
polymers

Article

An Essential Role of Gelatin in the Formation Process of
Curling in Long Historical Photos

Jiaojiao Liu, Yuhu Li *, Daodao Hu, Xiaolian Chao, Yajun Zhou and Juanli Wang *

����������
�������

Citation: Liu, J.; Li, Y.; Hu, D.; Chao,

X.; Zhou, Y.; Wang, J. An Essential

Role of Gelatin in the Formation

Process of Curling in Long Historical

Photos. Polymers 2021, 13, 3894.

https://doi.org/10.3390/polym13223894

Academic Editors: Valentina Pintus

and Odile Madden

Received: 10 October 2021

Accepted: 8 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Engineering Research Center of Historical Cultural Heritage Conservation, Ministry of Education,
School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China;
liujiaojiao@snnu.edu.cn (J.L.); daodaohu@snnu.edu.cn (D.H.); chaoxl@snnu.edu.cn (X.C.);
zhouyajun@snnu.edu.cn (Y.Z.)
* Correspondence: liyuhu@snnu.edu.cn (Y.L.); wangjuanli@snnu.edu.cn (J.W.)

Abstract: Curling disease in long historical photos significantly affects the presentation of cultural
heritage information. However, people lack attention to the formation process and microstructural
changes of photo curling. In this article, a long historical photo (1912–1949 AD) collected by the
Second Historical Archives of China was taken as the research object, and the formation process and
cause of the curling were further explored. Firstly, Fourier-transform infrared spectroscopy (FTIR),
X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray energy disperse spectrometer
(EDS), and other instruments were used to analyze the material composition of the long historical
photo. It was found that the photographic paper was made of gelatin, barium sulfate, and plant
fiber layers. Then, the effects of hygrothermal environments on curling and contraction in the gelatin
layer and simulated photographic paper were explored. Meanwhile, the formation process and main
influence factors of the curling were preliminarily revealed. The morphological analysis by SEM was
carried out to identify the inner correlation between the microstructure and curling of photos. Finally,
the possible formation cause of photo curling was analyzed. This study provides a scientific basis
and experimental data for the preservation and restoration of long historical photos based on gelatin.

Keywords: long historical photos; curling; gelatin; paper base layer; preservation

1. Introduction

Photos are important photosensitive image archives that directly witness and corrob-
orate major historical events, historical figures, and social reforms. They are extremely
precious modern cultural heritages and world memories. Since 1880, gelatin has been
extensively used for the preparation of photographic materials thanks, e.g., to good dispers-
ing properties. Among them, the silver salt gelatin process is the most common. However,
gelatin film is highly susceptible to diseases, such as damage [1], cracking and crazing [2–4],
watermarks and mildew spots [5,6], fading [7,8], and scratches [9]. Brittle curling is a spe-
cial disease that is frequently found in long protein silver salt photos, which seriously
affects the preservation and information safety of photos (Figure 1).

The influence of environmental temperature and humidity on the stability of coated
paper has attracted extensive attention in recent years [10–15]. A hydrophobic coating on
paper improves its water tolerance and printing performance, which causes the coated
paper to curl easily in alternate wetting–drying environments [16–18]. Curling can be
inhibited by maintaining stable water content through paper isolation, which can be
achieved by applying a waterproof layer on the non-printed surface or sizing on the non-
coated surface. For repairing and preservation of paper-based photos, the Smithsonian
Institution (Washington, DC, USA) suggested maintaining low-temperature and low-
humidity conditions on a long-term basis [19]. On the other hand, digital storage offers
an effective way of permanently preserving the image information, and this approach has
been internationally recognized [20–24]. So far, digital technology is used to repair photos
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with slight curling, deformation, or creasing, thus greatly improving the image quality. Our
team has been involved in preserving black-and-white historical photos for many years and
has achieved some important results in terms of scratches, mildew, fading, toughening, and
flattening [25–29]. These important studies have offered fundamental inspiration and laid a
solid foundation for the prevention and preservation of historical photos. However, brittle
curling is widespread in long historical photos and poses serious threats to the information
safety of cultural relics. As far as we know, there has been no previous research on the
cause analysis of curling in long historical photos, and the literature on repair methods
is also very limited. Therefore, research on the formation process and cause of curling in
historical photos is particularly important for the effective elimination of curling disease
and better preservation of long historical photos.

This study is aimed at exploring the cause of curling in long historical photos and
providing a scientific basis for better preservation of gelatin paper-based photos. Some
gelatin paper-based historical photos from the China (1912–1949) were collected by the
Second Historical Archives of China, including photos with varying degrees of curling,
creasing, and fracture. Some of them were used for the first time to investigate the forma-
tion process and cause of curling. SEM, EDS, FTIR, and XRD were employed to analyze
the microstructure and material composition of the long historical photo. Simulated pho-
tographic paper samples with varying degrees of curling and contraction were prepared
by altering hygrothermal environments, and the effects of hygrothermal environments on
regular curling changes were also studied. The inner correlation between the microstruc-
tures of photos and the macroscopic changes in curling was revealed by freeze-drying the
simulated samples and observing their surface morphologies by SEM. This study provides
theoretical support for identifying the formation cause of curling in long historical photos.

Polymers 2021, 13, x FOR PEER REVIEW 2 of 10 
 

 

been internationally recognized [20–24]. So far, digital technology is used to repair photos 
with slight curling, deformation, or creasing, thus greatly improving the image quality. 
Our team has been involved in preserving black-and-white historical photos for many 
years and has achieved some important results in terms of scratches, mildew, fading, 
toughening, and flattening [25–29]. These important studies have offered fundamental 
inspiration and laid a solid foundation for the prevention and preservation of historical 
photos. However, brittle curling is widespread in long historical photos and poses serious 
threats to the information safety of cultural relics. As far as we know, there has been no 
previous research on the cause analysis of curling in long historical photos, and the 
literature on repair methods is also very limited. Therefore, research on the formation 
process and cause of curling in historical photos is particularly important for the effective 
elimination of curling disease and better preservation of long historical photos. 

This study is aimed at exploring the cause of curling in long historical photos and 
providing a scientific basis for better preservation of gelatin paper-based photos. Some 
gelatin paper-based historical photos from the China (1912–1949) were collected by the 
Second Historical Archives of China, including photos with varying degrees of curling, 
creasing, and fracture. Some of them were used for the first time to investigate the 
formation process and cause of curling. SEM, EDS, FTIR, and XRD were employed to 
analyze the microstructure and material composition of the long historical photo. 
Simulated photographic paper samples with varying degrees of curling and contraction 
were prepared by altering hygrothermal environments, and the effects of hygrothermal 
environments on regular curling changes were also studied. The inner correlation 
between the microstructures of photos and the macroscopic changes in curling was 
revealed by freeze-drying the simulated samples and observing their surface 
morphologies by SEM. This study provides theoretical support for identifying the 
formation cause of curling in long historical photos. 

 
Figure 1. Typical damage of curling disease in a group photo of Fifth National Convention of the 
National Army in the 24th year of the China. 

2. Experimental Section 
2.1. Characterization of the Structural Composition of Photos 

The micromorphology and elemental composition of the photographic paper 
interface was investigated by SEM and EDS. The characteristic functional groups and 
molecular diffraction peaks of molecular functional groups in each layer were analyzed 
with FTIR and XRD. Tested details were as follows: 
(1) SEM-EDS: A sample (5 × 5 mm2) that contained no information was chosen at the 

edge of the photo relics and placed on double-sided sticky tape on an aluminum SEM 
specimen holder. The surface of the sample was sprayed with gold 80s by an ion 
sputtering apparatus (SCD005, Baltek, Liechtenstein, Germany). The sample was 
examined using SEM (Quanta 200, FEI, Columbus, OH, USA). Analyses were 
performed at a high vacuum with an accelerating voltage of 20 kV. Elemental 
spectrums were generated with a Quanta 200 SEM. Magnification was 4000×. 

(2) FT-IR spectroscopy: Fourier transform infrared (FT-IR) coupled with a diamond ATR 
method was used in the reflection mode to analyze the composition of the samples 

Figure 1. Typical damage of curling disease in a group photo of Fifth National Convention of the
National Army in the 24th year of the China.

2. Experimental Section
2.1. Characterization of the Structural Composition of Photos

The micromorphology and elemental composition of the photographic paper interface
was investigated by SEM and EDS. The characteristic functional groups and molecular
diffraction peaks of molecular functional groups in each layer were analyzed with FTIR
and XRD. Tested details were as follows:

(1) SEM-EDS: A sample (5× 5 mm2) that contained no information was chosen at the
edge of the photo relics and placed on double-sided sticky tape on an aluminum
SEM specimen holder. The surface of the sample was sprayed with gold 80s by an
ion sputtering apparatus (SCD005, Baltek, Liechtenstein, Germany). The sample was
examined using SEM (Quanta 200, FEI, Columbus, OH, USA). Analyses were per-
formed at a high vacuum with an accelerating voltage of 20 kV. Elemental spectrums
were generated with a Quanta 200 SEM. Magnification was 4000×.

(2) FT-IR spectroscopy: Fourier transform infrared (FT-IR) coupled with a diamond ATR
method was used in the reflection mode to analyze the composition of the samples
at room temperature and ambient humidity. FT-IR (Vertex 70, Bruker, Karlsruhe,
Germany) analysis of each layer was conducted using PerkinElmer Spectrum Two
in the range between 4000 and 500 cm−1 with a resolution of 4 cm−1, and the scan
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number was 40 times. In order to reduce the effect of carbon dioxide and water vapor
on FT-IR spectra, the sample spectra have removed the background contributions.

(3) XRD: The sample was a small piece of the surface of a paper base after the gelatin
emulsion layer had fallen off (about 5 × 5 mm2). XRD (Smart Lab, Rigaku Corporation,
Japan) was used to test the crystalline structure of the sample from the photo relics.
Test condition: The X-ray intensity was 45 kV/200 mA, scanning speed was 5◦/min,
and scanning range was 15–40◦.

2.2. Preparation of Simulated Photographic Paper Samples

Photographic gelatin was prepared into an 8% aqueous solution, and the gelatin
solution was evenly coated on the barium photographic paper surface with a quantitative
coating stick. The gelatin solution was dried naturally at room temperature. Then, it was
cut into several strips of 12 cm × 2 cm size. The thin and uniform gelatin film was prepared
with a polytetrafluoryl grinding tool and dried naturally. The paper base and gelatin film
samples were subjected to dry and wet cycles at room temperature and high temperature
several times, respectively. To obtain the simulated samples with different contraction
rates and curling degrees, we set the normal temperature and high temperature at 25 ◦C
and 45 ◦C, respectively; the dry and wet humidity at 18% and 75%, respectively; and the
dry and wet time at 24 h. Regular changes in the simulated samples with curling and
contraction were then used to study the effects of ambient damp-heat.

2.3. Micromorphological Characterization of Gelatin Films and Paper Base Layers

The simulated samples of gelatin films with different shrinkage and paper bases with
different curling were soaked in distilled water for 5 min, placed in the freeze-dryer for
48 h, then observed under SEM to visualize the morphological changes.

3. Results and Discussion
3.1. Structures and Composition of Long Historical Photo

As shown in Figure 2, morphological analysis by SEM indicates the microstructural
characteristics of the historical photo from the China. SEM images reveal that the historical
photo has an obvious layered structure. The composition of each layer was analyzed by
EDS, and results show that layer 1 is composed of C, N, O, Ag, and Cl. FTIR analysis
of layer 1 indicates that a broad peak at 3600–3000 cm−1 is attributed to the OH bond.
In addition, amide A (3330–3310 cm−1) and amide B (3070 cm−1) bands also appear in
the same region [30,31]. The amide I band contains stretching vibrations of carbonyl
groups at 1650 cm−1, whereas the amide II band contains a CN stretching vibration and
in-plane NH distortion absorption vibration peak at 1550 cm−1. The amide III bands
show carbon–nitrogen stretching vibrations at 1280 cm−1 [32]. Comprehensive EDS-IR
analysis revealed that the main surface ingredients of layer 1 are gelatin and silver chloride
photosensitive materials.

EDS analysis of layer 2 shows that the main elements of this layer include C, N, O,
Ba, and S. Correspondingly, there are intense and sharp diffraction peaks, indicating a
higher degree of crystallinity. The particulate matter matches with JCPDS card (i) 24–1035,
and its powder X-ray diffraction pattern is matched with the BaSO4 orthorhombic system.
Comprehensive EDS-XRD analysis reveals that layer 2 is mainly a mixture of BaSO4 and
gelatin. EDS analysis of layer c reveals C and O as the main elements of this layer. Three
FTIR peaks at 2900 cm−1, 3400 cm−1, and 1040 cm−1 are typical characteristic peaks
of paper cellulose. The above results show that this historical photographic paper has
two characteristics. Firstly, in terms of composition, it has an obvious layered structure.
Secondly, gelatin is the primary film-forming matter of the emulsion and baryta layers.
We inferred that these characteristics and structural differences would cause curling of
photos in alternate wetting–drying environments. The above results suggest that the long
historical photo with brittle curling from the China is mainly made of a gelatin silver salt
paper base. This result offers a research basis for subsequent cause analysis of curling.
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Figure 2. Material composition analysis of each layer in the long historical photo: SEM cross-section
of each layer (1–3) (a), corresponding energy spectra (b–d), and infrared spectra (e–g).

3.2. Macroscopic Effects of Damp-Heat Factors on Curling and Contraction in Simulated
Photographic Paper Samples
3.2.1. Effects of Damp-Heat Factors on Curling Changes in Simulated Photographic
Paper Samples

Paper base (porous fiber polymer) and gelatin layers (compact hard film) are both
hygroscopic materials. Gelatin is usually characterized by high hygroscopicity and expansi-
bility. In this study, we speculated that the differences in damp-heat properties of the paper
base and gelatin caused serious curling. Therefore, regular changes in the curling degree of
the simulated photographic paper sample were studied by controlling the numbers and
parameters of high-temperature dry–wet cycles (Figure 3). The glass transition temperature
(Tg) of gelatin drops to room temperature (23 ◦C) when the gelatin has equilibrated to a
relative humidity condition of approximately 75% [19]. Gelatin shows one conversion from
a triple-helical structure to a random coil configuration when the gelatin is subjected to
high relative humidity and temperature (>Tg) conditions [33]. According to the site survey,
the temperature and humidity upper limit in the storeroom for the collection of historical
photos were about 45 ◦C and 75%, respectively. To study the effects of ambient damp-heat
on curling changes in simulated photographic paper samples, we chose the temperatures
of 25 ◦C and 45 ◦C (>Tg) and high relative humidity of 75%. Simulated photographic
paper samples were put through normal-temperature (25 ◦C) and high-temperature (45 ◦C)
dry–wet cycles one, three, five, and seven times. The photographic paper curled to vary-
ing degrees towards gelatin layers under different dry–wet cycles and high-temperature
dry–wet cycles accelerated the curling. These tests provide scientific facts for the study of
the photo curling formation mechanism. The curling phenomena further suggest that the
formation of photo curling is closely related to damp-heat environments and that gelatin
plays a dominant role in the curling formation.
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3.2.2. Effects of Damp-Heat Factors on Contraction Rates of Paper Base Layers and
Self-Supported Gelatin Films

To further validate the above speculation, we put the paper base and gelatin films
under alternate high-temperature dry–wet environments with 14 cycles (Figure 4). Results
indicate that the paper base is relatively stable and only incurred slight contraction changes,
whereas self-supported gelatin films incurred dramatic contraction changes in damp-heat
environments. These results are consistent with the above speculation.
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Figure 4. Contraction changes in paper base (a) and gelatin films (b) under accelerated alternate
damp-heat environments. Before: untreated, After: seven dry (RH = 18%) and wet (RH = 75%) cycles
at 45 ◦C.

3.2.3. Effects of Damp-Heat Cycles on the Contraction Rate of Self-Supported Gelatin Films

Photos are sometimes subjected to alternate damp-heat and dry-heat changes during
preservation. To explore the specific contraction trends of self-supported gelatin films in
damp-heat and dry-heat environments, we placed gelatin films under normal-temperature
and high-temperature environments with dry–wet cycles. The gelatin films (all in initial
natural drying state) were kept in a normal-temperature high-humidity environment
to observe their contraction changes. As shown in Figure 5a, the gelatin films showed
continuous hygroscopic expansions and dry contraction changes and finally remained in a
constant contraction state after multiple cycles.
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In high-temperature dry–wet cycles, gelatin films exhibited obvious contraction
changes during the first cycle from the initial dry environment to a high-temperature
high-humidity environment (Figure 5b). Then, they exhibited a constant contraction state
in subsequent cycles. These results suggest that high temperature intensifies the contraction
changes in gelatin films during dry–wet cycles, directly validating the aforementioned
speculation. The contraction changes of gelatin films in high-humidity environments
constitute the primary cause of serious brittle curling in photos.

3.3. Effects of Damp-Heat Factors on the Micromorphology of Curled Samples

To study the microstructures of the gelatin films and paper base layers treated un-
der different high-temperature dry–wet cycles, they were freeze-dried after hygroscopic
expansion, and their SEM test results are shown in Figure 6. As shown in Figure 6a,
the untreated gelatin film exhibited an obvious porous structure after freeze-drying. In
Figure 6b–d, the porous structure gradually narrowed after damp-heat cycles, suggesting
that the macroscopic contraction changes of gelatin films are closely related to the aggrega-
tion of molecular skeletons in gelatin polymer. Figure 6e–h show that the paper base fiber
samples did not display an obvious change in the surface structure after freeze-drying.
These results indicate a significant difference between the gelatin and the paper base layer
in their contraction behaviors under alternate damp-heat environments. Compared to the
paper base layer, the gelatin layer displayed more abrupt contraction changes, thereby
causing the photos to curl towards the gelatin layers.
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Figure 6. Surface morphology of the gelatin films and (a–d) and the paper base (e–h) with different
micro-porous structures: untreated (a,e), one damp-heat cycle (b,f), three damp-heat cycles (c,g), and
seven damp-heat cycles (d,h).

3.4. Formation Cause of Photo Curling

According to the above research results, it is found that photo curling is related to the
aging of emulsion gelatin under damp-heat cycles and that alternate damp-heat changes
are the most significant factor affecting the curling and fracture in gelatin photos. The
possible curing mechanism in historical photos is illustrated in Figure 7. The formation of
curling in historical photos can be explained from the following aspects. Firstly, from the
structural composition of the photographic paper from the China, gelatin is the primary
film-forming material in the gelatin protection layer, emulsion layer, and baryta layer.
Gelatin films possess high hygroscopicity, low thermal stability, and poor mechanical
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property (brittleness) [34,35]. Secondly, during hygroscopic expansion and dry contraction,
the aggregation behavior of gelatin supramolecules produces different contraction stress in
each layer. The stress in the gelatin layer is greater than that of the paper base layer, causing
the curling towards the gelatin layer. Thirdly, in case of alternate changes in temperature
and humidity levels, especially in high-temperature dry–wet environments, there is a large
stress difference between gelatin films and paper base layers, leading to serious brittle
curling or fracture.
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