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Abstract: Artificial muscle actuator has been devoted to replicate the function of biological muscles,
playing an important part of an emerging field at inter-section of bionic, mechanical, and material
disciplines. Most of these artificial muscles possess their own unique functionality and irreplaceabil-
ity, but also have some disadvantages and shortcomings. Among those, phase change type artificial
muscles gain particular attentions, owing to the merits of easy processing, convenient controlling,
non-toxic and fast-response. Herein, we prepared a silicon/ethanol/(graphene oxide/gold nanopar-
ticles) composite elastic actuator for soft actuation. The functional properties are discussed in terms
of microstructure, mechanical properties, thermal imaging and mechanical actuation characteris-
tics, respectively. The added graphene oxide and Au nanoparticles can effectively accelerate the
heating rate of material and improve its mechanical properties, thus increasing the vaporization
rate of ethanol, which helps to accelerate the deformation rate and enhance the actuation capability.
As part of the study, we also tested the performance of composite elastomers containing different
concentrations of graphene oxide to identify GO-15 (15 mg of graphene oxide per 7.2 mL of material)
flexible actuators as the best composition with a driving force up to 1.68 N.

Keywords: phase change materials; thermally conductive media; soft actuator; fast cycle actuation

1. Introduction

As one of the miracles of nature, muscle, the source of human strength, has intensively
inspired researchers to conduct a lot of research on soft deformation materials that develop
and simulate the function of artificial muscle tissue [1,2]. Commonly used artificial muscles
are mechanically driven, including pneumatic and hydraulic [3–6]. Various materials
have been adopted to prepare the artificial muscles, which involves electroactive poly-
mers [7–12], shape memory materials [13–16], hydrogels [17–20], and polymers driven
by photothermal or humidity [21–26]. There are also biogenic actuators that rely on ani-
mal muscle cells [27,28]. As a drive for soft robots, fluid actuators require large external
devices (e.g., air pumps, hydraulic pumps, etc.) to provide power, largely limiting the
miniaturization of soft robotics applications. In contrast, electroactive polymers require
high voltage (greater than a few kilovolts). Shape-memory alloys, shape-memory polymers
and photo-thermal temperature-driven polymers require complex external stimuli (laser,
humidity, and temperature control), and these actuators are difficult to adapt to more
complex applications. Based on these, we believe that the ideal actuators need to have
more direct and convenient actuation (current driven), safe actuation conditions (non-toxic
and harmless to the operator), and fast and large strain capacity.

Currently, soft actuators based on phase change materials have received comparable
interests, which mainly rely on mechanical forces generated by rapid expansion at phase
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change temperatures. Silicone rubber materials containing paraffin additives are an ex-
ample of the integration of stimuli-responsive substances in an elastic matrix. Lipton and
colleagues reported a volumetric expansion of approximately 10% for such composites
using paraffin solid-liquid phase transitions [29]. Significantly higher swelling strains
can be achieved by a reversible liquid-gas phase transition, but such material systems
were difficult to control. Some recent actuators use entrained liquid vesicles or films to
form an expanded cavity for actuation [30,31]. Electrically triggered deformation of soft
elastic films using liquid-gas conversion of liquids has been reported to exhibit large area
expansion [32]. Aslan and colleagues reported ethanol-gas phase transition composites
with 900% expansion and correspondingly high stress (up to 1.3 MPa) and low density
(0.84 g/cm3). The working mechanism, regenerative methods and the relationship between
composition, structure and properties are thus, further characterized [33–35]. These phase
change materials are excellent alternatives to conventional soft actuators, but the existing
phase change materials still have some problems to be solved, such as low deformation rate,
and difficult to control deformation, which are vital for the potential broad applications of
the phase change materials.

In this work, we evaluated the functional properties of silicone/ethanol/(Au nanopar-
ticle, graphene oxide) elastomer composites as a new approach to improvement and as a
soft actuator. Ecoflex silicone elastomer is a kind of silicone rubber material commonly
used for making soft robots, which has good flexibility and mechanical properties, and the
model used herein is Ecoflex00-50. As a very common organic compound in daily life,
ethanol is a flammable, volatile, colorless and a transparent liquid at room temperature and
pressure with a boiling point of 78 ◦C. It is easy to realize vaporization after giving external
heat and liquefying it to its initial state when the temperature decreases. The main source
of deformation of the ethanol phase change drive is a gas/liquid change of ethanol, which
is responsible for the volume change of the elastomer composites. Owing to the good
electrothermal conversion rate, graphene oxide and Au nanoparticles were adopted as
thermally conductive enhanced ingredients, respectively. The microstructure, mechanical
properties, thermal imaging and mechanical drive characteristics of materials, containing
no addition, addition of graphene oxide, and addition of Au nanoparticles, were charac-
terized. Moreover, the influence of the addition of thermally conductive ingredients on
drive efficiency was investigated. As part of the study, the mechanical properties and
mechanical drive characteristics of composite elastomeric materials with different concen-
trations of graphene oxide were evaluated, to determine the optimized composition of the
flexible actuator.

2. Materials and Methods
2.1. Material Synthesis

In this section, Ecoflex00-50 (Smooth-On Inc., Macungie, PA, USA) was used as
the bulk material and ethanol (≥99.5%) was selected as the active phase change mate-
rial. Both GO and Au nanoparticles were applied as the thermally conductive enhance-
ment phase, respectively, because of their good electrothermal conversion performances.
As shown in Figure 1a, for a control, ethanol was first added to the Ecoflex A component,
then added to the B component to get the homogeneous solution (20 vol% of ethanol with
respect to the 80 vol% Ecoflex mixture). The composite elastomer containing graphene
oxide was also prepared via a similar experimental process, except for the adding of
graphene oxide in the prepolymer solution. Au nanoparticle composite elastomers were
prepared slightly different (firstly, aqueous solution of gold nanoparticles was thoroughly
dried in a beaker, then dissolved in ethanol, placed in ultrasonic dispersion for 30 s, added
to component A for about 2 min, and then mixed with component B for about 2 min).
After the resistor wire was introduced, each of the mixture was thermally cured at room
temperature for 5 h in a syringe mold to get the control ethanol phase change material.
The specific formulation is shown in Table 1, where the concentration of Au nanoparticles
is 1 mol/L. The material is poured into commercially available 5 mL syringes. After being
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fully cured, the composite elastomers were removed, and the properties of composites were
tested (Figure 1b). Among those, a Ni-Cr resistive wire (d = 0.25 mm) was added to the
composite cast mold for electrically driven heating of the artificial muscle. To facilitate the
expansion of actuator material, the resistance wire was manually wrapped around plastic
rod(d = 6 mm). Then we prepared composite elastomer with different heat conducting
media, as shown in Table 2.
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Figure 1. Preparation process of ethanol phase change material. (a) Schematic diagram of manufac-
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Table 1. No addition, specific composition ratio of composite material actuator with go added and
gold nanoparticles added.

Scheme Ecoflex A
(mL)

Ecoflex B
(mL) Ethanol (mL) Graphene

Oxide (mg)

Au
Nanoparticle

(mL)

No adding 3 3 1.2 0 0
Adding

Graphene
Oxide

3 3 1.2 15 0

Adding Au
Nanoparticle 3 3 1.2 0 2.5

Table 2. Specific composition ratios of composites actuator with different contents of go added.

Sample Ecoflex A (mL) Ecoflex B (mL) Ethanol (mL) Graphene Oxide (mg)

GO-0 3 3 1.2 0
GO-5 3 3 1.2 5

GO-10 3 3 1.2 10
GO-15 3 3 1.2 15

2.2. Driving Mechanism

Ecoflex00-50 is a silicone rubber material commonly used in the manufacture of soft
robots, because of its good elasticity and mechanical properties. Ethanol is an organic
volatile liquid with a boiling point of 78 ◦C. It vaporizes easily when external heat is applied
and liquefies to its initial state when the temperature is lowered.

Ethanol, in the ethanol phase change artificial muscle exciter, is stored and dispersed in
the silicone elastomer as vacuoles before start. When the voltage is turned on, the resistive
wire in the ethanol phase change actuator is heated. As the temperature increases, ethanol
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bubble begins to gradually undergo a cavitation phase change from vacuole to bubble and
the volume gradually expands, as shown in Figure 2. Due to the presence of nylon mesh,
the McKibben-type ethanol phase change artificial muscle limits the axial expansion of
the actuator. It can only expand radially and contract axially. After stopping its heating,
ethanol bubbles return to their original vacuole. Due to the elasticity of silicone elastomer,
the ethanol phase change artificial muscle returns to initial state, forming a telescoping
reciprocal cycle of bi-directional actuation.
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2.3. Micro-Topography Test

Scanning electron microscopy (SEM) is used for imaging and research of microstruc-
tures. Samples for SEM analysis were prepared by placing a composite sample (diameter
10 mm length 80 mm) in a container with liquid nitrogen. After 2 min, the sample was
decomposed into 10 mm long irregular shapes, and the fragments were thawed.

2.4. Mechanical Properties

The composite material was made into a tensile specimen, with a length of 75 mm,
a width of 10 mm and a height of 2 mm. A tensile test was carried out using a universal
testing machine (C43, MTS Industrial Systems Co., Ltd., Eden Prairie, MN, USA) at a
loading rate of 100 mm/min. Three sets of parallel tests were obtained to calculate the
corresponding average value. The hardness test was carried out on the material using a
hardness tester (model), and the average value was also obtained by an independent three
sets of parallel tests.

2.5. Thermal Performance Test

Three composite materials (75 mm × 10 mm × 2 mm) were heated and energized
simultaneously. The power supply was 15 v*3A. During the driving process, the thermal
changes of the materials were recorded with a thermal imager (FLIR E4, FLIR Inc., Portland,
OR, USA) every 10 s for a total recording time of 100 s. The images were processed,
and the temperature analysis was performed by FLIR tools to determine the changes in
material temperature.

3. Results and Discussion
3.1. Material Microstructure

We observed the microscopic morphology and the structure of the prepared ethanol
phase change material by scanning electron microscopy. The experimental results are
shown in Figure 3. It can be observed that the ethanol phase change actuator has a well-
defined crater structure inside, which is produced by the vacuole formed by ethanol in
silicone elastomer. The distribution of crater in ethanol phase change actuator is relatively
uniform, indicating that the even distribution of ethanol in the ethanol phase change
actuator. This uniform distribution is the basis for stable growth of its output force. It can
be found that the interior of ethanol phase change actuator is relatively flat except for the
pits. The shape of pits is hemispherical, which proves that ethanol exists in the form of
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spherical vacuoles in the ethanol phase change artificial muscle. The overall surface is
relatively smooth with small and uniform wrinkles. We analyzed that the wrinkling was
caused by the shrinkage of ethanol and silicone elastomer when they were frozen and
cracked. The wrinkles inside pits are more intensive than those on the outer surface due
to their spherical shape. The shrinkage of the inner surface caused by the rapid freezing
and cracking of pits under liquid nitrogen is more pronounced than the shrinkage of the
outer surface.
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Figure 3. SEM image of ethanol phase change artificial muscle material under different magnifications
(a) 25 times (b) 100 times (c) 200 times (d) 400 times.

3.2. Deformation Property Test

The ethanol in the ethanol phase change actuator is stored and dispersed as a liquid
bubble in the silicone elastomer. When the power is turned on, the resistive wire in the
ethanol phase change actuator starts heating. As the temperature rises, the ethanol bubble
begins to gradually change from a liquid bubble to a solid bubble, accompanied by an
expansion of the volume of actuator, as shown in Figure 4a. The McKibben type ethanol
phase change actuator limits the axial expansion of the actuator due to the presence of a
nylon mesh and self-locking nylon ties. The nylon mesh limits the expansion of the actuator
to radial expansion and axial contraction. With the cessation of heating, the ethanol bubbles
revert to liquid bubbles. Due to the presence of silicone elastomer, the ethanol phase
change actuator returns to its initial state, forming a telescopic reciprocating cycle actuation,
the actuation process of which is shown in Figure 4c.
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type ethanol phase change material. (e) Deformation characteristics of different types of composite
elastomeric actuators. (f) Deformation properties of ethanol phase change actuators with different
contents of graphene oxide.

To study deformation characteristics of the ethanol phase change artificial muscle,
we recorded the length change in its movement process. The voltage was 8 V, and the
energization time was 140 s. The deformation process is shown in Figure 4a, and the
length deformation rate is shown in Figure 4b. It can be observed that the ethanol phase
change actuator is gradually getting larger throughout the movement process, and the
deformation can be observed obviously at 30 s. Firstly, the actuator deforms radially, at 80 s,
the radial length reaches its maximum, then gradually starts to expand axially at around
80 s, and this expansion will continue as the voltage-on time increases. Combined with
the length deformation rate graph, we found that the driving rate of ethanol phase change
artificial muscle became faster after 30 s, and the driving process gradually smoothed out.
At 100 s, the length deformation rate of the ethanol phase change artificial muscle reached
a maximum value of 41.18%. The expansion rate was about 200% at an energization time of
140 s. We observed a retraction phase after 100 s. As illustrated in the deformation graph
and curve, the ethanol phase change actuator is dominated by radial elongation in its initial
stage, and starts to expand axially after the radial elongation reaches its limitation, mainly
because the contraction of the ethanol phase change actuator is limited by the length of
internal resistive wire, which makes the actuator unable to increase further after the length
reaches a certain level. However, the internal ethanol continues to vaporize, so that the
volume of ethanol phase change actuator increases continually, and it starts to expand
along the axial direction due to the radial limitation, and this volume change is only a
difference in deformation behavior, but its volume change rate is constant.

The ethanol phase change material was also made into McKibben type, and the
driving process is shown in Figure 4c, and the deformation contraction curve is shown
in Figure 4d. From the figure, it can be observed that the McKibben type ethanol phase
change actuator is linearly contracted throughout the driving process, and the process is
relatively smooth. The ethanol phase change actuator reaches the maximum deformation
rate 130 s later, and the length contraction rate can reach 14.79%. After the power is cut
off, the McKibben ethanol phase change actuator begins to contract gradually. At 230 s,
the length recovery rate can reach 96.5%, which indicates that the McKibben ethanol
phase change actuator can produce axial contraction and radial expansion, and the process
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is reversible. This contraction/reversal drive property is greatly similar to the motor
properties of biological muscles.

It can be seen from Figure 4e that the length change of three ethanol phase change
actuators is slow and then fast throughout the driving process, and the difference in defor-
mation rate of three ethanol phase change actuators appears at 27 s. The deformation rate
of the graphene oxide/ethanol phase change actuator is the largest, while the shrinkage
rate of blank control and Au nanoparticle/ethanol phase change actuator is less, and the
difference between them is not significant. As the energization time increases, the deforma-
tion rate gradually became larger. From the slope, it can be concluded that the addition
of graphene oxide and Au nanoparticles increases the deformation rate and actuation
efficiency, and the strengthen performances of graphene oxide is better than that of Au
nanoparticles. It can be seen in Figure 4f, that the deformation of the ethanol phase change
artificial muscle, with different graphene oxide contents, all perform axial expansion and
radial contraction throughout the driving process. The deformation can be observed with
the naked eye at 40 s. The deformation rate of GO-15 graphene oxide/ethanol phase
change artificial muscle actuator is the largest, which can contract to half of the original
length at 80 s. The deformation of whole process is slow in the initial stage and then
fast. The deformation rate of ethanol phase change actuator increases after 18 s, and the
degree of deformation also starts to become larger. With the increase of graphene oxide
content, we can see that the deformation rate gradually increases, i.e., the slope of each line
segment increases sequentially, and the driving rate of GO-15 is the fastest at 0.19 mm/s,
which is 61% higher than GO-0. This indicates that the addition amount of graphene
oxide affects the deformation of the graphene oxide/ethanol phase change artificial muscle
actuator, causing the driving characteristics of the actuator to change. The driving rate
and deformation degree of the graphene oxide/ethanol phase change artificial muscle
actuator are enhanced with the increase of the graphene oxide content. The deformation
analysis of the graphene oxide/ethanol phase change artificial muscle actuator verifies
that the addition of graphene oxide can effectively increase its driving rate and enhance
deformation capability.

3.3. Mechanical Properties Test

To test the mechanical properties of silicone elastomer, graphene oxide/silicone elas-
tomer and Au nanoparticles/silicone elastomer, tensile tests were performed on various
samples, as shown in Figure 5a. Each silicone elastomer sample was tested three times to
obtain the stress-strain curves of three materials, as shown in Figure 5b. The maximum
stresses in the tensile state for the three materials were 640 kPa, 693 kPa and 708 kPa, respec-
tively. The fracture strain rates were 513%, 676% and 882%, respectively. The elastic moduli
were 0.125 MPa, 0.103 MPa and 0.08 MPa. It is obvious that the maximum stress and
fracture strain of the silicone elastomer are enhanced by the addition of Au nanoparticles
and graphene oxide, but the elastic moduli decreased. With the decrease of elastic moduli,
deformation will be easier, while the increase of maximum stress and fracture strain makes
the material produce more deformation, which has a significant effect on enhancing the
driving ability of ethanol phase change artificial muscle. Among them, graphene oxide
improves the mechanical properties of the material better than Au nanoparticles.
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Figure 5. Mechanical properties of different types of ethanol phase change materials. (a) Tensile
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Subsequently, we performed tensile tests on the samples with different graphene
contents and the stress-strain curves were shown in Figure 5c. The maximum stresses of the
silicone elastomers with different graphene oxide contents were 110 kPa, 121 kPa, 133 kPa
and 150 kPa, respectively. The fracture strain rates were 615%, 634%, 665% and 621%,
respectively. The moduli of elasticity were 0.224 MPa, 0.223 MPa, and 0.221 MPa. It can be
observed that with the increase of graphene oxide content, the maximum stress and strain
at the break of the silicone elastomer are increased, but the moduli is decreased. With the
decrease of the elastic moduli, the deformation of the ethanol phase change actuator will be
easier, and the increase of maximum stress and strain at the break makes the material more
deformable. Therefore, with the increase of graphene oxide content, the ethanol phase
change actuator is more likely to achieve large deformation.

3.4. Thermal Performance Analysis

As shown in Figure 6a, the heating of composites started at room temperature to above
the boiling point of ethanol (≥78.32 ◦C). The heat absorption reaction can be observed
by thermogravimetric and differential thermal analysis curves (DSC-TGA). It can be seen
from the curves that the ethanol phase change composites undergo thermal decomposition
when heated. The reaction rate increases when the temperature exceeds 70 ◦C because of
the evaporation of ethanol, with a peak at 84 ◦C. After 84 ◦C, the vaporization reaction
rate decreases to 0. The termination of the vaporization reaction is due to the complete
consumption of ethanol in the composite.
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The TGA curve can support the information reflected in the DSC curve, as it shows a
slight increase in weight loss at about 55 ◦C, a significant weight loss from about 70 ◦C,
and almost complete disappearance of weight loss at about 85 ◦C. During this process,
the ethanol gradually vaporizes and escapes from the pore structure of silica gel, resulting
in a reduction in the mass of the actuator by about 12% of the initial mass. Multiple
iterations of the experiment showed that the actuator could be effective for 100 cycles.
The DSC-TGA data showed that the most pronounced actuation would occur between
55 ◦C and 85 ◦C, with negligible action below this range. The operating temperature
range of the ethanol phase change actuator is 55–85 ◦C (rather than room temperature
to 78 ◦C), which can provide a very important assistance in the design of ethanol phase
change actuators.

Thermal imaging test analyses were performed for blank sample, graphene ox-
ide/ethanol phase change actuator and Au nanoparticle/ethanol phase change actuator,
and the results were shown in Figure 6c. It can be seen that the heating rates of graphene
oxide/ethanol phase change actuator and Au nanoparticle/ethanol phase change actuator
are significantly faster than that of no adding sample. This proves that the addition of
graphene oxide and Au nanoparticles can effectively accelerate the heating rates of the
materials. The heating rates of the composites with graphene oxide and Au nanoparticles
were the same until 52 ◦C. As time increases, the heating rate of composites with graphene
oxide was about 10 ◦C higher than that with Au nanoparticles, proving that the thermal
conductivity of graphene oxide was better than that of Au nanoparticles, which accelerated
the deformation rate. As exhibited in Figure 6b, the heating process of three actuators
is roughly linear, and the heating rates of ethanol phase change actuator, Au nanoparti-
cle/ethanol phase change actuator and graphene oxide/ethanol phase change actuator can
be calculated as 0.57 ◦C/s, 0.99 ◦C/s and 1.1 ◦C/s, respectively, within 100 s. The heating
rates of the composites with additions are higher than that of the reference sample, and the
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addition of graphene oxide enhances the thermal conductivity more significantly, which is
better than that of Au nanoparticles added actuator.

3.5. Driving Force Performance Analysis

The driving performance of graphene oxide/ethanol phase change actuator with dif-
ferent graphene oxide content are tested with a driving voltage of 8 V and total duration is
300 s, including a voltage-on time of 120 s and a voltage-off time of 180 s. The experimental
data are shown in Figure 7a.
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The output force of graphene oxide/ethanol phase change actuators started to change
slowly with the increase of energization time. Due to the low temperature at the beginning,
some ethanol vaporized. When energized for 38 s, the driving force of four actuators began
to gradually increase, and the increase speed of the driving force became larger with the
increase of graphene oxide content.

When the power was cut off at 120 s, the deformation of the ethanol phase change
actuator continued, and the driving force reached its maximum potential at 130 s. From
the drive force recovery curve, it can be seen that the drive force recovery of the ethanol
phase change actuator is approximately a straight line during 130–180 s. After 200 s,
the drive force recovery becomes slower and slower, because that the temperature of the
ethanol phase change actuator starts to drop as the power is cut off. When the temperature
decreases to a certain level, the cooling and liquefaction of ethanol become slower, and the
slope of the force response curve becomes concave. At 280 s, the driving force of the
actuators with different graphene oxide contents all become 0. This indicates that the
driving force and the driving force recovery speed of the ethanol phase change actuator
are increased with the increase of graphene oxide content.

Comparing the drive time and response time of the graphene oxide/ethanol phase
change actuator, we found that the drive/reduction rate ratio is 1.5, which means that the
ethanol phase change actuator needs to wait 1.5 times longer for its response at the end of
use. This is the same as that of no-addition. The graphene oxide/ethanol phase change
actuator not only has reversible deformation properties similar to the contraction/reduction
of biological muscles, but also has good driving properties. Based on this property, a simple
weight-lifting experiment was designed in this paper, as shown in Figure 7b. A simple
weightlifting device designed by the McKibben-type graphene oxide/ethanol phase change
artificial muscle actuator can lift a 50 g weight (10 times its own weight) by 12 mm in 300 s
driven by 8 V, 1 A.

4. Conclusions

In the current work, we have successfully prepared a novel silicone/ethanol/(graphene
oxide/gold nanoparticle) composite elastomer actuator for soft driving, and a composite
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elastomer actuator with different graphene oxide content, with their functional characteris-
tics discussed separately.

Based on the results of microstructure, mechanical properties and mechanical driving
tests, an outcome that the addition of graphene oxide and Au nanoparticles could effectively
improve the actuation rate of composite elastomer actuator is demonstrated, and the
enhancement effect of graphene oxide is better than that of Au nanoparticles. SEM results
show that the incorporation of graphene oxide and Au nanoparticles do not affect the
distribution of ethanol throughout the composite elastomer. The mechanical properties of
the materials show that the addition of graphene oxide and Au nanoparticles could improve
the mechanical properties of composites, reducing the hardness, and thus improving its
deformation. Thermal imaging results show that the fast actuation mechanism of the
actuator is to accelerate the boiling and evaporation of ethanol, which makes silicone
rubber swell faster and become less hard, thus reducing the deformation time to increase
actuation effect. According to our research, the best actuation effect is achieved by adding
graphene oxide content of 15 mg. Our research shows that the addition of a thermally
conductive enhancement phase helps to improve actuation efficiency of composite elastic
actuators, which provides a direction for future development of elastic actuators to achieve
multiple cycles of composite actuators. In the application of soft robots, solving the problem
of internal ethanol volatilization and achieving reliable long time cycle fast actuation is one
of the main directions for future research.
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