Iron (II) metallo-supramolecular polymers based on thieno[3,2-*b*]thiophene for electrochromic applications

Andrei Chernyshev,^{1,#} Udit Acharya,^{2,3,#} Jiří Pfleger,² Olga Trhlíková,² Jiří Zedník¹ and Jiří Vohlídal^{1*}

¹ Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic;

²Institute of Macromolecular Chemistry, Academy of Sciences of the Czech

Republic, Heyrovského nám. 2, 162 06, Prague, Czech Republic;

³ Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic;

[#]Both co-authors contributed equally to this work.

* Correspondence author: Jiří Vohlídal1, E-mail: vohlidal@natur.cuni.cz;

Figure S1. IR spectra of unimers and corresponding Fe-MSPs.

Figure S2. ¹H NMR spectra of unimer Tt.

Figure S3. ¹³C NMR spectra of unimer Tt.

Figure S4. ¹H NMR spectra of unimer TtPh.

Figure S5. ¹³C NMR spectra of unimer TtPh.

Figure S6. ¹H NMR spectra of unimer TtB.

Figure S7. ¹³C NMR spectra of unimer TtB.

Figure S8. ¹H NMR spectra of unimer TtE.

Figure S9. ¹³C NMR spectra of unimer TtE.

Figure S10. Solutions with gradually increasing ratio $r = [Fe^{2+}]/[U]$ clearly show the effect of linker on the color of metallo-supramlecular oligomers and polymers.

Figure S11. Comparison of the position and intensity of MLCT bands of Fe-MSPs (r = 1) solutions.

Figure S12. AFM images of Fe²⁺-MSP films (tapping mode, clockwise).

Figure S13. Determination of the bleaching and coloring time of electrochromic films from 95 % of saturated transmission. (a) **Fe-Tt;** (b) **Fe-TtE;** (c) **Fe-TtPh**; and (d) **Fe-TtB.**

Figure S14. Time courses of the transmittance, T, at $\lambda = 618$ nm of the **Fe-TtB** electrochromic layer and the charge passed through the layer, Q, during its bleaching. The charge needed to achieve 95% of the final saturated transmittance was used for the calculation of the coloration efficiency

Figure S15. Frequency dependence of the real part of the conductivity of gel electrolyte.

Randles-Ševčik equation [35,36] for temperature of 25 °C is:

$$i_{\rm p} = 269 \cdot c \cdot D^{1/2} \cdot v^{1/2}$$

where: i_p is the current density of CV peak, *c* the molar concentration (in mol/L) and *D* diffusion coefficient (in cm²s⁻¹) of electroactive species and *v* the scan rate (in V·s⁻¹).