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Abstract: To promote the construction of the thermal network in the epoxy resin (EP), a certain pro-
portion of silver nanowires (AgNWs) coupled with the hexagonal boron nitride (BN) nanoplates were
chosen as fillers to improve the thermal conductivity of EP resin. Before preparing the composites,
BN was treated by silane coupling agent 3-aminopropyltriethoxysilane (KH550), and AgNWs was
coated by dopamine hydrochloride. The BN/AgNWs/EP composites were prepared after curing,
and the thermal conductivity and dielectric properties of the composites was tested. Results showed
that the AgNWs and BN were uniformly dispersed in epoxy resin. It synergistically built a thermal
network and greatly increased the thermal conductivity of the composites, which increased 9% after
adding AgNWs. Moreover, the electrical property test showed that the addition of AgNWs had
little effect on the dielectric constant and dielectric loss of the composites, indicating a rather good
electrical insulation of the composites.

Keywords: epoxy resin; boron nitride; silver nanowires; thermal conductivity

1. Introduction

Scientific development leads to higher standards for motors, electronic packaging, and
so on. Technological progress has made electronic devices smaller and more efficient [1], so
more heat is generated. Excessive heat generation is the cause of heat accumulation, which
affects the working environment and working temperature of electronic devices. Long-term
exposure to high temperature will greatly shorten the service life of electronic devices. In
order to prolong the service life of an electronic device, it is necessary to improve its heat
dissipation capacity and keep its working temperature within a normal range. Therefore,
it is essential to study and prepare materials with high thermal conductivity to solve the
problems caused by excessive heat accumulation [2–4]. Compared with other materials,
polymer materials have better processing properties. Through structural changes, their
properties can be changed to meet people’s needs. The most important thing is that polymer
materials have good electrical insulation [5–8] and certain adhesion [9,10]. Therefore, they
are widely used in motor, electronic packaging, LED packaging, aerospace [11–16] and
other fields. However, the poor thermal conductivity of polymer materials limits its
application. Therefore, it is imperative to develop polymer matrix composites with high
thermal conductivity and insulation. At present, the mainstream approach is to select
some inorganic nanoparticles with high thermal conductivity as fillers, which are added
into polymers to prepare high thermal conductive composites. Traditional fillers mainly
include metals such as Al, Ag, Cu and Mg [17–19] or inorganic carbon materials such
as carbon black and graphene [20–25]. However, the strong conductivity of the above
fillers significantly reduces the insulation of the composites, which limits the composites’
application in motors, electrical appliances and electronics.
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Recently, more attention has been paid to nitride fillers, which are widely used in
various fields due to their compact atomic crystal structure, excellent thermal conductivity
and good electrical insulation. The versatile properties of BN make it suitable for a wide
variety of applications. Mortazavi et al. used a molecular dynamics simulation to study
the effect of grain size on the thermal conductivity of polycrystalline BN at different tem-
peratures [26,27]. Polycrystalline hexagonal boron nitride exhibits a thermal conductivity
comparable to that of single-crystal thin plates. Sun et al. used an infrared camera to
observe the heat dissipation effect of BN [28]. It was found that the temperature reduction
of the film was reduced by about 20% after the addition of BN, demonstrating the potential
for heat dissipation of the BN film. By studying the spatial and spectral properties of the
infrared thermal emission of the device. Barnard et al. found that BN and graphene can
increase lateral heat transfer within the device [29]. Loeblein et al. found that the tempera-
ture of nanostructured foamed thermal interface materials consisting of three-dimensional
carbon (3D-C) and hexagonal boron nitride (3D-BN) was reduced by 20% compared to
conventional thermal interface materials, and thermal resistance was reduced by 25% [30].
Kargar et al. studied epoxy-based composites with BN and graphene as fillers [31]. It was
found that, at high filler loadings, heat transfer in composites occurs primarily via the
filler network.

The above research shows that the addition of BN can effectively improve the thermal
conductivity of the composites, while not significantly reducing their electrical insulation
properties. However, when BN is used as the heat conduction filler, its heat conduction
mechanism still follows the traditional heat conduction network theory. This requires
that the content of BN must reach a large proportion before a relatively complete heat
conduction network can be formed in the epoxy resin, which often sacrifices the mechanical
properties of the composite. Therefore, how to ensure the synergy of thermal, mechanical
and electrical properties of composites at low filler content is one of the focuses in the
field of thermal conductive composites, and the key lies in the construction of the thermal
conductive network.

In view of the above problems, this study used epoxy resin as matrix, boron nitride
and silver nanowires as composite fillers, and methyl-hexahydro phthalic anhydride and
methyl nadic anhydride as curing agents to prepare boron nitride/silver nanowires/epoxy
resin composites via curing reaction. The difference in mechanical properties and dielectric
properties, as well as improvement of thermal conductivity of the composites, were studied
by adjusting the ratio of BN and AgNWs in the composite fillers. A silane coupling agent
KH550 was used as a surface treatment material to bring amino groups to the BN surface,
improving the interfacial compatibility between BN and epoxy resin. Similarly, a biological
reagent of PDA as surface coating material was used to coat a dense PDA layer on the
surface of AgNWs to improve the interface compatibility between AgNWs and epoxy resin.

2. Materials and Methods
2.1. Materials

Hexagonal boron nitride (100 nm) was supplied by Yaotian Chemical Co., Ltd., Beijing,
China. Silver nanowires (AgNWs) was supplied by Lengshi Chemical Co., Ltd., Suzhou,
China. Epoxy resin (E-51) was supplied by Xingchen Chemical Co., Ltd., Shenzhen, China.
Silane coupling agent (KH550) was supplied by Liangui Chemical Co., Ltd., Shenzhen,
China. Dopamine hydrochloride (PDA) and trishydroxymethyl aminomethane (tris-Hcl)
was supplied by Aladdin Chemical Co., Ltd., Shanghai, China. Anhydrous ethanol and
Pyridine were purchased from Fuyu Chemical Co., Ltd., Fuyu, China. Methyl hexahy-
drophthalic anhydride (MHHPA) and Methyl nadic anhydride (MNA) were from Ruixiang
Chemical Co., Ltd., Changzhou, China.
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2.2. Composites Preparation

We put 20 g BN into 200 mL deionized water and 300 mL anhydrous ethanol solution;
ultrasonic stirring was performed for one hour. Add 0.8 g KH550 slowly and stir at 80 ◦C
for 2 h. Finally, the modified BN was obtained by suction filtration and washed and dried.

0.5 g Tris HCl and 0.22 g NaOH were dissolved in 600 mL absolute ethanol to prepare
a buffer solution. 1 g AgNW and 2 g PDA were dissolved in buffer solution and stirred for
6 h at 60 ◦C. Wash the mixed solution to pH neutral.

Firstly, desired amount of BN and AgNWs were gradually added into the epoxy resin.
For the mass ratio of AgNWs, BN in composite filler was maintained at 0:300, 1:300, 2:300,
3:300, 4:300, which was recorded as BN/Ag-0, BN/Ag-1, BN/Ag-2, BN/Ag-3, BN/Ag-4.
BN fillers were added to epoxy resin at a rate of 20% by volume. Secondly, MHHPA and
MNA were added into the epoxy resin as the curing agent. Vacuum at 90 ◦C in the vacuum
drying oven for 1 h, and then adjust the temperature to 110 ◦C and keep it for 2 h. Finally,
adjust the temperature to 180 ◦C, keep the temperature for 1 h, and take out after natural
cooling for testing. The preparation of composites is shown in Figure 1.
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Figure 1. Preparation of BN/AgNWs/Epoxy composite.

2.3. Measurements

Infrared spectroscopic characterization of BN particles was performed on a Paragon
1000 Fourier transform infrared spectrometer (FTIR, Perkin Elmer Ltd., Akron, OH, USA).
Prior to FTIR analysis, all samples were tableted with potassium bromide powder. A JSM-
7500F scanning electron microscope (SEM, Japan Electronics Ltd.., Tokyo, Japan) was used
to image the cross-sectional microstructures of BN/EP composites. Before being tested,
the specimen needed to be quenched with liquid nitrogen. A JEM 2100F transmission
electron microscope (TEM, Japan Electronics Ltd., Tokyo, Japan) was used for observing
the morphologies of the BN nanosheet. The thermal analysis samples were smooth sheet-
like materials with a thickness of 2–4 mm. A LFA-427 Laser thermal analyzer (Netzsch
Ltd., Selb, Germany) was used to measure thermal conductivity at room temperature.
Thermogravimetric analysis of epoxy composites (10 mg) was carried out using a TG-
209F3 thermogravimetric analyzer (TG, Netzsch Ltd., Selb, Germany) under a nitrogen
atmosphere, using a heating rate of 20 ◦C/min and a gas flow rate of 20 mL/min, over the
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temperature range of rt to 700 ◦C. A rectangular sample with dimensions of 40 mm × 7 mm
× 1 mm (length × width × thickness) was used for measuring the dynamic mechanical
properties of cured epoxy composites on an RSA-G2 dynamic thermomechanical analyzer
(TA Ltd., New Castle, DE, USA). The flexural strength of composites was tested on a
universal material testing machine (Shimadzu Ltd., AGS-J10, Tokyo, Japan) using a sample
size of 120 mm × 10 mm × 4 mm (length × width × thickness). A layer of aluminum
foil was affixed to the front and back of dry composite samples of 2 mm thickness and
30 mm diameter, with their dielectric properties and then determined using a broadband
dielectric spectrometer (Novocontrol Ltd., Alpha-a, Frankfurt, Germany). The electrical
resistivity of the cured epoxy composite samples (100 mm diameter × 1 mm thickness) was
tested using a ZC-36 Megohmmeter (Shanghai Fine Science Instrument Co., Ltd., Shanghai,
China) at 25 ◦C.

3. Results
3.1. Surface Treatment and Characterization of AgNWs

Figure 2 shows a transmission electron microscopy of AgNWs coated with PDA.
Dopamine is uniformly coated with a layer of polydopamine on the surface of AgNWs by
self-polymerization in alkaline conditions. The coating of organic substance on inorganic
AgNWs improves their interfacial bonding with EP.
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3.2. Surface Treatment and Characterization of BN

The infrared spectrum of BN filler after surface modification with silane coupling
agent KH550 is shown in Figure 3. The groups represented by the band positions are
shown in Table 1 [31]. It can be seen from the figure, there are obvious absorption peaks
at 1120 cm−1 and 1030 cm−1 on BN-KH550 compared with BN fillers without surface
modification. Before FT-IR test, BN filler has been washed with ethanol and deionized
water to ensure that there is no residual silane coupling agent in the test sample. Therefore,
according to Table 1, the new absorption peak should be the stretching vibration peak of
Si-O bond introduced by silane coupling agent, which shows that the surface modification
has been successfully carried out on the surface of BN.
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Table 1. Group and band position of BN infrared spectrum.

Group Band Position (cm−1) Pure BN BN-550 Vibration Mode

Si-O 1030, 1120 No Yes Telescopic vibration
h-BN sp2 804 Yes Yes Bending vibration
h-BN sp2 1380 Yes Yes Telescopic vibration

3.3. Mechanical Properties of BN/AgNWs/EP Composites

Figure 4a illustrates the storage modulus of the composites, which shows an obvious
difference between the composites with and without AgNWs. Composites with AgNWs
have a higher storage modulus than the other one. The composite fillers form a network
structure in the resin matrix, which can help the epoxy resin better absorb and store energy
at low temperature, so that the composite will not disperse and deform under external force.
After entering the high-temperature range, the storage modulus of the composite decreases
sharply. AgNWs in the filler enhance the internal interaction of the composite filler and
improve the physical crosslinking of the composite. Therefore, the storage modulus of
composite with composite filler is higher than that of composite with only BN filler. On
the other hand, the AgNWs filler provides the stress conduction path during the fracture
process, which improves the fracture toughness of the composite. Therefore, the storage
modulus of the composites with composite fillers is higher than that of the composites with
only BN fillers [32,33].

Figure 4b shows a symmetrical loss tangent curve, which indicates that the composites
have cured completely. The peak of the curve represents the glass transition temperature.
Composites with the composite fillers have a higher glass transition temperature, and, as the
AgNWs content in composite fillers increases, so does the glass transition temperature. The
AgNWs make the network of composite fillers much tighter, hindering the movement of
resin segments in the epoxy matrix, resulting in the rise of the glass transition temperature.



Polymers 2021, 13, 4417 6 of 13
Polymers 2021, 13, x FOR PEER REVIEW 6 of 13 
 

 

70 80 90 100 110 120 130 140 150

0

500

1000

1500

2000

2500

3000

3500

90 100 110 120 130 140 150 160

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

 BN/Ag-0

 BN/Ag-1

 BN/Ag-2

 BN/Ag-3

 BN/Ag-4

S
to

ra
g
e 

M
o
d
u
lu

s,
  
M

P
a

Temperature,  ℃

(b)

 

 

 BN/Ag-0

 BN/Ag-1

 BN/Ag-2

 BN/Ag-3

 BN/Ag-4

T
an

 D
el

ta

Temperature,  ℃

(a)

 

Figure 4. (a) Storage modulus of Composites (b) Loss tangent of Composites. 

The bending strength of the BN/AgNWs/EP composites with different filler mass ra-

tios is shown in Figure 5. Here, one could see that, as the content of AgNWs in the com-

posite fillers increased, the bending strength of the composites declined. Combined with 

Table 2, it can be seen that the addition of BN will cause the mechanical properties of 

BN/EP to be lower than that of EP, while coupling agent and DA can improve the interfa-

cial compatibility and improve the mechanical properties of composites. Based on the 

principle of hydrolyzation by KH550, which brings the amino group to the surface of BN, 

the interface compatibility between BN and epoxy resin improves. Similarly, under PDA 

coating, AgNWs and epoxy have better interface compatibility. Therefore, the downward 

trend of bending strength becomes weaker. However, due to their high aspect ratio, 

AgNWs are more prone to breakage under external force. As a result of the destruction of 

the integral structure of the epoxy resin matrix, the matrix develops an increased number 

of defect sites. A composite with a higher content of AgNWs in the composite filler will 

therefore have a weaker bending strength. 

75.9369

56.5978

47.0523 46.6396 46.4633

0

20

40

60

80

BN/Ag-3/EP BN/Ag-4/EPBN/Ag-1/EP BN/Ag-2/EPBN/Ag-0/EP

 

 

B
en

d
in

g
 S

tr
en

g
th

, 
  

M
p

a

 BN/Ag-0/EP

 BN/Ag-1/EP

 BN/Ag-2/EP

 BN/Ag-3/EP

 BN/Ag-4/EP

 

Figure 5. Bending strength of BN/AgNWs/EP composites. 

Figure 4. (a) Storage modulus of Composites (b) Loss tangent of Composites.

The bending strength of the BN/AgNWs/EP composites with different filler mass
ratios is shown in Figure 5. Here, one could see that, as the content of AgNWs in the
composite fillers increased, the bending strength of the composites declined. Combined
with Table 2, it can be seen that the addition of BN will cause the mechanical properties of
BN/EP to be lower than that of EP, while coupling agent and DA can improve the interfacial
compatibility and improve the mechanical properties of composites. Based on the principle
of hydrolyzation by KH550, which brings the amino group to the surface of BN, the
interface compatibility between BN and epoxy resin improves. Similarly, under PDA
coating, AgNWs and epoxy have better interface compatibility. Therefore, the downward
trend of bending strength becomes weaker. However, due to their high aspect ratio,
AgNWs are more prone to breakage under external force. As a result of the destruction of
the integral structure of the epoxy resin matrix, the matrix develops an increased number
of defect sites. A composite with a higher content of AgNWs in the composite filler will
therefore have a weaker bending strength.
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Table 2. Comparison of mechanical properties of composites with experimental data of others.

Case 1 [34] Tensile Strength Case 2 [35] Tensile Strength This Research Bending Strength

BN/EP 14.6 EP 46.1 BN/EP 75.94
KH550/BN/EP 15.1 BN/EP 35.9 BN/Ag-1/EP 56.60
KH550-BN/EP 14.8 DA-BN/EP 58.7 BN/Ag-4/EP 46.46

3.4. Thermo Gravimetric Properties of BN/AgNWs/EP Composites

The thermal stability of the composites was studied by TGA from 100 ◦C to 700 ◦C at
a heating rate of 10 ◦C/min under air. The results were shown in Figure 6. The T5%, T10%,
and T50% temperatures of the composites were shown in Table 3. The more the content
of AgNWs in the composite fillers, the lower the thermal decomposition temperature of
the composites at the same stage. Simultaneously, composites with fillers containing more
AgNWs have a lower thermal decomposition temperature than those without. AgNWs in
composite filler make the network of the filler more complete and have a broader influence
range. AgNWs are long enough to reach all corners of the material, which results in faster
heat transfer and faster decomposition of the composite.
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Figure 6. TGA curve of BN/AgNWs/EP Composites. 
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Table 3. T5%, T10% and T50% temperatures of BN/AgNWs/EP Composites.

Samples T5% (◦C) T10% (◦C) T50% (◦C)

BN/Ag-0/EP 2.66 ± 0.022 × 102 3.38 ± 0.028 × 102 4.19 ± 0.005 × 102

BN/Ag-1/EP 2.65 ± 0.021 × 102 3.32 ± 0.030 × 102 4.19 ± 0.005 × 102

BN/Ag-2/EP 2.64 ± 0.020 × 102 3.31 ± 0.034 × 102 4.17 ± 0.005 × 102

BN/Ag-3/EP 2.62 ± 0.020 × 102 3.23 ± 0.042 × 102 4.13 ± 0.005 × 102

BN/Ag-4/EP 2.73 ± 0.019 × 102 3.21 ± 0.040 × 102 4.11 ± 0.005 × 102

3.5. Thermal Conductivity of BN/AgNWs/EP Composites

The volume content of the BN fillers in the composites is 20 vol%. As illustrated in
Figure 7, A higher amount of AgNWs is associated with a higher thermal conductivity,
because AgNWs have a much higher thermal conductivity than epoxy resins. In addition,
Table 4 shows the comparison of thermal conductivity data of BN/EP composites between
others and this study. Combined with Table 4, it can be found that the addition of BN
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can improve the thermal conductivity of the composite. When AgNWs are not added,
the BN nanosheets inside the matrix are not connected; thus, heat moves very slowly
between the BN nanosheets and can escape easily. After adding AgNWs, which connects
the BN nanosheets separated from each other in the thermal conduction network like
the “bridge”, heat moves along the AgNWs between the BN nanosheets, increasing the
speed and directivity of heat transfer. Besides, the addition of AgNWs completes the
thermal network of fillers in the matrix. From the figure, it can be seen that the thermal
conductivity of the composite has been raised 9%, which is not a significant improvement.
This is because AgNWs is added in a small amount and can only be used as the thermal
conduction “bridge” in the matrix without letting its high thermal conductivity play a
decisive role [36–41].
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Table 4. Comparison of thermal conductivity data with other experiments.

Case 1 [42] Thermal Conductivity Case 2 [43] Thermal Conductivity This Research Thermal Conductivity

BN/EP 0.27 EP 0.21 BN/EP 0.347
ODA/BN/EP 0.32 1%-BN/EP 0.32 BN/Ag-1/EP 0.352
HBP/BN/EP 0.33 2%-BN/EP 0.36 BN/Ag-4/EP 0.374

Figure 8 illustrates the heat conduction mechanism of the composites. AgNWs are visi-
ble between BN nanosheets in the figure. AgNWs have a much higher thermal conductivity
than EP matrix, so heat transfer between BN nanosheets will preferentially move along
AgNWs. AgNWs act as a “bridge” in heat conduction and prevent disordered dispersion
of heat in the matrix, while reducing the time and span of heat transfer between BN, and
improving the thermal conductivity of composite materials [42–45].
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Figure 8. Thermal conduction mechanism of BN/AgNWs/EP composites.

3.6. Dielectric Properties of BN/AgNWs/EP Composites

The dielectric properties of the composite were further compared by testing the
dielectric constant and dielectric loss, and the results are plotted in Figure 9a,b. It can
be seen from the figure that the dielectric constant of the composite decreases with the
increase of AgNWs content. When the mass ratio of AgNWs to BN fillers increases from
0/300 to 4/300, the composites’ dielectric constant decreases slightly. At low frequency,
the decrease of dielectric constant of the composite is less than 0.5 AgNWs restricts the
movement of epoxy segments, causing the crosslinking degree of epoxy resin to increase
gradually, thereby lowering the dielectric constant of the composite. The gaps inside the
matrix caused by the poor contact between AgNWs and the resin matrix also make the
dielectric constant of the composites decrease. However, the dielectric properties of the
composite are still determined by the resin matrix and BN filler, because the content of
AgNWs is too low, the polarization effect of AgNWs in the resin matrix is not obvious, and
the dielectric cannot store more charges. Therefore, in general, the dielectric constant of the
composite remains above 4.0 and still has well dielectric properties.
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Figure 9. (a) Dielectric constant of Composites (b) Dielectric loss of Composites.
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The dielectric loss of the composites with composite fillers increased slightly, which
may be due to the defects in the resin matrix caused by AgNWs. However, the content of
AgNWs is too small, so the crosslinking degree of the epoxy system in the composites does
not change much. Overall, it is still the epoxy resin matrix itself that plays a significant role
in the loss of the composites.

As shown in Figure 10, when the volume content of BN filler in the composite is
20 vol%, the volume resistivity of the composite increases gradually with the rise of
AgNWs content in the mixed filler. The volume resistivity of BN/Ag-4/EP increased by
179.2% compared to BN/Ag-0/EP. Although AgNWs have high electrical conductivity, it
can easily oxidize and form a layer of Ag2O on the surface. Similar to graphene oxide, the
Ag2O formed on the surface of the silver wire filler also has good insulation properties.
Increasing the amount of AgNWs in the composite filler also increases the amount of Ag2O
on its surface. Thus, the resistance of the composite material to current in a unit volume
is enhanced, and the volume resistivity of the composites is increased, and the insulation
properties of the composite material are improved.
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4. Conclusions

Taking EP as the matrix, by adjusting the content of agnws in the composite filler,
it is known that the thermal conductivity of BN/agnws/EP composites increases with
the increase of AgNWs content. Because BN has extremely high thermal conductivity,
AgNWs are added into BN as mixed filler, BN is used as “point” and AgNWs are used
as “bridge”, BN filler is connected, and a thermal conductivity network is constructed
between EP substrates.

BN and AgNWs fillers were surface treated to improve the compatibility between
fillers and matrix. Therefore, the change of composite filler ratio has little effect on the
bending strength of the composite.

With the increase of AgNWs content, the dielectric constant of the composite decreases
by 0.38 at low frequency, and the dielectric loss changes little. This is because AgNWs limits
the movement of EP chain segments, resulting in the gradual increase of EP crosslinking
degree. However, the content of AgNWs is not high, so it has little effect on the dielectric
constant and dielectric loss of the composite.
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With the increase of AgNWs content, the volume resistivity of the composites increased
by 179.2%, and the insulation properties of the composites were improved. This is due to
the high conductivity of AgNWs and its oxidized Ag2O.

In general, the composite filler with the mass ratio of AgNWs and BN of 4/300 can
make the composite have better properties.
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