepared materials were determined
using 1H NMR spectroscopy. Before the experiment, to remove unreacted monomer
and any possible low molecular degradation products, all samples were subjected to
continuous Soxhlet extraction with methanol. 1H NMR spectra were recorded at room
temperature with a Bruker spectrometer operated at 400 MHz. The samples were dissolved
in chloroform-d CDCl3 at a concentration of 10 mg/mL. Tetramethylsilane (TMS) was used
as an internal chemical shift reference.

The number average (Mn)) and weight average molecular masses (Mw), as well as
polydispersity index (Mw/Mn), were evaluated using Size Exclusion Chromatography
(SEC) in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at 40 ◦C, on a system equipped with
a Waters 1515 Isocratic HPLC pump, a Waters 2414 refractive index detector (35 ◦C), a
Waters 2707 autosampler, and a PSS PFG guard column followed by two PFG-linear-XL
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(7 µm, 8 × 300 mm) columns in series. HFIP with potassium trifluoroacetate (3 g/L) was
used as the eluent at a flow rate of 0.8 mL/min. Calibration of the system was performed
concerning poly(methyl methacrylate) standards.

The intrinsic viscosity [IV] of the series of copolymers was determined at 30 ◦C in the
mixture of phenol/1,1,2,2-tetrachloroethane (60/40 by weight). The concentration of the
polymer solution was 0.5 g/dL. The measurement was carried using a capillary Ubbelohde
viscometer (type Ic, K = 0.03294).

The phase structure of PHF and PHF-b-F-pTHF copolymers was investigated using
differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA),
and X-ray diffraction (XRD). DSC analysis was performed using Mettler Toledo differential
scanning calorimeter (DSC1, was calibrated for the temperature and melting enthalpy
by using indium and n-octane as a standard) under nitrogen atmosphere in the heating-
cooling-heating cycle, with the heating/cooling rate of 10 ◦C/min, from −120 to 225 ◦C.
The characteristic phase transition temperatures (glass transition and melting) were taken
from the second heating run. Glass transition temperature (Tg) was determined using the
midpoint approach, while specific heat capacity (∆Cp) was calculated from the vertical
distance between extrapolated baselines at Tg. The crystallization and melting temperatures
(Tc and Tm, respectively) were determined from the maximum of the exothermic and
endothermic peaks, respectively. The heat of fusion (∆Hm) and crystallization (∆Hc)
were calculated from the total areas under melting and crystallization peaks on the DSC
curve. The softening temperatures were also determined with Boetius apparatus (HMK
71/3407, Franz Küstner Nachf. KG, Dresden, Germany), where one observes the changes
in polymers structure along with an increase in temperature, and thus observing the
moment (temperature range), in which the crystalline phase will completely disappear. The
DMTA analysis was performed using a DMA 242 E/1/G Artemis (Netzsch, Selb, Germany)
apparatus working in a bending mode in a temperature range from −100 ◦C to the polymer
melt temperature, at a frequency of 1 Hz and a heating rate of 3 ◦C/min. The properties
were determined based on modulus changes and the ability of attenuation as a function
of temperature and frequency of load changes. The XRD analysis of the materials was
conducted with the use of a Panalytical X’Pert diffractometer operating at 40 V and 40 mA
with CuKα radiation (λ = 0.154 nm). The samples were scanned from 2θ = 4◦ to 60◦ with a
step of 0.05◦.

The morphology of the nanocomposites was analyzed using a scanning electron
microscope (FE-SEM, Hitachi SU-70). Before SEM analysis, the samples were cryofractured
in liquid nitrogen and then coated with a thin film of palladium-gold alloy, using a thermal
evaporation PVD (physical vapor deposition) method.

The shape memory performance was monitored using cyclic thermo-mechanical
analysis using a dynamic mechanical analyzer (DMA Q800, TA Instruments) working in
a controlled strain mode. Polymer films of approximately 200 µm thick were tested.
The measurements were performed following the procedure described in detail else-
where [39,40]. Seven consecutive cycles consisting of heating—stress loading—cooling—
stress unloading—heating were conducted. Programing of SMP was carried out at 20 ◦C,
while fixing of temporary shape was performed at −50 ◦C. A constant heating and cooling
rate of 10 ◦C/min were maintained. The shape fixity efficiency (Rf) and shape recovery
(Rr) were determined according to the following equations:

RNf =
εN2 − εN0

εN1 − εN0
× 100% (1)

RNr =
εN2 − εN0

εN2 − εN0
× 100% (2)

where: εN0 = the initial strain for the Nth cycle, εN1 = the maximum strain of stretched
sample, εN2 = the fixed strain after unloading, εN0 = the strain after recovering.

The static mechanical properties were measured using an Autograph AG-X plus uni-
versal testing machine (Shimadzu, Duisburg, Germany) equipped with a 1 kN Shimadzu
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load cell, a noncontact optical extensometer, and the TRAPEZIUM X computer software
operated at a constant crosshead speed of 100 mm/min. Measurements were performed at
room temperature on the dumbbell samples with a grip distance of 20 mm. According to
PN-EN ISO 527 standard, Young’s modulus, tensile strength (σy) and elongation at yield
(εy), strength at break (σb) and elongation at break (εb) of PHF and block copolymers were
determined. The reported values are the mean values of ten measurements. Cyclic tensile
measurements were performed only for PHF-b-F-pTHF copolymers using the same equip-
ment and a crosshead speed of 100 mm/min. Samples were stretched until the specified
strain value was reached, and then the tensile force was released to zero. This procedure
was repeated, with increasing deformation value, until the sample broke. The following
strains were established for our test: 5%, 15%, 25% 50% 100%, 200%, and 400%. Moreover,
the Shore D hardness was measured using a Zwick 3100 Shore D tester (Zwick GmbH,
Ulm, Germany). Each reported value was the mean of 20 independent measurements.

The thermo-oxidative and thermal stability of the synthesized homopolymer PHF and
PHF-b-F-pTHF copolymers were evaluated by thermogravimetry (TGA 92-16.18 Setaram,
Caluire-et-Cuire, France). Measurements were carried out in an oxidizing atmosphere, i.e.,
dry, synthetic air (N2:O2 = 80:20 vol.%) and in an inert atmosphere (argon) at a flow rate of
20 mL/min. The study was conducted at a heating rate of 10 ◦C/min in the temperature
range of 20–700 ◦C. Measurements were conducted in accordance with the PN-EN ISO
11358:2004 standard.

3. Results and Discussion
3.1. Analysis of Structure and Composition

A series of thermoplastic poly(ether-ester)s based on renewable raw materials, where
a hard phase was most often the crystallites of PHF located in a soft amorphous matrix
(soft phase) consisting of polyether sequences (F-pTHF), was synthesized by a catalyzed
two-stages reaction, involving transesterification, and polycondensation in the bulk. All
materials were synthesized using a highly effective catalyst, Ti(OBu)4), and antioxidant
(Irganox 1010), which were typically used by our group to obtain block copolymers [41–45].
The PHF-b-F-pTHF copolymers can be considered as random copoly(ether-esters) (F units
and F-pTHF units), and their molecular formula is shown in Figure 1. One can calculate the
degree of polycondensation of the rigid segment (F)x. In addition, the theoretical chemical
composition and the chemical composition estimated from 1H NMR analysis, along with
their basic physic-chemical properties, utilizing intrinsic viscosity [η], number (Mn) and
weight (Mw) average molecular masses, and polydispersity index (PDI) are summarized
in Table 1.

The degree of polymerization (x) of the rigid PHF segment was calculated according to
1 mol (y = 1 in Figure 1) of flexible F-pTHF (where F states for furanoate unit) segments. The
value of x of the rigid segments (Table 1), calculated from the composition of the reaction
mixture, is ranging from 14.2 (PHF-b-F-pTHF 75/25) to 1.57 (PHF-b-F-pTHF 25/75).
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Table 1. Composition and molecular characterization of poly(hexamethylene 2,5-furanodicarboxylate)-block-poly(tetrahydrofuran)
(PHF-b-F-pTHF) copolymers.

Sample x
[mol]

wPHF
[wt.%]

wFpTHF
[wt.%]

WFpTHF
NMR

[wt.%]
[η]

[dl/g]
Mn

[g/mol]
Mw

[g/mol] PDI

PHF - 100 - - 0.532 19,200 54,100 2.72
PHF-b-F-pTHF 75/25 14.12 75 25 31.98 0.696 27,500 71,000 2.58
PHF-b-F-pTHF 65/35 8.73 65 35 40.95 0.837 26,400 69,200 2.62
PHF-b-F-pTHF 50/50 4.71 50 50 58.51 0.865 27,500 70,900 2.58
PHF-b-F-pTHF 35/65 2.53 35 65 64.60 0.893 26,400 68,800 2.61
PHF-b-F-pTHF 25/75 1.57 25 75 72.18 0.922 26,900 74,700 2.77

x, degree of polymerization of F segment; wPHF, weight content of PHF segments; wFpPHF, weight content of F-pTHF segments in block
copolymer calculated theoretically and from NMR spectra; [η], intrinsic viscosity; Mn, Mw, number and weight average molecular mass,
respectively; PDI = Mw/Mn.

The limiting viscosity number [η] of polymers/copolymers can be influenced by the
molecular chains’ weight and their flexibility [41]. Moreover, it was found for PHF that also
the condensation temperature can affect the intrinsic viscosity [32]. In the present study,
the value of [η] for PHF homopolymer equals 0.532, which was slightly lower than that
for the previously published in [32], with comparable parameters of the polycondensation
process (temperature of 230 ◦C). In contrast, the values of intrinsic viscosity for the series
of copolymers increased along with an increase of weight fraction of F-pTHF segments
from 0.696 dL/g to 0.922 dL/g (Table 1). All copolyesters exhibited high number and
weight average molecular masses, ca. 27,000 (Mn) and ca. 70,000 (Mw), respectively. Only
neat PHF was characterized by lower masses (Mn slightly below 20,000, and Mw about
54,000), which resulted from the fact that all materials were attempted to be obtained
under similar conditions for comparison purposes (polycondensation was carried out
in time, with the time of this stage being approx. 3h). Therefore, under comparable
synthesis conditions to copoly(ether-esters), it was possible to obtain a material with a
slightly lower molecular weight than in the literature [32]. In turn, the values of PDI
for all synthesized materials were above 2 (Table 1). These values were similar for all
polymers and copolymers synthesized using the polycondensation procedure [40,45,46].
This phenomenon can be explained by the fact that when two different monomers are
involved (with different molecular masses), there is a stoichiometric imbalance and the
classical Flory’s most probable distribution might be no longer valid since the equation for
a rigorous calculation of the PDI becomes very complex.

The PHF and copolymers structure was investigated by means of FTIR spectroscopy.
Figure 2 presents the FTIR spectra of neat PHF and PHF-b-F-pTHF copolymers, in which
strong absorption peaks originating from the C=O and C(=O)-O stretching mode of ester
groups occur at 1714 cm−1 and 1268 cm−1, respectively. One can also observe absorption
peaks corresponding to 2,5-disubstituted furan heterocycles at ~3126 cm−1 and ~3162 cm−1

(=C-H stretching vibrations in the furan ring), ~1580 cm−1 (aromatic C=C stretching
vibrations), ~1218 cm−1 (=C-O-C= ring vibrations). Moreover, some weak signals as-
cribed to furan ring out-of-plane deformation appeared at ~960 cm−1, ~818 cm−1, and
~766 cm−1 [29,46–49]. Close inspection of PHF-b-F-pTHF copoly(ether-esters) spectra in
highlighted regions reveal the evolution of additional peaks within the incorporation of
polyether soft segment. In particular, additional absorption peaks due to C-O-C stretching
vibration of pTHF appear at a wavelength of 1308 cm−1 and 1105 cmv1. Similar phe-
nomenon were observed by Chi and co-workers who copolymerized poly(neopentyl glycol
2,5-furandicarboxylate) (PNF) with poly(tetramethylene glycol) (PTMG) [49]. As expected,
along with an increase of pTHF co-unit content, a gradual increase in the intensity of
absorption band at 2855 cm−1 can be observed due to -C-H asymmetric and symmetric
stretching vibrations in -CH2- groups. The lack of the absorption band at ~3450 cm−1 char-
acteristics for stretching of -OH group suggests complete consumption of terminal pTHF
hydroxyl group through copolymerization; thus, confirming the success of modification.



Polymers 2021, 13, 397 8 of 20

Polymers 2021, 13, x FOR PEER REVIEW 8 of 21 
 

 

4000 3500 3000 2500 2000 1500 1000 500

 T
ra

ns
m

itt
an

ce
 (a

.u
.)

 Wavenumber (cm−1)

76
696

8
11

32

12
68

14
73

15
75

17
14

12
19

31
15

31
52

81
8

28
55

29
45

11
0513

08

PHF

PHF-b-F-pTHF 25/75

PHF-b-F-pTHF 35/65

PHF-b- F-pTHF 50/50

PHF-b-F-pTHF 65/35

PHF-b-F-pTHF 75/25

 
Figure 2. Fourier Transform Infrared (FTIR) spectra of PHF homopolymer and PHF-b-F-pTHF 
copolymers. 

The chemical structure of PHF-b-F-pTHF poly(ether-ester)s was further assessed by 
quantitative 1H NMR studies. The chemical shifts and corresponding peak assignments 
are reported in Figure 3. In the 1H NMR spectra of homopolymer, the resonance corre-
sponding to the two furanoate ring protons appear as a singlet signal at 7.09 ppm (a sig-
nal), whilst those corresponding to the outer (b signals), inner (c signals), and middle (d 
signals) methylene protons of hexylene glycol units occur at 4.23 ppm, 1.63 ppm, and 1.31 
ppm, respectively. These peak assignments agree well with the data reported earlier by 
Jiang et al. [29] and Papageorgiou et al. [21]. All of the resonances mentioned above can 
also be distinguished in the copolymer spectra, with their intensity being dependent on 
the ratio of FHD to F-pTHF segments. Besides, a number of new resonance signals at-
tributable to the protons of pTHF blocks occur at copolymers spectra. New peaks occur-
ring at 1.60 ppm (h signal) and 3.40 ppm (g signal) can be reasonably ascribed to outer 
and inner methylene protons of pTHF ether blocks, respectively [50]. Furthermore, new 
less intense signals occurred in the methylene group proton region owing to pTHF pro-
tons located in a different environment (adjacent to PHF segment by ester bond) after 
transesterification reaction between the various units, i.e., PHF and pTHF. The methylene 
proton resonances of pTHF segments attached to PHF can be observed at 4.36 ppm (e 
signal, partially overlapped with b signal) and at 1.64–1.71 ppm (f signal). It is clear that 
the intensity of both pTHF main chain peaks (g and h signals) and cross-peaks (e and f 
signals) depends on the content of ether co-units and increases sharply as the ratio of 
pTHF increases. 

The relative area ratio of the 1H NMR resonance peaks attributed to the aromatic 
protons of the furan ring at δ~7.15–7.22 ppm and inner methylene protons of the p-THF 
at δ ~1.53–1.65 ppm were employed to estimate the actual weight content of F-pTHF seg-
ments following Equation 3: 

W (wt%) =  I6 × 210I6 × 210 + I2 × 238.24 × 100% (3)

where Ig and Ia are the internal signal intensities for the corresponding peak at δ ~1.53–
1.65 (g) and δ ~7.15–7.22 ppm (a), respectively; 210 and 238.24 are the molecular weights 
of the repeating units of F-pTHF and PHF segments, respectively. 

The calculated copolymer composition (Table 1) was found to differ from the theo-
retical values by less than a few percent. These slight differences were already expected 
and can be related to (i) the introduction of a certain excess of p-THF added to theoretical 
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copolymers.

The chemical structure of PHF-b-F-pTHF poly(ether-ester)s was further assessed
by quantitative 1H NMR studies. The chemical shifts and corresponding peak assign-
ments are reported in Figure 3. In the 1H NMR spectra of homopolymer, the resonance
corresponding to the two furanoate ring protons appear as a singlet signal at 7.09 ppm
(a signal), whilst those corresponding to the outer (b signals), inner (c signals), and middle
(d signals) methylene protons of hexylene glycol units occur at 4.23 ppm, 1.63 ppm, and
1.31 ppm, respectively. These peak assignments agree well with the data reported earlier by
Jiang et al. [29] and Papageorgiou et al. [21]. All of the resonances mentioned above can also
be distinguished in the copolymer spectra, with their intensity being dependent on the ratio
of FHD to F-pTHF segments. Besides, a number of new resonance signals attributable to
the protons of pTHF blocks occur at copolymers spectra. New peaks occurring at 1.60 ppm
(h signal) and 3.40 ppm (g signal) can be reasonably ascribed to outer and inner methylene
protons of pTHF ether blocks, respectively [50]. Furthermore, new less intense signals oc-
curred in the methylene group proton region owing to pTHF protons located in a different
environment (adjacent to PHF segment by ester bond) after transesterification reaction
between the various units, i.e., PHF and pTHF. The methylene proton resonances of pTHF
segments attached to PHF can be observed at 4.36 ppm (e signal, partially overlapped with
b signal) and at 1.64–1.71 ppm (f signal). It is clear that the intensity of both pTHF main
chain peaks (g and h signals) and cross-peaks (e and f signals) depends on the content of
ether co-units and increases sharply as the ratio of pTHF increases.

The relative area ratio of the 1H NMR resonance peaks attributed to the aromatic
protons of the furan ring at δ~7.15–7.22 ppm and inner methylene protons of the p-THF at δ
~1.53–1.65 ppm were employed to estimate the actual weight content of F-pTHF segments
following Equation (3):

WFpTHF(wt%) =

(
Ig
6

)
× 210(

Ig
6

)
× 210 +

(
Ia
2

)
× 238.24

× 100% (3)

where Ig and Ia are the internal signal intensities for the corresponding peak at δ ~1.53–1.65 (g)
and δ ~7.15–7.22 ppm (a), respectively; 210 and 238.24 are the molecular weights of the
repeating units of F-pTHF and PHF segments, respectively.

The calculated copolymer composition (Table 1) was found to differ from the theo-
retical values by less than a few percent. These slight differences were already expected
and can be related to (i) the introduction of a certain excess of p-THF added to theoretical
calculations due to the losses in the dosing of the viscous substrate (marked especially at
low p-THF concentrations), and (ii) distillation of the reaction substrate under reduced pres-
sure. A similar tendency was also reported by Chi et al. [49] for PNF-PTMG copolymers,
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and the authors attributed this effect to the sublimation of NPG during polycondensa-
tion. Nonetheless, the obtained results confirm that the copolymers’ composition can be
controlled simply by varying the substrate feed ratio of DMFDC and HDO to pTHF.
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Figure 3. Structure of PHF-b-F-pTHF copolymers (a) and nuclear magnetic resonance (NMR) spectra of PHF-b-F-pTHF
copolymers (b).

3.2. Phase Structure and Morphology

In PHF-b-F-pTHF copolymers, similarly to other segmented copolymers, the PHF and
F-pTHF segments can separate into discrete phases when solidified from the melt results
from the thermodynamic immiscibility of the rigid (F) and flexible (F-pTHF) segments.
The occurrence of this hetero-phase structure in the studied copolymers, resulting from
semicrystalline and amorphous domains, was studied and confirmed by DSC and DMTA
analyses. The DSC thermograms recorded during cooling and second heating are pre-
sented in Figure 4. The glass transition temperature of PHF can be found to be Tg = 16.7 ◦C
(with corresponding ∆Cp of 0.26 J/g), which was slightly higher than the values obtained
by Papageorgiou et al. [21], but their experiment was conducted using a heating rate of
20 ◦C/min (after cooling at 80 ◦C/min). We also confirmed that PHF was a semicrystalline
sample, that crystallized during cooling with the crystallization temperature of ca. 84 ◦C.
The melting temperature of PHF was found to be Tm = 151.3 ◦C. For block copolymers,
along with the increasing content of pTHF, we observed the decrease in the phase transition
temperatures (Tm and Tc) and the corresponding enthalpies, melting (∆Hm) and crystalliza-
tion (∆Hc), respectively. When comparing the sample with the highest content of F-pTHF
segments (75 wt.%) to the lowest content (25 wt.%), these differences amount to over 40 ◦C
for the melting temperatures and almost 60 ◦C for the crystallization temperatures, due to
the decreasing content of the semicrystalline PHF-rich phase. For all materials, only one
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Tg is observed, and the value of which depends on the composition of the copolymer. In
addition, on the DSC curves of PHF-b-F-pTHF 35/65 and PHF-b-F-pTHF 25/75, i.e., with
the highest content of pTHF, one can observe the melting of crystallites of pTHF at the
temperatures −7.1 ◦C and −2.1 ◦C, respectively. One can find pTHF as a semicrystalline
polyether [51], and in block copolymers with long pTHF sequences, the crystallites of pTHF
can be observed [52].
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Figure 4. Differential scanning calorimetry (DSC) thermograms for homopolymer PHF and PHF-b-
F-pTHF copolymers recorded during: (a) cooling and (b) second heating. 

The dynamic mechanical properties of PHF and PHF-b-F-pTHF copolymers as a 
function of temperature are shown in Figure 5. The values of storage modulus at 25 °C are 
also summarized in Table 2. The properties of the copolymers change with the tempera-
ture change in a manner characteristic for thermoplastic elastomers, i.e., in the curve of 
the storage modulus (E’), there is an inflection related to the soft phase glass transition, 
defining the lower temperature of the elasticity interval. The range of the flat course of 
these curves (the so-called “wide plateau of elasticity”) determines the possibility of using 
the obtained copolymers (especially with a higher content of pTHF as thermoplastic elas-
tomers. The distinct differences between the PHF and the copolymers are explicitly visible 
in the values of storage modulus determined at 25 °C (Table 2), from 1373 MPa (homopol-
ymer PHF) to 35.2 (for PHF-b-F-pTHF 25/75). From the curves of tan δ (Figure 5b), one can 
observe that the PHF homopolymer has the α-relaxation at 48 °C corresponding to the 

Figure 4. Differential scanning calorimetry (DSC) thermograms for homopolymer PHF and PHF-b-F-
pTHF copolymers recorded during: (a) cooling and (b) second heating.

The dynamic mechanical properties of PHF and PHF-b-F-pTHF copolymers as a
function of temperature are shown in Figure 5. The values of storage modulus at 25 ◦C are
also summarized in Table 2. The properties of the copolymers change with the temperature
change in a manner characteristic for thermoplastic elastomers, i.e., in the curve of the
storage modulus (E’), there is an inflection related to the soft phase glass transition, defining
the lower temperature of the elasticity interval. The range of the flat course of these curves
(the so-called “wide plateau of elasticity”) determines the possibility of using the obtained
copolymers (especially with a higher content of pTHF as thermoplastic elastomers. The
distinct differences between the PHF and the copolymers are explicitly visible in the values
of storage modulus determined at 25 ◦C (Table 2), from 1373 MPa (homopolymer PHF) to
35.2 (for PHF-b-F-pTHF 25/75). From the curves of tan δ (Figure 5b), one can observe that
the PHF homopolymer has the α-relaxation at 48 ◦C corresponding to the glass transition
of the amorphous part in the semicrystalline hard phase. One beta relaxation associated
with amorphous soft phase transition shifted towards higher temperatures, as the result of
the increasing presence of non-crystallized polyester PHF sequences in this phase is visible.
The amorphous soft phase is a blend of polyether (pTHF) sequences and non-crystallized
polyester (PHF) sequences, which can restrict thermal motions within pTHF-rich soft
segment regions. Herein, also along with the increasing content of pTHF, the maxima of the
peaks are shifted toward lower values. Two samples with the highest amount of F-pTHF
segments (65 and 75 wt.%) exhibited similar values of −50 ◦C.
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copolymers.

Table 2. Thermal properties determined from cooling and 2nd heating thermograms, storage modulus at 25 ◦C (from
dynamic mechanical thermal analysis (DMTA)), and softening temperature (TB) in homopolymer PHF and series of
PHF-b-F-pTHF copolymers.

Sample Tg
[◦C]

∆Cp
[J/g ◦C]

Tc
[◦C]

∆Hc
[J/g]

Tm
[◦C]

∆Hm
[J/g]

Xc
[%]

E’ at 25 ◦C
[MPa]

TB
[◦C]

PHF 16.6 0.26 84 47.4 146 50.3 35.2 1373.3 143–152
PHF-b-F-pTHF 75/25 −36.4 0.28 79 40.8 141 35.1 24.5 310.5 134–145
PHF-b-F-pTHF 65/35 −58.6 0.33 72 39.7 137 36.6 25.6 232.2 129–143
PHF-b-F-pTHF 50/50 −65.5 0.38 54 28.8 127 27.6 19.3 131.2 115–135
PHF-b-F-pTHF 35/65 −65.8 0.43 47 22.9 115 20.4 14.1 77.7 98–119
PHF-b-F-pTHF 25/75 −66.6 0.58 27 16.5 102 11.4 7.9 35.2 90–105

Tg, glass transition temperature; ∆Cp, change of heat capacity; Tc, ∆Hc, crystallization temperature and corresponding enthalpy of
crystallization; Tm, ∆Hm, melting temperature and corresponding enthalpy of melting; Xc, degree of crystallinity, where ∆Hm

0 = 143 J/g [21];
E‘, storage modulus at 25 ◦C; TB, the softening temperature range estimated using Boetius apparatus.

Additionally, for the synthesized materials, the Boetius softening temperature range
was determined, and the values are summarized in Table 2. This measurement is partic-
ularly useful for determining material processing temperatures when obtaining samples
employing the injection molding process. For this measurement, the temperature range
was given at which the sample began to soften when observed under a microscope. The
influence of the chemical composition was visible, and, as the soft phase content increased,
the softening temperature range was shifted towards lower values. This confirmed the
observations from DSC analysis concerning the decrease of Tm as a function of copolymer
composition.

To investigate the crystal structure of the obtained copolymers, XRD analysis was
performed. Figure 6 presents WAXS patterns of neat PHF homopolymer and PHF-b-F-
pTHF copolymers. The obtained PHF had typical (110) plane, (010) plane, and (111) plane
at 2θ = 13.31◦ (d = 6.64 Å), 17.06◦ (d = 5.19 Å), and 24.46◦(d = 3.63 Å) [32]. Unlike other
polyesters based on 2,5-furanedicarboxylic acid, such as poly(ethylene 2,5-furanoate) (PEF)
or (poly(butylene 2,5-furanoate) (PBF), PHF is highly crystalline at room temperature, with
the degree of crystallinity greater than 35% [53]. As the content of the flexible F-pTHF
segment increases, the degree of crystallinity of the sample decreases (Figure 6a). The
same trend was observed in the DSC analysis. A decreasing degree of crystallinity with an
increase in the content of the flexible segment and unchanging positions of the crystalline
peaks may indicate that only the PHF crystal structure exists in the obtained copolymers.
The main reflections at 2θ = 17.06◦ and 24.46◦, of copolymers with predominant F-pTHF
segments, lose their sharp shape, which also indicates the amorphous character of F-pTHF.
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Observations carried out by scanning electron microscopy (SEM), significant from
the point of view of the material structure analysis, confirmed the heterogeneity of the
structure of the PHF-b-F-pTHF copolymers tested. Although both phases are immiscible,
they exert a significant influence on each other. The micrographs of the fractures of the
samples are presented in Figure 7. The obtained images showed differences in the phase
structure depending on the composition of the copolymers. Figure 7a shows the spherulitic
morphologies of the PHF. With the increase in the proportion of pTHF in the copolymer,
spherulites became larger, but their number decreased (Figure 7b–f), which was confirmed
by the DSC research. Based on the shape and temperature position of the crystallization
peaks on the DSC curves determined during the cooling of the molten polymer with
a constant speed (Figure 4a), it can be seen that the crystallization rate influenced the
crystallite morphology. The crystallization peaks of PHF-b-F-pTHF 75/25 and PHF-b-F-
pTHF 65/35 samples were characterized by a wide base (wide temperature range), which
means that at this cooling rate, crystallization took place more slowly than for others. This
was manifested by more crystalline forms with a more regular shape. Faster crystallization
favors irregular forms.
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line peak positions and amorphous halo reflections (b). 
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The observations and analysis of the mechanical tests also showed that the tensile
strength of the obtained polymers depended mainly on the content of the crystallization
segment and decreased with its loss. On the other hand, the elongation at break depended
on the amorphous segment, and as its content increased, it also increased.
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3.3. Shape Memory Behavior

As previously demonstrated [40], copolymers characterized by glass transition tem-
perature accompanied with a sudden gain in molecular mobility (i.e., a high value of
∆Cp) and sufficient elastic ratio of glassy to rubbery modulus (E’g/E’r) may behave as a
shape memory polymer (SMP). In addition to the glass transition temperature, melting
temperature (Tm) or liquid crystalline (LC) phase transition have been reported as stimuli-
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sensitive switches [54–56]. Based on DSC and DMTA results described in the previous
section, one can deduce that PHF-b-F-pTHF copolymers containing the highest amount
of soft segments (75 wt.%) can be qualified for further studies on shape memory effect,
induced by an external stimulus, i.e., temperature (Ttrans). In principle, Ttrans can be either
glass transition temperature (Tg PHF-b-F-pTHF 25/75 = −66.6 ◦C) or low temperature melt-
ing (Tm PHF-b-F-pTHF 25/75= −2.8 ◦C). The latter was considered as a switching transition
temperature in the present work. More specifically, a cyclic thermomechanical analysis
was employed to evaluate the SMP ability to fix mechanical deformation and recover
to its original shape. Each cycle consisted of hating to 20 ◦C (calorimetric Tm + 20 ◦C),
stretching the film sample by ramping a load of 10 N, cooling at constant load to a “fixing
temperature,” which was well below melting of PHF-b-F-pTHF 75/25 (−50 ◦C) and finally
reheating back to 20 ◦C. After unloading, the sample contracts slightly and retains its new,
temporary shape. When heated above Ttrans, the second, more pronounced contraction
occurs. The extend of this return quantifies the ability of SMP to recover the original shape.
The consecutive thermomechanical cycles are reported in Figure 8a, whilst the calculated
values of the shape fixity efficiency (Rf) and shape recovery (Rr) were plotted as a function
of cycle number in Figure 8b. From the obtained results, it is apparent that the investigated
copoly(ether-ester)s exhibited a relatively high ability to fix mechanical deformation since
Rf remained high and almost independent of the cycle number (90.6 ≤ Rf 90.8%). On the
other hand, Rr varied slightly in the individual cycles. The highest Rr difference could be
observed between the first and successive thermomechanical cycles. This phenomenon
occurred in most thermoplastic SMPs [39,57] and seemed to be related to sample process-
ing history. Anyway, based on the conducted studies, one can state that PHF-b-F-pTHF
25/75copolymer can be applied as a promising SMP polymer, with a shape fixity of over
90% and shape recovery efficiency of over 60%. The mechanism of its shape memory
behavior was triggered by the melting of switching segment crystals (provided by the
pTHF crystalline phase).
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3.4. Mechanical and Elastic Properties of PHF-b-F-pTHF

The representative stress-strain curves for PHF and PHF-b-F-pTHF copolymers are
presented in Figure 9. Moreover, the values of Shore hardness, tensile modulus (E), tensile
strength at yield (σy) elongation at yield (εy), stress at break (σb), and strain at break
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(εb) are summarized in Table 3. The obtained PHF is characterized by high stiffness and
low strain at break, which differed from the results reported in the literature [38,53]. The
differences may result from the greater degree of crystallinity of the material, but also from
the higher stretching speed, which in our case was 100 mm/min. Due to the high strain
rate, the PHF might not have enough time to adjust to the deformation, which may result
in a low value of elongation at break. With the increase in the proportion of the flexible
pTHF segments in the copolymer, the Young’s modulus and the tensile strength, as well
as hardness decrease. The copolymer with the highest content of flexible segments was
characterized by a hardness lower by over 60% and a Young’s modulus over 35 times lower
than the PHF homopolymer. The obtained results were consistent with the expectations.
F-pTHF segments are more elastic, and with their higher content, the degree of crystallinity
of the samples decreases. On the other hand, the values of elongation at break significantly
increase already at 25 wt.% of the pTHF segments, achieving the highest value of 665% for
PHF-b-F-pTHF 35/65 copolymer. Copolymers with a dominance of more rigid polyester
segments were characterized by a clear yield point. Moreover, a strain hardening effect
caused by macromolecular chains orientation and crystallization during stretching was
observed. Since copolymers with a greater content of pTHF segments are characterized by
a lower crystallization ability, the strengthening effect in their case is greatly reduced.
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Table 3. Tensile properties of PHF-b-F-pTHF copolymers.

Sample Hardness
[Sh D]

E
[MPa]

σy
[MPa

εy
[%]

σb
[MPa]

εb
[%]

PHF 68 ± 1 1134.9 ± 84.8 - - 16.1 ± 4.2 1.01 ± 0.01
PHF-b-F-pTHF 75/25 51 ± 1 344.9 ± 69.1 16.4 ± 0.3 17.2 ± 1.7 43.8 ± 4.9 583.8 ± 46.1
PHF-b-F-pTHF 65/35 48 ± 1 232.7 ± 12.3 13.6 ± 0.3 18.0 ± 1.9 23.2 ± 0.7 541.3 ± 49.7
PHF-b-F-pTHF 50/50 41 ± 1 114.2 ± 13.4 - - 21.8 ± 2.3 662.8 ± 65.5
PHF-b-F-pTHF 35/65 33 ± 1 70.0 ± 10.9 - - 11.5 ± 0.1 665.0 ± 30.5
PHF-b-F-pTHF 25/75 26 ± 1 32.1 ± 7.6 - - 7.2 ± 0.2 638.8 ± 33.1

E, Young’s modulus (calculated from strain 0.05% to 0.25%); σy, εy, tensile strength and elongation at yield, respectively; σb, εb, strength
and elongation at break respectively.

Figure 9b shows the representative stress-strain curves for PHF-b-F-pTHF copolymers
under cyclic tensile loading. The main contours of the curves obtained in the cyclic tensile
tests, reflect the trend observed under uniaxial static tensile tests. To assess the elastic
recovery of the obtained copolymers, Figure 9c shows the values of a permanent set level
after each deformation cycle. As the strain increases, the differences in the values of the
residual strain of materials are more and more pronounced. As exhibited, copolymers
with a predominance of flexible pTHF segments have better recovery properties. The
higher stiffness of the PHF segments limits the material return after deformation. Besides,
the higher the degree of crystallinity of the material, the more difficult it is to restore the
original shape and the permanent set level is higher. Therefore, as expected, it can be
concluded that copolymer PHF-b-F-pTHF 25/75 has the best elastic properties (the lowest
values of the permanent set).

3.5. Thermo-Oxidative and Thermal Stability

The applicative performance of polymer materials depends largely on their stability at
higher temperatures. The thermo-oxidative and thermal stability of the synthesized PHF-
b-F-pTHF copolymers and PHF homopolymer were analyzed using thermogravimetry
under oxidative (air) atmosphere (Figure 10a) and argon (Figure 10b). The characteristic
temperatures for the mass of 5%, 10%, and 50% (T5%, T10%, T50%) argon and air, along
with the temperatures corresponding to the maximum of mass losses (TDTG1 and T),
activation energies (Ea) and correlation coefficient in linear regression (R) are summarized
in Table 4. One can consider the value of T5% as the beginning of thermal degradation.
It can be seen that along with the amount of pTHF the decrease in the value of T5% was
observed. In turn, at higher temperatures, no such significant differences in thermo-
oxidative stability as a function of copolymer composition were observed, especially in the
case of T50% (differences in the size of 1–2 ◦C). Likewise, the values of TDTG1 and TDTG2 were
comparable to each other and practically independent from the composition. The whole
series of materials in an oxidizing atmosphere exhibited two stages of degradation, which
appeared at 270–445 and 455–540 ◦C (Figure 10a), respectively. The first stage is attributed
to the decomposition of flexible and rigid segments. We know that the oxygen attack on
poly(ether-ester) block copolymers is initiated in the flexible segment and, in most cases
occurs at the α-carbon atom to the ether oxygen atom [42,58] and results in the formation of
volatiles, while the second stage is attributed to the decomposition of the residue. Besides,
from the shape of the TG and DTG curves, it can be observed that in an inert atmosphere
(argon) the thermal behaviors of PHF-b-F-pTHF copolymers and PHF homopolymer are
very similar and practically independent from the composition. Nevertheless, the values of
activation energy (Ea) was strongly dependent on the composition, in both oxidizing and
inert atmosphere. The values of Ea for PHF homopolymer and PHF-b-F-pTHF 75/25 were
comparable, but along with the increasing amount of pTHF, a significant decrease was
visible, from about 320 kJ/mol to about 249 kJ/mol, if compared samples with the highest
(75 wt.%) and lowest (25 wt.%) of pTHF, in an oxidizing atmosphere (Table 4). Similar
behavior was observed in an inert atmosphere (decrease of ca. 140 kJ/mol). The weakest
bond in the PHF-b-F-pTHF copolymer backbone and, therefore, the most susceptible to
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scission at lower temperatures is the C–O bond occurring in pTHF segments. Therefore,
it has been observed that with increasing content of PTHF in copolymers, the energy of
activation for copolymer decomposition is decreasing and thus the stability [58].
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Figure 10. Mass loss (TG) and derivative of mass loss (DTG) curves for PHF-b-F-pTHF copolymers
measured in an oxidizing atmosphere (air) (a) and in an inert atmosphere (argon) (b) at the heating
rate 10 ◦C/min.

Table 4. TGA data: temperatures of 5%, 10%, and 50% mass loss, the temperatures corresponding to
the maximum of mass losses (TDTG1 and TDTG2), activation energies (Ea) and correlation coefficient
in linear regression (R) in an oxidizing and an inert atmosphere.

Sample T5%
[◦C]

T10%
[◦C]

T50%
[◦C]

TDTG1
[◦C]

Ea, (R)
[kJ/mol]

TDTG2
[◦C]

Measurement in an oxidizing atmosphere

PHF 354 365 388 390 320.29 (0.9999) 500
PHF-b-F-pTHF 75/25 346 359 387 389 322.64 (0.9972) 505
PHF-b-F-pTHF 65/35 344 358 389 392 297.79 (0.9996) 506
PHF-b-F-pTHF 50/50 337 356 388 390 294.97 (0.9999) 504
PHF-b-F-pTHF 35/65 329 350 389 390 246.08 (0.9985) 504
PHF-b-F-pTHF 25/75 327 349 388 390 242.87 (0.9983) 507

Measurement in an inert atmosphere

PHF 357 367 388 390 357.06 (1.0000) -
PHF-b-F-pTHF 75/25 358 368 392 392 363.30 (0.9994) -
PHF-b-F-pTHF 65/35 358 368 395 394 340.46 (0.9997) -
PHF-b-F-pTHF 50/50 354 368 397 395 279.37 (0.9993) -
PHF-b-F-pTHF 35/65 351 367 399 397 214.18 (0.9987) -
PHF-b-F-pTHF 25/75 351 368 402 402 210.99 (0.9993) -

4. Conclusions

The series of bio-based block copolymers, by means of PHF-b-F-pTHF were suc-
cessfully synthesized using a two-stage polymerization method that consists of trans-
esterification and polycondensation in the melt. It was proven that the employment of
renewable raw materials (dimethyl 2,5-furanodicarboxylate, Henan Coreychem Co., China;
1,6-hexylene glycol, Rennovia Inc., USA, and pTHF, BASF) allowed obtaining polyester
(PHF) and poly(ether-esters) (PHF-b-F-pTHF) with high molecular masses and intrinsic
viscosities, thus opening a relatively broad range of future applications that may compete
with petroleum-based thermoplastic polyesters and copolyesters. Of course, nowadays,
it is still economically not profitable to completely replace TPA by FDCA, or fossil-based
PTMO with bio-based pTHF, due to relatively high market prices of the monomers, how-
ever, falling prices (from year to year) and increased public awareness are contributing to
more and more prospective applications for this types of materials. Therefore, it is of great
importance to synthesize (especially in “macro-laboratory” scale, or even “half-industrial”
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scale) polyesters and copolyesters based on renewable raw materials, and characterize
them in detail, which will significantly contribute to a faster transfer of the production of
this type of materials to an industrial scale. Therefore, in the present study special empha-
sis was placed on the accurate structure-property relationship. The PHF homopolymer
and PHF-b-F-pTHF copolymers structures were investigated utilizing FTIR spectroscopy
and 1H quantitative nuclear magnetic resonance (NMR), and it was found that the real
composition was found to be very close to the one theoretically calculated. DSC and DMTA
analyses, along with SEM observations, provided information on the phase structure of
PHF-b-F-pTHF copolymers. In the obtained copolymers, the hetero-phase structure result-
ing from semicrystalline and amorphous domains was visible. Moreover, it was found that
PHF-b-F-pTHF 25/75 copolymer can be applied as a promising SMP polymer, with a shape
fixity of over 90% and shape recovery efficiency of over 60%. Besides, the static and cyclic
tensile performance of PHF-b-F-pTHF copolymers confirmed their ability to relatively high
deformations (especially with the highest content of pTHF, i.e., 75 wt.%) and damping
ability at room temperature. In addition, it was proved that the synthesized copolymers
can be processed by injection molding and exhibited high thermo-oxidative and thermal
stability, where the increasing content of the soft phase did not contribute to a significant
decrease in the stability, which prevents their degradation during processing (at higher
temperatures).
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