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Abstract: Hydrogels are spatially organized hydrophilic polymeric systems that exhibit unique
features in hydrated conditions. Among the hydrogel family, composite hydrogels are a special
class that are defined as filler-containing systems with some tailor-made properties. The composite
hydrogel family includes magnetic-nanoparticle-integrated hydrogels. Magnetic hydrogels (MHGs)
show magneto-responsiveness, which is observed when they are placed in a magnetic field (static
or oscillating). Because of their tunable porosity and internal morphology they can be used in
several biomedical applications, especially diffusion-related smart devices. External stimuli may
influence physical and chemical changes in these hydrogels, particularly in terms of volume and
shape morphing. One of the most significant external stimuli for hydrogels is a magnetic field. This
review embraces a brief overview of the fabrication of MHGs and two of their usages in the biomedical
area: drug delivery and hyperthermia-based anti-cancer activity. As for the saturation magnetization
imposed on composite MHGs, they are easily heated in the presence of an alternating magnetic
field and the temperature increment is dependent on the magnetic nanoparticle concentration
and exposure time. Herein, we also discuss the mode of different therapies based on non-contact
hyperthermia heating.

Keywords: biomedical applications; external stimuli; magnetic hydrogels; drug delivery; hyperthermia

1. Introduction

The etymological definition of hyperthermia is the production of heat. Hyperthermia
is a mode of cancer therapy that is implied to be a treatment carried out in presence of
heat at the tumor region [1,2]. The apoptosis of tumor cells is affected by heat generation.
Hyperthermia therapy is connected to magnetic nanoparticles, in which magnetic dipoles
are stimulated in the presence of alternating magnetic fields, causing heat energy to be
released [3,4]. Hyperthermia can be applied in various segments of medical therapies such
as surgery, radiation therapy, gene therapy, chemotherapy, and cancer immunotherapy [5].
Hyperthermia is categorized into three categories based on how high the temperature rises
as a result of it. The many kinds of hyperthermia are depicted in Figure 1. The low range of
hyperthermia is defined as diathermia, where the temperature raised should not be beyond
41 ◦C [6]. The next stage of hyperthermia is moderate hyperthermia, which is the type of
hyperthermia treatment used by doctors and physicians [7]. In moderate hyperthermia the
temperature is in the range of 41–46 ◦C. When the temperature goes beyond 46◦C it is then
called thermal ablation [8]. In terms of applicability, cell necrosis and tissue necrosis occur
at temperatures between 46 and 56 ◦C [9]. Low-temperature hyperthermia or diathermia is
normally applied for rheumatic diseases, especially in physiotherapy [10]. In the moderate
range of hyperthermia, i.e., in-between 41–46 ◦C, cellular proteins and DNA tend to be
denatured, folded, agglomerated, and sometimes extensively cross-linked [11]. Due to
these imbalances in the cellular proteins, gradual cell necrosis occurs [12]. Besides this,
some other cellular effects are also seen as a result of moderate hyperthermia, such as
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the induction of apoptosis by signal transduction, multi-drug resistance, and heat shock
protein (HSP) expression [13]. Hyperthermia has an impact that is not only reliant on the
external magnetic field, but also on the exposure length, area of the targeted region, and
cancer cell characteristics [14–17].
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In terms of targeted hyperthermia therapy, this is also classified into three subsections,
which are localized hyperthermia, regional hyperthermia, and whole-body hyperther-
mia [18]. These all depend on the exact position of the disease. Localized hyperthermia is a
target-specific approach when the tumor is very small in size [19]. When the contaminated
area is larger than the tumor, regional hyperthermia is used. This is utilized, in particular,
for complete tissues or organs [20]. For individuals with cancer cells that have spread
throughout the body, whole-body hyperthermia is employed. When compared to localized
and normal hyperthermia, whole-body hyperthermia is more difficult [21]. In whole-body
hyperthermia, there is a severe chance of the destruction of healthy tissues and organs.

Hyperthermia treatment traditionally takes place by administering external devices
into tissues and transferring energy to irradiate them [22,23]. The transfers of energy for
hyperthermia treatment are available in several works, such as electromagnetic waves, ul-
trasound, induction heating, radiofrequency, microwaves, infrared radiation, and magnetic
nanoparticles being heated as thermo-seeds [24]. However, these strategies are constrained
by their limits. Clinicians are proposing synergistic treatments that combine chemotherapy
and radiation treatment [25]. This approach is superior because it does not affect healthy
cells too much. There are some challenges experienced when performing hyperthermia
treatment in a traditional way, such as the excessive heating of healthy tissues and severe
discomfort due to blistering and burning, very low penetration of heat waves into the
tissues with microwaves, lasers, and ultrasound, and sometimes a low dose of heating
affects tumor cell apoptosis [26].

Magnetic-nanoparticle-based drug delivery is another area of research for the precise
and controlled delivery of drug molecules to specific targets. The magnetic response feature
of hydrogels is yielded by magnetic particles present in the hydrogels’ matrices [27]. Thus,
magnetic nanoparticles’ inspiration is the most important step in the fabrication of MHGs.
The magnetic behavior of MHGs and its associated performances are dependent on a
few parameters, including the concentration of MNPs, ratio of polymer to MNPs, and
size distribution of MNPs inside gel matrices [28]. There are several techniques adopted
by materials scientists for preparing MHGs such as simple physical blending, in situ
MNP formation, and grafting-onto methods [29]. According to the literature, natural
polymers have limitations in regards to their ability to prepare MHGs because of the lack of



Polymers 2021, 13, 4259 3 of 22

abundance of active sites of the natural polymers [30]. Most of the natural-polymer-based
MHGs are prepared either by blending or in situ approaches [31]. In the context of drug
release behaviors of hydrogels, the primary mechanism is diffusion [32]. As hydrogels
are porous networks, small molecules entrapped inside gel matrices come out into the
environment. This drug release is facilitated by applying some external stimuli. Among
them, a magnetic field is one of the applied stimuli. For MHGs, the externally applied field
is classified into two categories; one is static and another one is dynamic or oscillatory [33].
In the case of an oscillatory field, an alternating current (AC) source is associated with the
field, which fluctuates with frequency [34]. This is also called an alternating magnetic field
(AMF). This release can be tuned by using two pathways adopted for the MHGs; one is
by switching the external magnetic field and another one is altering the direction of the
magnetic field [35]. When a field-driven arrangement is performed, the MNPs are aligned
to form a barrier inside gel matrices [36]. Magnetic barriers impose a restriction to the
capacity of small drug molecules to come out from the porous gel matrices, which signifies
a lowering of the diffusion rate. Similarly, when the magnetic field is switched off the
alignment is destroyed to some extent, followed by the release of drug molecules [37]. This
is called magnetic pulsatile drug release behavior. Reports from various researchers also
infer that the diffusion behavior has a direct relationship with the magnetic field strength.

2. Magnetic Nanoparticles (MNPs) in Hyperthermia

Magnetic nanoparticles (MNPs) are dissipative centers of heat energy obtained from
hyperthermia. This was first coined and applied in the year of 1957 [38]. Since then,
MNP-based hyperthermia research has been on a fast track as MNP-based hyperthermia is
quite superior compared to traditional hyperthermia in some aspects [39,40]. Various types
of hyperthermia used by clinicians have been depicted in Figure 2. Traditionally, it can be
divided into three areas as adopted by clinicians, such as intestinal [41], intraluminal [42],
and capacitive [43]. The advantages are shown also in Figure 2. Tiny MNPs may easily
pass through cell walls and, similarly to other nanoparticles, be heated in the presence of an
external oscillating magnetic field [44–46]. This could cause more sophisticated and precise
control of cell heating and necrosis. Sometimes MNPs can be functionalized by some target-
specific molecules or surface engineering, which tend to attach to the cell walls [47]. This
could make much better tissue-specific hyperthermia [48,49]. When MNPs are utilized, the
oscillating magnetic field emits radiation that is only felt by the nanoparticles as opposed
to the entire body, which is ideal for non-invasive therapy [50]. MNPs can easily permeate
through the blood–brain barrier, which is desirable for glioblastoma treatment [51,52].
MNPs are also deliverable with drug molecules [53]. This feature could make MNPs dual-
model nanoparticles for serving better therapeutic assays. MNPs are also superior for better
dispersion in a target site compared to any bulk implantation. This could maintain the
homogeneity of the heating during hyperthermia. Moreover, MNP heating is also effective
for further anti-tumoral immunity [54]. Improved saturation magnetization of MNPs can
also be achieved by synthesis optimization and layer-by-layer growth mechanisms. These
characteristics may make them multimodal and therapy-focused nanoparticles [55].

The most common and widely used MNPs are magnetic (Fe3O4) [56,57] and maghemite
(γ-Fe2O3) [58,59]. The most promising characteristic of MNPs is their non-cytotoxicity [60].
Maghmeite is the oxidized product of magnetite at high temperatures (~300 ◦C) [61]. How-
ever, magnetites (MNPs) are more common than maghemite MNPs due to the simplicity
of their manufacture and purifying techniques, despite maghemite’s superior thermody-
namic stability. As a result, magnetite-based hyperthermia was reported in the majority of
MNP-based studies [62]. If the MNPs’ size lies within a few nanometers, such as 1–5 nm,
cell permeation occurs easily [63]. Magnetic behavior is also dependent on the size and
shape of MNPs [64]. For bulk, magnetic materials’ multi-domain presence is a common
thing, but when the size of the material becomes lower the multi-domain particles become
single-domain [56,65]. By this approach, multi-domain materials turn from ferromagnets
into superparamagnets [66].
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The hyperthermia mechanism can be classified into two broad segments; one is
hysteresis loss and another one is Néel relaxation loss [67,68]. There is one aspect that
these two systems have in common: they are not reliant on the optimal particle size.
In terms of hysteresis loss behavior, multi-domain ferromagnets are inferior to single-
domain ferromagnets. When compared to multi-domain ferromagnets, single-domain
ferromagnets emit a substantial amount of heat. Hysteresis loss is not present in superpara-
magnetic nanoparticles. Superparamagnetic nanoparticles generate heat in the presence
of alternating magnetic fields because of the relaxation loss phenomenon, especially Néel
relaxation loss.

3. Hydrogels

Hydrogels are a special class of three-dimensional polymeric material composed of
hydrophilic polymer chains [69]. Hydrogels are insoluble to any solvent, but their volume
changes after water uptake [70]. Hydrogels are also affected by external stimulants such
as pH, salt, an electric field, a magnetic field, and mechanical stress [71–73]. Hydrogels
can be categorized into two classifications: chemical hydrogels and physical hydrogels.
Chemical hydrogels are chemically cross-linked hydrophilic polymer chains which are
intermingled in a polymer matrix [74]. Sometimes these are also called covalent cross-linked
hydrogels [73,75,76]. Physical hydrogels are non-covalent hydrogels where different types
of molecular forces of attraction form an insoluble gel mass [77]. The molecular forces which
play a major role in gel formation are polar–polar interaction, hydrogen bonding interaction,
hydrophobic association, and mechanical interlocking or entanglement [78]. Chemical
hydrogels are always thermally stable compared to physical hydrogels according to the
stability of physical and chemical hydrogel systems. Physical hydrogels can sometimes
be reversible when exposed to high temperatures. Physical hydrogels are referred to as
reversible hydrogels; chemical hydrogels are fully irreversible.
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Hydrogels containing at least two polymer phases when both the phases are cross-
linked are called interpenetrating polymer networks (IPNs) (Figure 3). Similarly, when at
least one polymer face is cross-linked and the other phase remains non-cross-linked the
system is called a semi-interpenetrating polymer network (semi-IPN) [79]. When compared
to semi-IPN systems, IPNs are always superior in terms of mechanical strength [80]. Gel
matrices are very vulnerable to water, drug molecules, and a variety of hydrophilic small
molecules due to the presence of hydrophilic polymer chains [81]. Hydrogels are composed
of elastic as well as viscous components [82,83]. Any hydrogel’s viscous and elastic
properties may be fine-tuned by altering the precursors, reaction parameters, and amount
of water absorbed. Because of their porosity, regulated diffusion behavior, and great
biocompatibility, hydrogels are used in a variety of medicinal applications [84]. Various
types of implantations are already established by hydrogel-based scaffolds. These types of
hydrogels are prepared by using either divinylic cross-linkers or physical entanglements.
For divinylic cross-linking systems, IPNs possess high mechanical properties as well as
high thermal stability [85,86]. In general, the cross-linkers utilized here are phase-selective.
Divylic cross-linkers are commonly utilized for free-radical-triggered monomers. Ionic
cross-linking has been done on polysaccharides such as alginate and carrageenans. Borax
and glutaraldehyde are the most popular cross-linkers for polyvinyl alcohol (PVA) [87].
Chitosan-based biopolymers are cross-linked by NaOH [88] and genipin [89]. For NaOH-
induced cross-linking of chitosan physical entanglement occurs, whereas for genipin
the cross-linking is based on chemical routes. Because of their porosity, hydrogels are
efficient platform for delivering cells and drugs in three-dimensional systems. However,
hydrogels also suffer from several limitations, such as fast responsiveness and mechanical
properties [90]. In the biomedical area, hydrogels play a crucial role in drug delivery and
other therapeutics.
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4. Fabrication of Magnetic Hydrogels

MHGs are a special class of hydrogel that contain at least one magnetic component in
their composition. Generally, MNPs are dispersed in a polymer gel matrix to form MHGs.
These hydrogels are special because they are prone to show fluctuations in their physical
properties in the presence of an externally applied magnetic field. The magnetic behavior
of MNPs employed in polymer gel matrices varies depending on their size. Scientists have
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used a variety of ways to create MHGs, including mixing, an in situ approach, grafting
onto, and gelation in the presence of a magnetic field.

4.1. Fabrication of Magnetic Hydrogels by Blending

The most common and easy method to fabricate magnetic composite hydrogels is
blending. Fe3O4 is the most commonly used MNP blended with a polymer system to
prepare composite hydrogels. This approach involves two steps: first, MNPs are produced
and kept in an aqueous oil phase to prevent oxidation. The MNPs are then combined with
hydrogel precursor materials before the polymer matrix is cross-linked. Tong et al. used
a simple mixing approach to create a magnetite-loaded thermoresponsive hydrogel [91].
Such a hydrogel was tested against an externally applied magnetic field. In another work
both magnetite and maghemite were prepared and loaded into a dextran hydrogel to
produce a magneto-responsive composite hydrogel system via a photopolymerization
approach [92]. Alginate-based magnetic beads were reported where maghemite was
introduced to obtain a magnetic-field-responsive hydrogel [93]. The mix technique is a low-
energy, quick-to-develop composite hydrogel. This approach may also be used to introduce
MNPs with varied particle size distributions into hydrogel matrices. MHG beads were
prepared using Fe3O4 MNPs for adsorption applications. Magnetite-nanoparticle-loaded
beads were surface functionalized by gallic acid for the efficient removal of Cr(+6) [94].
In another work, methacrylate-functionalized hydrogel was reported where magnetite
MNPs were mixed and utilized for hyperthermia treatment [95]. A high amount of MNPs
(up to 60%) was also used for preparing tough MHGs [96]. Here, the MNPs were Fe3O4
and functionalized with 3-(trimethoxysilyl)propyl methacrylate to achieve crosslinking in
the polyacrylamide phase. These hydrogels were used as soft robots when coated with a
PDMS rubber support. The synthesis mechanism is shown in Figure 4.
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4.2. Fabrication of Magnetic Hydrogels by the In Situ Method

The synthesis of in situ MNP-based composite hydrogels is more precise in terms
of the particle size and architecture of the hydrogel [97]. In this procedure, MNPs are
prepared inside the gel matrices; this process is carried out during the gelation. MNPs’
precursor metal ions are initially dispersed into the hydrogel precursor materials, especially
the monomers [98]. The gelation process then produces an insoluble solid gel mass. The
gel is then alkali-treated to obtain MNPs inside the hydrogel matrix [99]. Otherwise
the in situ method was also carried out by adopting an ‘uptake and arrested’ strategy.
In this method, a gel was immerged into MNPs’ precursor metal ions solution until
equilibrium was reached [100]. Then, the metal-ion-entrapped swelled hydrogel was
transferred into an alkali bath to grow MNPs inside the hydrogel matrix [101]. This causes
an efficient distribution of MNPs inside the gel that could enhance homogenous saturated
magnetization of the magnetic composite hydrogel.

Magnetite was prepared by the in situ method according to the following chemical
reaction [102]:

Fe2+ + 2Fe3+ + 8OH− → Fe3O4 + 4H2O (1)

It is apparent that the stoichiometry for the Fe2+/Fe3+ molar ratio should be kept
at 1:2 when producing magnetite using this approach. Both the concentration of iron
ions and the alkali utilized increase the yield of the product (MNPs) [103]. Nagireddy
et al. reported composite MHGs obtained via an in situ coprecipitation method where the
hydrogel matrix was gum-acacia-grafted polyacrylamide [104,105]. Semi-interpenetrating
hydrogel (semi-IPN) was also created, in which Fe3O4 MNPs were deposited in situ in a
poly(N-isopropyl acrylamide) matrix [106]. The MNPs contain several hydrophilic fictional
groups that could enhance the physical cross-linking of the hydrogel [107]. Such additional
cross-linking because of the MNPs affect the porosity of the composite hydrogel [108,109].

Cellulose is a naturally abundant biopolymer [110]. A group of researchers reported
on a hemicellulose-based in situ MNP hydrogel in which the MHG beads displayed
outstanding magnetic-field-regulated drug release behavior [111]. Figure 5 shows the in
situ synthesis of MNPs in a hemicellulose matrix.
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4.3. Fabrication of Magnetic Hydrogel by the Grafting-Onto Method

The two approaches previously presented have one thing in common: they are both
non-covalently arrested inside gel matrices. This procedure of grafting on is the polar
opposite of them. MNPs are chemically changed in this experiment to increase their compat-
ibility with the polymer system. The surface of MNPs is chemically bonded to the hydrogel
polymer chains in the grafting-onto technique. In terms of stability, these MNPs outper-
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form the physical or basic blending methods. In this case, the MNPs have been altered so
that the small nanoparticles themselves operate as a cross-linker in the hydrogel system.
Jahanban-Esfahlan et al., prepared functionalized magnetic nanoparticles where the surface
ligands used were amino silanes [98]. The functionalized magnetic nanoparticles were then
incorporated into a hydrogel matrix. At room temperature the hydrogel was pH-sensitive
and displayed a regulated release of chemotherapeutic medicines. They also exploited
medication release synergy with heat to improve accuracy and efficacy. Polymer-grafted
magnetic nanoparticles are also drawing attention because of their compatibility and better
tumor-area-targeting behavior. Polyethylene glycol is a typical surface-decorating polymer
that has been used by a number of materials scientists. Hu et al. developed PEGylated mag-
netic nanoparticles that displayed 19 emu/g saturation magnetism [112]. In this work they
used copper-mediated ATRP polymerization to obtain poly(ethylene glycol)-methacrylate-
grafted magnetic nanoparticles. The surface polymer was used for easy anchoring of
protein molecules. The synthesis is graphically illustrated in Figure 6a. The morphology
and saturation magnetization plots are also given in Figure 6b,c, respectively. The cells
with MNPs are also shown in Figure 6d–g. These images show how the MNPs performed
against cells. It is clear and evident that there were no cellular distortions after 4 days.
The MNP uptake also occurred without any cell death. Atrei et al. developed CoFe2O4-
based MHGs, where they chemically modified the MNPs with carboxymethyl cellulose
(CMC) [113]. Similarly, Schmidt et al. prepared a polyacrylamide-grafted CoFe2O4-MNP-
based hydrogel by the covalent coupling method [114]. These works suggest that if the
MNPs are surface functionalized they are very compatible with hydrogel matrices.

The properties of MHGs, excluding their magnetic behavior, are dependent on the
magnetic nanoparticles [115]. Mechanical strength, reinforcement, and cross-linking are
provided by the magnetic nanoparticles. In nature, hydrogels made from natural polymers
are biodegradable. Magneto-sensitive hydrogel systems are already made from a variety of
natural polymers. Table 1 shows some composite MHGs that have been used in biological
applications. If the magnetic nanoparticles do not mix well with the hydrogel matrix
they have poor mechanical characteristics, limiting their application as tissue-mimicking
biomaterials. In comparison with natural polymers, synthetic polymers have higher
mechanical strength. The volume fraction of magnetic nanoparticles inside hydrogel
matrices has some significant role in controlling the saturation magnetization, and this can
be described as for the following equation [116]:

M = ϕm Ms

(
cothξ − 1

ξ

)
(2)

Table 1. Various types of magnetic hydrogels and their mode of synthesis.

Hydrogel Matrix MNPs Concentration Method Ref.

Chitosan Fe3O4 11.1–13.6 wt% In situ [117]

Alginate/PNIPAM γ-Fe2O3 - In situ [106]

PAAm-GA Fe3O4 8.3–14.04 wt% In situ [104]

Fibrin Fe3O4 2.5 mg/mL Blending [60]

Dextran CoFe2O4 2.5–15 wt% Blending [92]

Alginate FePt 8 wt% Blending [118]

PNIPAM CoPt 1 wt% Blending [91]

PAAm CoFe2O4 2 wt% Grafting onto [114]

NIPAM Fe3O4 <50% Grafting onto [119]

NIPAM γ-Fe2O3 ~50% Grafting onto [119]

CMC CoFe2O4 1.5 wt% Grafting onto [113]
PAAm—polyacrylamide; PNIPAM—poly(N-isopropylacrylamide); GA—gum acacia; NIPAM—
N-isopropylacrylamide; and CMC—carboxymethyl cellulose.
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Here, ϕm is the volume fraction of the magnetic nanoparticles in the hydrogel matrix.
Ms is the saturation magnetization. ξ corresponds to mH/kBT, with m, H, kB, and T
representing the magnetic moment of the MNPs, the external magnetic field, the Boltzmann
constant, and the temperature, respectively.
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© 2021 American Chemical Society.

5. Hyperthermia-Based Cancer Treatment

Hyperthermia treatment is performed at 41–46 ◦C alongside chemotherapy or irradia-
tion to achieve better results in pancreatic cancer and glioblastoma [120–122]. However,
the precise control of tissue temperature is still a difficult task for clinicians [121,123,124].
For several decades hyperthermia has been used as a radiosensitizer and chemosensitizer,
resulting in significant improvements in cancer diagnosis and treatment. This combined
hyperthermia technique has been demonstrated to be highly successful in the treatment
of malignancies such as bladder cancer, cervical cancer, breast cancer, head–neck cancer,
melanoma, and soft-tissue cancers. The mechanism of hyperthermia can be explained
as the delivery of heat to the affected region, but it can be performed in various ways.
Hyperthermia directly affects the cellular components and delays lethal activity towards
cellular responses. DNA repair pathways and a good systemic immune response are
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among the activities observed in cells following heat treatment. Furthermore, heat affects
hypoxic and nutrient-depleted tumor regions, whereas radiation and chemotherapy do not
require such monitoring. Besides these, hyperthermia also affects tumor growth, oxygen
supply pathways, and vascularization. However, there are three important considerations
to keep in mind when using hyperthermia in clinical systems, as indicated by clinicians:
First, the temperature rise should be exact and focused. The second step is to regulate
the temperature in the affected area, rather than in other parts of the tumor. The last
one is the optimization of heat/dose of the hyperthermia, as per the condition of the
patient’s body. Hyperthermia systems are quite wide depending on the applied frequency
ranges: they are classified as radiofrequency (RF), ultrasound, infrared (IR), and microwave
(>300 MHz). The formation of eddy currents (for high electrically conducting samples),
magnetization reversal (for magnetic materials), and dipolar motions of magnetic dipoles
might all be part of the hyperthermia mechanism. Eddy current production is an outcome
of low induction and is not restricted to magnetic materials. It is often used for a wide
range of macroscopic materials with high electrical conductivity. When an electrically
conducting material is subjected to an alternating material field, an eddy current is created
(AMF). A Brownian connection is used for magnetic dipolar movement, resulting in heat
generation. The system for MGHs, on the other hand, is a composite in which MNPs
are detained but the polymer chains are not. Polymer macrochains are physisorped on
the surfaces of MNPs, followed by the full restriction of rotation and movement. As a
result, the Brownian relaxation process is not one of the established mechanistic paths
proposed by researchers. Néel relaxation is the adopted hypothetical way to explain the
heat generation inside MGHs. MHGs provide better results in this context because of their
tissue mimetic behavior and remote control of intrinsic features [125,126]. As previously
reported, a PVA-based magnetite-MNP-loaded composite hydrogel demonstrated a rapid
temperature rise [127]. When a 357 kHz alternating magnetic field was applied, the temper-
ature rose from 43 ◦C to 47 ◦C in 5–6 min, according to this study. From the result it was also
inferred that the heating efficiency was directly related to the MNPs present in the system.
Similarly, in another work Fe3O4 microparticles were used to prepare PNIPAM-based
thermoresponsive hydrogels [128]. The specific adsorption rate (SAR) is an important
measure for hyperthermia researchers. The quantity of heat emitted by a substance in a
given amount of time is known as the SAR. It is also dependent on the external magnetic
field strength. It is mathematically defined as c(∆T/∆t), where ‘c’ and ‘∆T/∆t’ correspond
to the specific heat capacity and time-dependent temperature increment, respectively. It
is critical to increase or improve the SAR value by as much as is feasible. The SAR is
affected by a number of elements, including the intensity of the external magnetic field, the
frequency of the alternating current, the permeability of the particles under test (in this
case, MNPs), and the shape and size distribution of the MNPs. Anderson et al. fabricated
PEG-based MHGs which showed temperature rising at the hyperthermia range as well as
in the thermoablation range (61–64 ◦C) [129]. In their work they showed that cell necrosis
was observed against gliobastoma cells. The same group also reported a poly(β-amino
ester)-based biodegradable hydrogel (Figure 7) for hyperthermia treatment where the
hydrogel was remotely controlled by an external magnetic field [130].
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Besides hyperthermia-based drug delivery, MNP-based hydrogels are also used as a
targeted tumor treatment. The tumor microenvironment has a critical microstructure with
uncommon biological features, such as acidosis and high glutathione content, compared to
normal cells. Wu et al. reported a magnetic, injectable hydrogel for tumor treatment by
hyperthermia [131]. They used PEGylated MNPs and cyclodextrin to prepare a nanoen-
zyme hydrogel which showed temperature increments of up to 42 ◦C. Injectable hydrogels
are superior compared to traditional macroscopic hydrogels due to target-specific activity
and easy reach to the infected area. Combinational therapy was also reported in this
work, showing synergy between drug release and hyperthermia. They showed that the
synergy of drug release and hyperthermia cured a tumor within 7 days of treatment in
several intervals. The treatment was monitored by an infrared camera to evaluate the exact
position of heating, as shown in Figure 8.
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Chen et al., fabricated a ferumoxytol-medical-chitosan-based hydrogel which showed
tumor apoptosis in the presence of an alternating magnetic field [132]. Furthermore, they
demonstrated that when an anti-cancer agent (in this case, doxorubicin) is coupled to
the MNP-based hydrogel it improves xenograft tumor treatment effectiveness. Sol–gel
transitions in hydrogel systems are another method for delivering molecular payloads
and implantations to specified areas of the body without invasive paths. In this case,
injectable hydrogels are appropriate since they gel quickly at body temperature. Injectable
hydrogels are beneficial in the treatment of localized hyperthermia. Thermoresponsive
polymers, which have been used to fabricate MHGs, are quite common in this situation.
There are several limitations however, such as the adjustment and optimization of MNP
concentration, viscosity of the hydrogel after the incorporation of MNPs, and undesired
migration of MNPs beside the targeted site. Gelatin-based MHGs were reported for the
synergistic application of hyperthermia and chemotherapy [95]. Methacrylic-anhydride-
functionalized gelatin was copolymerized with 2-dimethylaminoethyl) methacrylate, with
methacrylate-end-capped magnetic nanoparticles serving as the MNPs. This hydrogel has
built-in magnetism and pH sensitivity, making it a dual-responsive gadget. Salloum et al.
fabricated a ferrofluid-based injectable agarose gel for hyperthermia applications [133].
Qian et al. prepared a PEG-stabilized iron-oxide-nanocube-loaded silk fibroin hydrogel
for antitumor therapy [134]. This hydrogel (Figure 9) showed shear thinning behavior
and was applied as an injectable hydrogel. The prepared hydrogel was injected into a
rabbit liver tumor and heated with an external oscillating magnetic field followed by
thermoablation of the cells. Another important property of the hydrogel is its injectability,
which allows for the rapid delivery of molecular payloads into specified areas via a less
invasive manner. The law of sol–gel flow behavior applies to injectable hydrogels. A
distinct type of hydrogel, in which substantial intermolecular interactions predominate
in gel matrices, has demonstrated a solution to gelation. The physical cross-linking of
these hydrogels is takes place (H-bonding, hydrophobic association, and van der Waals
interactions). Jordan et al. reported injectable hydrogels based on chitosan and a block
copolymer (poloxamer 407). Block copolymers show excellent sol–gel transitions with an
alteration in temperature. Biopolymers and superparamagnetic iron oxide nanoparticles
were employed as an additional phase in these hydrogels (SPIONs) [135]. SPIONs of
20% (w/v) were incorporated into thermoresponsive polymer matrices and injected for
implantation, followed by heating with an AMF. Similarly, a 10% (w/v)-SPION-loaded
biopolymer hydrogel was prepared by the ionic gelation method and injected into tumor
sites. Among the block-copolymer-based injectable hydrogels, poly(ethylene-co-vinyl
alcohol) (EVAL) is a significant name. An EVAL-based SPION-loaded hydrogel was
reported which acted as an injectable hydrogel and showed a high SAR value when heated
by an AMF [136]. Rheology is commonly used to determine injectability. SPIONs with
a large surface area are prone to adsorption by polymers, limiting the flow behavior of
composites. SPIONs additionally improve the thixotropic character of the material and
postpone network rupturing during shear stress. When injectable hydrogels are pressed
to be inserted into the body by a fine diameter nozzle, they suffer from high shear stress.
The SPIONs offer the gel the strength required to hold the composite in place during the
procedure without premature rupture. In SPION-based injectable hydrogels, gelation at
body temperature and insolubility are also non-negotiable characteristics. In general, in
specific polymer concentrations, pluronic-type hydrogels display a good transition from a
solution into a gel phase. Pluronics are block copolymers that dissolve in water at room
temperature. However, at a certain concentration they gel at a specified temperature, which
are referred to as the critical gel concentration and critical gelling temperature. As strength
is the primary quality of any injectable, filler particles are introduced. SPIONs act as a
reinforcement in the hydrogel and also maintain their dimensional integrity inside the
body. Moreover, the heating capability of such hydrogels is also not compromised. For
injectable MHGs, the target and press ion are much more accurate than the macroscopic
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hydrogels of bulks. These MHGs can be injected into the exact location and easily heated
by an AMF.
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6. Applications in Drug Delivery

Hydrogels are soft materials arranged in three dimensions by hydrophilic poly-
meric networks [137]. Hydrogels have several unique physical features due to their
porous structure, making them a good material for drug couriers and controlled release
of drug molecules under specified environmental conditions [138,139]. The release of
drug molecules from a hydrogel matrix is dependent on their diffusion behavior [140,141].
Drug molecules are imbibed into the hydrogel network and captured by the hydrogel
matrix when polymeric hydrogels are submerged in a drug solution [142]. During some
special environmental conditions the drug molecules come out from the hydrogel matrix
by obeying Fick’s diffusion law or some anomalous diffusion kinetics [143]. Such behavior
is also shown by different nano-drug carriers [144,145]. In the presence of some external
stimuli, most hydrogels are particularly vulnerable to having their internal microstructure
and porosity manipulated [146]. The most common stimuli for hydrogel systems are the
pH of a solution, an electric field, temperature, a saline environment, light, enzymes, and a
magnetic field [147,148]. Among the external stimuli, the magnetic field is comparatively
new with respect to the others. The magnetic field might be constant or variable in fre-
quency. A frequency-dependent magnetic field, also known as an alternating magnetic
field or an oscillating magnetic field, is one in which the magnetic dipoles are activated,
causing the magnetic nanoparticles to be heated.

Gelatin and magnetic nanoparticles were combined together to prepare a magnetic
composite hydrogel where genipin was used as a cross-linking agent [149]. Vitamin B12
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was utilized as a model payload in this hydrogel system, and it diffused out of the hydrogel
matrix in the presence of an external magnetic field. The amount of vitamin B12 released
from the hydrogel matrix was proportional to the duration of the magnetic field. This
suggests that MHGs might be regulated by external magnetic fields, which could govern
the pace of release and dosage. In another work, chitosan and sodium alginate were taken
to fabricate MHGs regulated by an external magnetic field [150]. The author employed a
responsive polymer in this ferrogel to induce temperature-dependent medication release.
Another set of researchers reported carboxymethyl cellulose (CMC)- and iron-oxide-based
nanocomposite MHGs [151]. In this work they also showed how external magnetic fields
can influence the cumulative release percentage of any model drug. A 2-hydroxyethyl
methacrylate and iron oxide composite hydrogel has previously been reported to prepare
microrobots to deliver anti-cancer drugs to a specific section. Huang et al. described an
MNP-based copolymer hydrogel with triple-responsive behavior to pH, temperature, and
glucose [152]. These hydrogels showed self-regulatory drug release and superparamagnetic
behavior. Tragacanth gum (TG)- and poly(acrylic acid)-based MHGs were reported to
prepare a smart drug delivery system [153]. Here, the MNPs were magnetite and the
hydrogel showed cell apoptosis against a HeLa cell line. Cao et al. developed double-
network MHGs from polyacrylamide and alginate [154]. The hydrogel was tough and
compressible (Figure 10). This was used in magnetic robots in underwater applications
as well as an efficient drug delivery device. They proposed a straightforward method
for making magnetic hydrogels with good mechanical properties by combining physical
mixing and chemical cross-linking procedures in their work. MNPs were fine-tuned and
a fast magnetic response was created. The magnetic hydrogel was utilized to make two
standard magnetically responsive marine animal robots (a scallop and a starfish) that
were used to clean the fish tank using a remotely controlled magnet. The suggested
technique may be applied to different hydrogel systems, expanding the range of smart
hydrogel applications.
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In another work, a nanocomposite hydrogel was prepared from the dopamine–Fe3+

complex and reinforced with MNPs [155]. The authors discovered that MNPs had a
significant impact on their shear modulus. They tried a combinational approach for the
cancer treatment. They mingled the hyperthermia and targeted drug delivery into one
system and showed better efficacy towards cancer treatment. The hydrogel was regulated
by the external magnetic field and could be heated in a non-contact mode. When an
external AMF was turned on, the nanocomposite hydrogel showed a pulsed release of an
anti-cancer drug (DOX), but when the AMF was turned off it reverted to its slow releasing
mode. In addition, in vivo, the DOX-loaded composite hydrogel had a longer retention
duration than the DOX-loaded gel or DOX solution. They also hypothesized whether if a
single-modal treatment was carried out, i.e., only with an anti-cancer drug or hyperthermia,
the curing would be as effective as the combined synergy (Figure 11). The live–dead assay
of the cell line also implied that magnetic fields and anti-cancer drugs together can cause
cell death easier than using a single tool.
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7. Outlook and Future Remarks

Stimuli-responsive hydrogels are within the category of magnetically controlled smart
hydrogels. Their fabrication and two of their major applications were discussed in this
article. Polymers are non-magnetic in general; however, they become magnetic when
magnetic nanoparticles are added. To assess their mode of work and application, the
magnetization value acquired from their saturation magnetization values is critical. In this
paper, we looked at two biomedical applications in which magnetic composite hydrogels
are utilized to transport tiny molecules such as drugs, vitamins, or other physiologically
important payloads. Magnetic heating, often known as hyperthermia, is another use.
The magnetic nanoparticles are activated by an external alternating magnetic field, which
causes the nanoparticles to heat up. Because they were inside the hydrogel, the entire
hydrogel served as a heat reservoir. As heat and medication delivery were coupled, their
activity increased when compared to when they were used individually. Polymeric systems
based on MNPs have been employed in a variety of applications.

Magnetic hydrogels benefit from their superparamagnetic and heating properties
when subjected to an AMF. When adjusting the degree of deformation, reaction qualities
are important. To change the swelling state and degradation rate, the aspects of an MF
on the outside (e.g., intensity and frequency) must also be changed. As a result of this,
rapid MNPs and polymers with higher molecular weights are the only ones that produce
a reaction. Hydrogels can be made from biocompatible and biodegradable materials. As
a result, magnetic hydrogels might be used to design 3D complex tissue structures using
bottom-up assembly methods, fabricate soft actuators, regulate temperature, and focus
cancer therapy to the tumor site.

There is a much in the way of potential for merging real-time diagnostic methods
with intelligent therapeutics. Such a potent combination is especially appealing for
hyperthermia-based therapy and drug administration utilizing MNPs, where imaging
technologies such as MRI and fluorescence imaging may be incorporated to generate very
intelligent theranostics. Future research will lead to the growth of intelligent theranos-
tics for noninvasive drug pharmacokinetics and pharmacodynamics as well as real-time
therapeutic response monitoring. We believe that biomedical nanotechnology, in general,
and hyperthermia-based therapy as well as drug delivery techniques based on magnetic
nanoparticles, in particular, will help the pharmaceutical industry shift away from the
burst release drug prototype and toward custom-made medicine.
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