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Abstract: This study is focuses on the investigation of the effect of using TiO2 short nanofibers as
a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites.
The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then
calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites
contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for
1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a
high-frequency induction furnace at 560 ◦C for 6 min. The microstructure of the fabricated samples
was studied by optical microscope and field emission scanning electron microscope (FESEM) before
and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both
electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in
3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the
percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible
to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the
longer exposure time periods.

Keywords: corrosion behavior; ceramic nanofibers; electrospinning; Al metal matrix

1. Introduction

A pure heart is a powerful heart, but a pure material is not enough to endure in tough
environments. Scientists all over the world are working hard and continuously to develop
more efficient composite materials with better properties by mixing different materials with
different phases. Composites consist of two main structures: the base matrix, which is
the core element, and the additives or reinforcements embedded in the base matrix [1]. In
metal matrix composites (MMC), the base matrix is metal [2], and reinforcements can be any
other structure, such as nanoparticles [3], nanotubes [4], nanorods [5] or nanofibers [6,7].
According to Adebisi et al. [8], aluminum is the most common metallic material that can be
used as a matrix material, owing to its high strength, acceptable thermal and electrical con-
ductivity, better corrosion and electrochemical behavior [9]. For conventional reinforcement
of MMCs, flake and particulate types of ceramic reinforcements are mostly used [10–13].
Nonetheless, the interference between the metallic matrix and the ceramic reinforcements is
generally not perfect, which produces incredibly porous composites with fewer mechanical
properties and higher corrosion sensibility [14]. As a way to resolve this problem, nanofibers
have been introduced as a novel form of reinforcement in MMCs [15–21]. The mechani-
cal properties of Al composites are efficiently enhanced in the case of using nanofibers
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as a reinforcement [20,21] Accordingly, the high surface-to-volume ratio of nanofibers is
effectively improved. The strength and stiffness of Al composites is better than that of
micro-fibers, due to the good interface between the nano ceramic reinforcement and the
metal matrix [6,20]. Electrospun ceramic nanofibers (CNFs) have shown many exceptional
features and have been widely implemented in many diverse applications [22–24].

Ceramic nanofibers are an brilliant reinforcement material [25] due to their exceptional
mechanical and electrochemical properties, such as high strength and elastic modulus, as
well as good chemical and thermal stability [26]. TiO2 ceramic nanofiber reinforcement, in
combination with an Al metal matrix, effectively improves the mechanical properties of the
nanocomposite [6]. Research in recent years has been focused on carbon nanofibers and
carbon nanotubes as a reinforcement for MMC. Until now, there has been a limited number
of studies in which ceramic nanofibers have been successfully introduced in metallic
matrix materials resulting in significant improvements in mechanical and electrochemical
properties [27,28].

A high-frequency induction-heated sintering (HFIHS) process is one of the most effec-
tive consolidation techniques in which simultaneous pressure and temperature are applied
to the powder mixture sample in a vacuumed atmosphere within a very short time to pro-
duce a high-density and homogeneous composite [29,30]. This advanced sintering process
is beneficial because its densification ability is very good, which produces high-density
samples with convergent real and theoretical densities, i.e., relative density is very close to
100% [31]. However, extensive research has been conducted in the last few years on MMC
reinforced by nanofibers and the development of its mechanical properties. Still, there is
a knowledge gap concerning corrosion resistance and electrochemical characteristics of
these composites, especially those reinforced by ceramic nanofibers [32,33].

Electrospinning produces nanofibers from polymeric material and can produce inor-
ganic nanofibers by combining different inorganic nanoparticles with polymer solutions in
order to alter and improve their properties [34–37]. The combination of electrospinning
with other traditional methods has improved the properties of electrospun nanofibers for
a wide variety of functional applications. Therefore, in the current study, TiO2 ceramic
nanofibers were synthesized via electrospinning technique and sol-gel method to be used
as a reinforcement for pure a Al matrix. The effect of different reinforcement ratios on the
electrochemical characteristics and corrosion behavior of the fabricated nanocomposite in
3.5% NaCl solution was investigated using various electrochemical techniques. Specifically,
electrochemical techniques adopted were electrochemical impedance spectroscopy (EIS)
and POTENTIODYNAMIC POLARIZATION TECHNIQUES (PPT). Characterization of
powder mixture morphology was performed using field emission scanning electron mi-
croscopy (FESEM). Characterization of chemical composition was performed using X-ray
diffraction (XRD) spectra along the sample’s preparation steps.

2. Experimental Procedure
2.1. Raw Materials

Aluminum fine powder with 98% purity and an average particle size of 45 µm was pur-
chased from Loba Chemie (Mumbai, India) to be used as base matrix. Polyvinylpyrrolidone
(PVP) with a molecular weight of 1,300,000 kg/mole was obtained from Sigma–Aldrich
(Burlington, MA, USA), Titanium isopropoxide (C12 H28 O4 Ti). Ethanol (96% purity)
was obtained from Avonchem (Macclesfield, Cheshire, UK), and Acetic Acid 99.7% was
obtained from Qualikems (Delhi, India).

2.2. Ceramic Nanofiber Preparation

Ceramic nanofibers from TiO2 were successfully prepared via sol-gel method by
electrospinning of Titanium isopropoxide and PVP (Figure 1), then calcining the produced
nanofiber mats in an oxidized environment in order to evaporate the polymer. The mats
were then held over the ceramic content of TiO2. Sol-Gel was prepared by stirring the
solution with gelation for 2–3 h at room temperature in order to produce a clear, transparent,
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homogeneous mixture. The solution was made by adding 6.75 gm of Ti (IV)-isopropoxide
(C12 H28 O4 Ti) to 13.5 mL of acetic acid, while gelation was achieved by adding 2.25 gm
of PVP to 45 gm of ethanol.

The prepared sol-gel was poured into a plastic syringe with 20 mL capacity, then
loaded on the electrospinning device shown in Figure 1. The electrospinning process was
performed using three basic components: high-voltage source (20–22 kV), a syringe with
small-diameter needle and a collecting drum of low rotation speed (70–90 rpm).
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Figure 1. Schematic layout for the electrospinning device employed.

2.3. Calcination Process

In order to convert the polymeric nanofibers prepared by electrospinning to ceramic
nanofibers, a calcination process was necessary, in which the green nanofiber mat was
burned in air environment at high temperature but below its melting point. The availability
of oxygen in the surrounding environment during calcination helped the volatilization reac-
tion to takes place above the thermal decomposition temperature of the burned nanofibers.
In the current study, TiO2 nanofiber was calcined at 750 ◦C for 150 min with a heating rate
of 12 ◦C/min using a tube furnace (CARBOLITE Type 3216CC, Chelmsford, Essex, UK).

2.4. Composite Preparation

A mixture of Al and TiO2 NF was prepared via high-energy ball milling (HEBM) using
a planetary ball mill (Pulverisette 7, Fritsch, Idar-Oberstein, Germany) with zirconium balls
and stainless-steel jars. The mixing process was performed with a powder-to-balls ratio of
2:1 wt.% and a speed of 100 rpm for 1 h total milling time (30 min milling + 30 min break +
30 min milling). The percentage of ceramic nanofibers used was 0, 1, 3 and 5 wt.% of the
total mixture content.

2.5. Sintering Process (Consolidation)

The milled powder mixture was inductively sintered using a high-frequency induction
heat-sintering furnace (HFIHS Active Sinter System, ELTek Co., Gyeonggi-do, Korea).
Three grams of nanocomposite mixture was loaded into a graphite die with 10 mm ID,
35 mm OD and 16 mm height (Figure 2) to produce a cylindrically shaped metal composite
sample of 10 mm diameter and 12 mm height per run. Sintering was performed in a
vacuumed atmosphere at 560 ◦C under 45 MPa axial pressure with a theating rate of
200 ◦C/min and 6 min holding time. Cooling after the consolidation process occurred
spontaneously inside the furnace until reaching near room temperature.
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2.6. Electrochemical Testing and Characterization

Electrochemical experiments and corrosion studies for the produced samples were per-
formed using a Potentiostat Autolab (PGSTAT302N, Metrohm, Amsterdam, The Netherlands),
and the test medium was 3.5% NaCl. A standard three-electrode electrochemical cell accom-
modating 30 mL of 3.5% NaCl solution was used. In this cell, the produced nanocomposites
were used as the working electrode, an Ag/AgCl as reference electrode and a Platinum
strip (Pt) as the auxiliary or counter electrodes. The EIS data were obtained at the open-
circuit potential value, with frequencies ranging from 100 MHz to 100 mHz, by applying
a −5 mV amplitude sinusoidal wave perturbation at the corrosion potential (ECorr). The
cyclic potentiodynamic polarization (CPP) experiments were carried out by scanning the
potential between −1600 mV and +100 mV (Ag/AgCl) with a scanning rate of 1.5 mV/s
at room temperature. The tested surface area of all samples was the same and equal
to π/4 (10 mm)2 ∼= 78.5 mm2. All samples were cleaned with acetone, then washed by
distilled water and dried by air after being polished with emery paper and cloth-polished
by alumina slurries before every test. Each test was repeated at least 3 times to ensure
repeatability.

SEM micrographs and EDX investigations were conducted using a JEOL field emission
scanning electron microscopy (FESEM) (model: JEOL JSM-7600F, Tokyo, Japan) with an
energy-dispersive X-ray spectroscopy (EDS) unit from Oxford instruments attached. The
chemical composition of the produced consolidated Al/TiO2 nanocomposite samples was
obtained using an X-Ray diffraction pattern (XRD) (model: D8 discover from Bruker,
Germany) with filtered Cu Kα radiation (λ = 1.5406 Å).

3. Results and Discussion
3.1. Ball-Milled Powder Morphology

The first and second steps of ceramic nanofiber reinforcement preparation is electro-
spinning of PVP/TiO2 sol-gel, followed by the calcination process. Figure 3a,b illustrate
the produced nanofiber mat after electrospinning and after calcination, respectively. The
average fiber diameter range is about 50–110 nm, with homogeneous and uniform structure
and no defects. The change in nanofiber morphology following calcination consists mainly
of some reduction in the diameter, with little distortion due to the evaporation of carbon
during the high-temperature calcination process.

The morphology of the produced mixed powder of Al as the base matrix and the
amount of the fabricated reinforcement of TiO2 ceramic nanofibers and their distribution
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can affect the electrochemical properties of the composites. Figure 3c,d illustrate the
morphology of the mixture in the case of 5 wt.% ceramic nanofiber used in an Al matrix
after complete mixing by ball milling for 1 h.
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The chemical composition of the consolidated ball-milled mixed powders was investi-
gated by XRD and is presented in Figure 4. The XRD diffraction peaks for the composite
material Al/TiO2 is clear, and main peaks correspond to Al peaks, which are present at
2θ = 34, 37 and 62◦, as long as the TiO2 nanofiber main peaks are at approximately 2θ = 57
and 68◦.
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3.2. Electrochemical Measurements
3.2.1. Electrochemical Impedance Spectroscopy (EIS)

In order to determine the anticorrosion properties of the prepared nanocomposites
exposed to the aggressive environment of 3.5% NaCl solution, the EIS technique was em-
ployed [38–42]. Nyquist plots were obtained for the fabricated samples with compositions
of 0, 1, 3 and 5 wt.% by varying their percentages for the immersion time of 1 h, as shown in
Figure 5. The Nyquist plot obtained for the prolonged exposure period of 24 h for the same
samples is shown in Figure 6. The fitting circuit used to fit the obtained graphs is shown in
Figure 7, where Rs is the solution resistance; Rp is the polarization resistance, which can
also be defined as charge-transfer resistance; and Q is the constant phase element (CPE).
The results obtained by applying this circuit to fit are presented in Table 1.
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It can be seen from Figures 5 and 6, with exposure periods of 1 h and 24 h immersion
results in 3.5% NaCl solution, that for all samples, there is only one distorted semicircle.
With the increasing amount of TiO2 ceramic nanofibers as a reinforcement in the Al matrix,
the semicircle becomes more depressed, and the diameter of the semicircle also decreases,
which suggests that at the lower exposure time of 1-h, the prepared alloys have lower
resistance to corrosion. It is generally agreed that the wider the diameter of the semicircle,
the higher the corrosion resistance. The data obtained with the fitting circuit are shown in
Table 1. The Rct value for all the alloys decreased with the inclusion of ceramic nanofibers,
although the highest value of Rct was obtained with 5% inclusion when compared to all
the prepared alloys, though still lower than the control sample without any ceramic fibers.
The value of “n” in the CPE is in the range of 0.63 to 0.77 for the tests conducted on alloys,
which represents CPE behaving like capacitance when the values of “n” happen to be in
between 0 and 1. On the other hand, n = 0 represents pure resistance, n = 1 represents
pure capacitance and n = 0.5 represents Warburg. In the case of our analysis, the results
indicate that the surface is affected because of its exposure to NaCl solution. The values
obtained for CPE decreased with the addition of ceramic nanofibers. With the increase in
exposure time to 24-h, the results indicate a further decrease in diameter of all samples,
which is due to the corrosion occurring on the alloy surface. Resistance against corrosion
was found to decrease with the incorporation of ceramic TiO2 nanofibers, as the percentage
of corrosion increased in comparison to the sample with no fibers. Figure 8 shows the
resistances at exposure periods of both 1 h and 24 h in order to get an idea concerning the
corrosion of alloys after the addition of ceramic fibers. It can be concluded from Figure 8
that addition of ceramic fibers deteriorates the anticorrosion properties of the prepared
alloys, with even small-percentage changes making it more prone to corrosion. Although
the difference between 1 h and 24 h resistance (Rct) for alloys prepared with 3% fibers is
not significant compared to alloys, it it is still lower than for samples without any fibers.
This is because Al undergoes corrosion with the formation of an oxide layer, which acts
as passivation, therefore blocking further penetration of corrosive species. On the other
hand, the addition of ceramic fibers to an Al matrix creates voids on the exposure surface,
which have to be considered while taking up the surface area of the Al composite. These
fiber-metal boundaries act as potential sites of attack by corrosive species, thus causing
localized corrosion and making the material more prone to corrosion, which, in our case,
resulted in deterioration of corrosion properties.
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Table 1. Obtained parameters after EIS experiment on the composite samples with exposures of 1 h
and 24 h in 3.5% NaCl solutions.

Sample Time Rct (k.ohm)
Q

Y0 (µMho) n

Pure Al

1-h

18,600 204 0.63

1 wt.% TiO2 5870 70.1 0.65

3 wt.% TiO2 4170 109 0.73

5 wt.% TiO2 8860 180 0.67

Pure Al

24-h

10,400 203 0.71

1 wt.% TiO2 2790 118 0.77

3 wt.% TiO2 3730 184 0.70

5 wt.% TiO2 4870 250 0.69

3.2.2. Cyclic Potentiodynamic Polarization (CPP)

The curves of Figures 9 and 10 present the CPP measurements for the fabricated
nanocomposite samples after immersion in 3.5% NaCl solution for 1 and 24 h, respectively.
Table 2 is presents all values of the extracted parameters from CPP plots, such as polar-
ization resistance (RP), corrosion rate (RCorr), corrosion current density (jCorr), corrosion
potential (ECorr) and anodic and cathodic Tafel slopes (βa and βc). All parameters, includ-
ing the corrosion rate, were calculated automatically by Autolab software (NOVA). Tafel
slope was used to extract icorr and Ecorr from polarization data. The values were extracted
by drawing anodic and cathodic slopes in the NOVA software, which then automatically
calculated the values of icorr and Ecorr.
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It is clearly shown from Figures 9 and 10 that scanning the potential in the less
negative direction leads to a decrease in the produced current in the cathodic portion due
to the decrease in the rate of cathodic reaction of oxygen reduction at the more positive
potentials [43–45], which helps to start the reaction of the cathode, followed by adsorption,
according to Equation (1):

1
2

O2 + H2O + 2e− = 2OH− (1)

In anodic reaction, the corrosion takes place due to the dissolution reaction once the
corrosive medium becomes available. In our case, Al is the active material to start the
dissolution reaction on the sample surface, forming aluminum oxide (Al2O3) [46–49] and
causing an increase in the anodic current [43–45], according to Equation (2):

Al → Al3+ + 3e− (2)

According to Equation (3), the rate of increase of the current in the anodic portion is
slowed down by the application of the potential towards the less negative values due to
the formation of oxide film Al2O3 [45] as follow:

3OH− + 2Alsurface = [Al2O3]adsorb + 3e− (3)
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and (d) 5 wt.% TiO2.

Table 2. Obtained parameters of the composite samples from CPP plots with exposures of 1-h and 24-h in 3.5% NaCl
solutions.

Sample
Parameter

βa/mV·dec−1 βc/mV·dec−1 ECorr/V jCorr/µA·cm−2 Rp/kΩ·cm2 RCorr/mmpy

1 h

Pure Al 0.074007 0.059014 −1.2594 5.73 2.4901 0.06654
1 wt.% TiO2 0.10686 0.056606 −1.3231 296.75 0.054155 3.4482
3 wt.% TiO2 0.20704 0.10647 −1.2967 375.90 0.081233 4.3679
5 wt.% TiO2 0.23471 0.10866 −1.2992 419.99 0.076807 4.8803

24 h

Pure Al 0.066761 0.07771 −1.2038 3.12 4.992 0.036303
1 wt.% TiO2 0.10459 0.057999 −1.2683 232.21 0.069779 2.6983
3 wt.% TiO2 0.052622 0.1107 −1.2497 134.54 0.11514 1.5633
5 wt.% TiO2 0.051207 0.057243 −1.2396 90.73 0.12938 1.0542

Passivation of the fabricated nanocomposite sample surface is increased by increasing
the reinforcement material, which is TiO2 in our study. The presence of TiO2 increases the
passive region on the curves of the polarization measurements due to the reduction in the
current values.

Polarization curves (Figures 9 and 10) indicate that the change in corrosion rate
between the immersion time of 1 h and 24 h samples in 3.5% NaCl solutions is decreased
positively by increasing the reinforcement percentage, as presented in Figure 11.
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From polarization curves, which are presented in Figures 9 and 10, it can be concluded
that the addition of ceramic nanofibers can increase resistance against corrosion in longer
exposure periods, which is in agreement with the conclusion based on the impedance
curves in Figures 5 and 6.

4. Conclusions

Fabrication of Al/TiO2 nanocomposite reinforced by different percentages of ceramic
nanofibers was achieved using powder metallurgy. Ceramic nanofibers were produced
via electrospinning technique, followed by calcination at 750 ◦C. Al powder plus ceramic
nanofibers were mixed together with different compositions using a high-energy ball
milling technique at 100 rpm for 1 h. The homogeneous mixture was consolidated through
an inductive sintering process at 560 ◦C and 45 MPa axial pressure with a heating rate
of 200 ◦C/min and 6 min holding time. The fabricated nanocomposite samples were
characterized, then electrochemically tested against corrosion. The effect of increasing the
amount of ceramic nanofiber reinforcement from 0 wt.% up to 5 wt.% on corrosion behavior
after 1 h and 24 h immersion in 3.5% NaCl solutions was reported. The investigations were
carried out using different electrochemical techniques, namely electrochemical impedance
spectroscopy and cyclic potentiodynamic polarization, along with characterization by
methods such as FE-SEM and XRD. Electrochemical measurement results confirm that the
addition of ceramic nanofibers to an Al matrix negatively affects its resistance against corro-
sion. On the other hand, the addition of ceramic nanofibers can increase resistance against
corrosion for the same fabricated nanocomposite in longer exposure time periods. In a
quantitative description, the enhancement of corrosion resistance for the 3 and 5 wt.% TiO2
reinforced sample can achieve to 65% and 75% amelioration, respectively by increasing the
immersion period from 1 h to 24 h in 3.5% NaCl solution.
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