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Abstract: Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied
using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with
an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the “quencher” for fast-
moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in
polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra
simulations confirm the formation of molten globules at the first step with further collapsing and
water molecules coming out of the globule, making it denser.

Keywords: thermoresponsive polymers; electronic paramagnetic resonance; spin probe; nitroxides;
coil to globule

1. Introduction

Thermoresponsive polymers are of great interest because they undergo coil-to-globule
transitions of single-polymer chains in polar solvents near the lower critical solution
temperature (LCST) [1–3]. This peculiarity gives them potential for biomedical and phar-
maceutical applications such as drug and gene delivery, tissue engineering, cell expansion,
sensors, microarrays, and imaging [4–9]. Phase transition in the thermoresponsive poly-
mers solutions passes due to molecular interaction and the cohesion of solvent molecules
with hydrophilic fragments in the polymer chains [10,11]. Hydrophilic groups form hy-
drogen bonds with water molecules at low temperatures, resulting in good solubility in
aqueous solutions. Increasing the temperature leads to the degradation of the hydrogen
bonds system and the formation of an intramolecular interaction between polymers chains,
further collapsing the polymer globule. Poly(N-isopropylacrylamide) (PNIPAM) is one of
the most studied thermoresponsive polymers, which has LCST in a physiologically relevant
temperature range of ≈32 ◦C in aqueous solutions [1]. Macroscopic methods (turbidimetry,
DSC, etc.) usually fix sharp and reversible changes of PNIPAM properties in the vicinity
of LCST [11,12]. In addition, the formation of small, even nanoscopic inhomogeneities
of polymer gels or films in different solvents before LCST is proved by continuous-wave
electron paramagnetic resonance spectroscopy (CW EPR) [13–15]. The EPR spectra of
paramagnetic molecules (spin probes) are sensitive to the microenvironment and can give
valuable information concerning collapse processes at the molecular level [14,16,17]. Stable
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nitroxide radicals containing a >N–O•·group have been the most popular spin probes
during the last 55 years [17,18]. Hyperfine interaction of the unpaired electron spin with the
magnetic moment of 14N (S = 1) nucleus leads to splitting of the EPR signal of nitroxides
to three lines. Local polarity, viscosity, and the ability of a media to form hydrogen bonds
influence the electron density distribution in the spin probe, affecting the shape of the EPR
signal and spin-Hamiltonian parameters (g-tensor and hyperfine splitting (hfs) tensor),
which can be estimated by modeling the EPR spectra. The small amphiphilic radical
2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (ca. 6.7 Å in diameter) is a powerful tool
to detect and control the formation of polymer globules [14,19–21]. It is known that the
micropolarity in polymeric globules of thermoresponsive polymers is significantly lower
than the polarity of water and is close to that of chloroform [18]. A lower polarity and
higher viscosity of the globules [15] result in changes of spin Hamiltonian parameters and
the line widths of TEMPO spectra compared with those in aqueous solution, reflecting a
decrease of the amplitudes of the spectral lines belonging to the radicals in the solution
and the appearance of broader components of the TEMPO spectrum corresponding to
probes localized in the globules. This effect was used by Junk et al. [19] to reveal the
formation of heterogeneities in thin photocrosslinked films of PNIPAM notably earlier
and later the LCST detected by macroscopic methods. However, the spin probe technique
was not applied to study coil-to-globule transitions and the nature of inhomogeneities in
PNIPAM aqueous solutions up to now. In the present paper, we applied CW EPR to study
the structure and features of formation of nano- and/or micro heterogeneities of PNIPAM
with two different polydispersities and the dynamics of spin probes inside the globules
and in aqueous solutions upon heating from room temperature.

2. Materials and Methods
2.1. Substances

The stable radical (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and copper(II)
chloride dihydrate CuCl2·2H2O purchased from Sigma-Aldrich were used without further
purification. N-Isopropylacrylamide (NIPAM) (99%, Acros, Geel, Belgium) was recrystal-
lized from solution in n-hexane, dried in vacuum, and then stored under argon atmosphere.
2,2′-Azobis(2-methylpropionitrile) (AIBN) (98%, Sigma-Aldrich, Burlington, MA, USA)
was recrystallized from ethanol and dried in vacuum at 20 ◦C. Benzene (anhydrous, 99.8%,
Sigma-Aldrich, USA) and n-hexane (reagent grade, Ekos-1) were used as received.

2.2. Polymer Synthesis

Two poly(N-isopropylacrylamide) (PNIPAM) samples I and II were synthesized via
conventional radical and RAFT polymerization, respectively. The sample I (number-
average molar mass Mn = 175.5 kDa, polydispersity index Ð = 4.3; yield: 97%) was
prepared by free radical polymerization in benzene at 60 ◦C for 24 h using azobisisobu-
tyronitrile (AIBN) as an initiator according to the procedure reported in [20]. Then, the
reaction mixture was precipitated in n-hexane. Then, the obtained polymer was purified
by dissolving in acetone followed by precipitation in n-hexane at least three times, and
the product was dried at 45 ◦C in a vacuum oven. Sample II (Mn = 107.6 kDa, Ð = 2.05;
yield: 95%) was prepared by RAFT-mediated radical polymerization. The polymerization
was carried out in benzene at 60 ◦C for 24 h using 2-(dodecylthiocarbonothioylthio)-2-
methylpropionic acid as the RAFT agent. The polymerization was conducted in an argon
atmosphere in a Schlenk reactor equipped with a magnetic stir bar. The reactor was charged
by N-isopropylacrylamide (0.502 g, 4.44 mmol), vacuumed, and filled with argon. Then,
0.22 mL of 0.02 M benzene solution of RAF-agent, 1.11 mM of 0.02 M benzene solution of
AIBN, and 2.87 mL of benzene were added into the reactor. The mixture was bubbled with
argon for 30 min, and then, the reactor was placed into an oil bath heated to 60 ◦C. After
24 h, the reactor was opened and frozen with liquid nitrogen. The polymer purification
was performed similarly to the purification of sample I (see above).
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2.3. Polymers Characterization
2.3.1. H NMR Spectroscopy

1H NMR (500 MHz) spectra were recorded in CDCl3 at 25 ◦C on a Bruker AC-500
(Bruker, Karlsruhe, Germany) spectrometer calibrated relative to the residual solvent
resonance. The 1H NMR spectra of sample I and sample II are presented in Figure A1 (see
Appendix A).

2.3.2. Spectrophotometry

The temperature transition was monitored by UV-Vis spectrophotometry using a
Victor Nivo instrument (Perkin Elmer, Waltham, MA, USA) at a wavelength of 405 nm.
The studied polymer solution was poured into a 96 (48)-well plate, and the absorbance at
each point was registered. The range of measurement was 4–40 ◦C. The cloud points were
determined at 10% of the transmission reduction.

2.3.3. Differential Scanning Calorimetry (DSC)

The DSC studies were carried out using a NETZSCH STA 449 F3 synchronous thermal
analyzer (Selb, Germany) in a helium atmosphere at gas flow rates of 70 mL/min (main)
and 50 mL/min (protective). An aluminum crucible was used with a solution weight of
30–45 mg. The calibration of the temperature and sensitivity of the device was carried out
using standard samples of adamantane, indium, and distilled water. The aqueous solution
of the polymer sample (5 wt %) was heated and cooled at 2 K/min. TGA measurements
were performed with the same device using solid PNIPAM samples at heating rate of
20 ◦C min−1 under nitrogen flow.

2.3.4. Size Exclusion Chromatography

Size exclusion chromatography was performed using an Ultimate 3000 Thermo Scien-
tific chromatographic complex (Thermo Fisher Scientific, Waltham, MA, USA) equipped
with PLgel precolumn guard (Agilent, Santa Clara, CA, USA, size 7.5× 50 mm, particle size
5 µm) and PLgel MIXED-C column (Agilent, size 7.5 × 300 mm, particle size 5 µm) ther-
mostated at 50 ◦C. The elution was performed in the isocratic mode with DMF containing
0.10 M LiBr at a flow rate of 1.0 mL min−1. SEC traces were recorded as mentioned above,
and polymethylmethacrylate standards (ReadyCal Kit, PSS GmbH) with Mw/Mn ≤ 1.05
were used to calculate Mw/Mn.

2.4. EPR Samples Preparation

In all cases, ≈0.5 mM TEMPO and 10 wt % PNIPAM freshwater solutions were
prepared, dissolving the required predefined amounts of TEMPO radical and PNIPAM
polymer. In the first step, the dissolution of TEMPO was performed at room temperature
using ultrasonication. Then, PNIPAM was added, and the mixture was aged at 4 ◦C for
24 h until the complete dissolution of the polymer. The solutions were put into glass tubes
with 2 mm inner diameter; then, the tubes were sealed to prevent water evaporation.

2.5. EPR Measurements

EPR spectra were recorded using X-band spectrometer Bruker EMX-500 (Bruker, Karl-
sruhe, Germany). The temperature of the samples was varied in the range of 300–353 K
using the flow of nitrogen gas. The thermostatic device from Bruker was used; the accu-
racy of the temperature setting was about ±0.5 K. Each sample was left at the particular
temperature for precisely 5 min for equilibration before recording. At 305 K, the waiting
time was 60 min to equilibrate the samples. Typical parameters of the spectra recording
were a microwave power of 0.8 mW, modulation amplitude of 0.04 mT, and a sweep width
of 8 mT. «Quenching» of fast spin probes in water was performed by adding 10 mg of
CuCl2·2H2O to 0.5 mL PNIPAM solution, as recommended in [21].
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2.6. Data Analysis

The integration of EPR spectra and the amplitude measuring were performed by
the EsrD program developed at the Chemistry Department of Lomonosov Moscow State
University [16]. For LCST measurements, the amplitude value of TEMPO EPR spectra
was normalized to the Q-factor [22] at each temperature and to the amplitude of the
left component of the spectra at 300 K. All spectra simulations were performed using
homemade scripts for the MATLAB program employing an Easyspin (v. 5.2.28) toolbox [23].
Spectra of TEMPO radical in solutions (type A) were simulated using a model based on fast
motion implemented as a ‘garlic’ function in Easyspin. Simulations of the spectra of radicals
in polymer globule (type B) were made in a slow-motion regime using a ‘chili’ function
from the Easyspin program. The slow-motion model ‘chili’ is based on the Schneider–Freed
theory [24], solving equations for slow tumbling nitroxides. Anisotropic values of Spin-
Hamiltonian parameters (g-tensor and hyperfine splitting (hfs) tensor, usually denoted
as a-tensor) were averaged to obtain giso and aiso values, the rotational correlation time
tensor (τcorr), denoted as the average time required for the rotation of a molecule at one
radian, was calculated from averaged rotational diffusion constant. Fitting errors for giso
and asiso were ±0.00003 and ±0.01 mT, respectively. More details of the spectra simulation
are presented in Appendix A.

3. Results

According to DSC (Figure A2 in Appendix A) data from the heating step, the measured
LCST of the polymers I and II in aqueous solutions was ≈305 K and did not depend
on the synthesis method and molar mass distribution of polymers, which is typical for
PNIPAM solutions [25]. TGA measurements showed that both PNIPAM samples are
stable at the temperatures used in this work (≤353 K), and the thermal decomposition
(5 wt % weight loss) began at ≈625 K (Figure A3a). Note that the weight loss between
320 and 400 K (Figure A3a) is consistent with the presence of ca. 10–12 wt % of water
in poly(N-isopropylacrylamide) samples. This is confirmed by the disappearance of this
weight loss after annealing the samples at 470 K for 15 min (Figure A3b).

At temperatures below LSCT (305 K), the EPR spectrum of TEMPO in PNIPAM
solution (sample I, 10 wt%) and TEMPO spectrum in water have a shape close to the
isotropic fast-motion limit (Figure 1). The EPR spectrum of TEMPO in the polymer II
solution and its changes during heating were very similar to those of polymer I. However,
all these spectra (see Figure A4 in Appendix A) are slightly asymmetric; i.e., the signal
amplitude above the baseline is bigger than that below it. This asymmetry may appear
due to the following reasons. Firstly, the existence of the solvent shells with different
polarities around TEMPO molecules in aqueous media revealed by the analysis of Q-
band EPR spectra was postulated by Hunold et al. [26]. This fact leads to a bimodal
distribution of magnetic and dynamic parameters of TEMPO probes, which manifest itself
in asymmetric signals due to the superposition of the spectra. Secondly, the asymmetry of
the nitroxide signal can be caused either by the intermolecular spin-exchange interaction
between spin probes in solutions [27,28] or by mixing with the dispersion signal of the
resonance effect [29]. Fortunately, in our case, the observed effects are too small and can
be neglected to simplify the spectra modeling in aqueous solutions. According to our
simulation, the TEMPO spectrum in water at room temperature corresponds to probes
with a giso value equal to 2.00579 and the hfs constant aiso equal to 1.73 mT. The isotropic
rotational correlation time (τcorr) is about 11 ps. TEMPO in 10 wt % PNIPAM solution has
parameters typical for less polar media: giso equal to 2.00585 and aiso is equal to 1.72 mT,
wherein τcorr = 16 ps, manifesting the higher viscosity of polymer solution. A simple
estimation of viscosity using the Stocks–Einstein equation from rotational correlation
time shows increasing viscosity of 10 wt% PNIPAM solution below LCST in ≈1.5 times
compared to pure water.
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Figure 1. Normalized EPR spectra of TEMPO radical in 10 wt% PNIPAM aqueous solutions at
300–353 K registered upon heating.

At temperatures higher than 305 K, the intensity of the TEMPO spectra decreases
rapidly, and the lines shape changes: the spectra become broader, and the central line
turns to more asymmetric. At 320 K and higher, the components in the high-field region
corresponding to the probe in the hydrophobic globule clearly manifest themselves in the
spectra. Changes in the lines’ shape can be empirically presented as the amplitude A of the
high field component vs. temperature T (Figure 2). As seen from Figure 2, this dependence
allows measuring the LCST of polymer solutions. A fast drop of the amplitude occurs due
to the appearing of the more broadened and hence less intensive signal of TEMPO radicals
located in globules.

At temperatures above the LCST, the TEMPO spectrum in the PNIPAM solution
appears to be the sum of at least two signals. One of them belongs to the radicals in
the solution (type A). At the same time, the position and shape of the second signal
(denoted as the spectrum of B-type probes) manifest a more hydrophobic local environment
and a hindered rotation of TEMPO radicals comparing to A probes. The simulation of
experimental spectra as the sum of the spectra of two probes applies a considerable number
of parameters, the variation of which leads to similar changes in EPR spectra. For example,
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a shift of the components can occur both due to changes in the hfs constant or rotational
correlation time. The use of the spin-Hamiltonian and dynamic parameters of radicals A at
different temperatures determined from the temperature dependence of TEMPO spectra in
an aqueous solution makes it possible to slightly reduce the number of parameters to be
varied in the modeling. Nevertheless, the parameters of probes B cannot be quantitatively
determined from the simulation of experimental spectra due to their simultaneous influence
on the shape of the spectral line and overlapping signals of probes B with the component
corresponding to the hyperfine splitting on 13C nuclei of TEMPO, the so-called satellite
in the probes A spectrum. The spectrum of B probes can be elucidated by subtracting the
spectrum of centers A from the total spectrum or as the spectra of polymer films swollen
in the probe solution [19]. Nevertheless, the subtracting does not allow obtaining a fully
“pure” single-particle spectrum and may lead to artifacts in the line shape.
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The perspective method to get the individual spectrum of radicals inside a polymer
globule is “quenching” the signal of rapidly rotating radicals A due to the spin-exchange
broadening of EPR lines [21]. A Heisenberg exchange interaction occurs between unpaired
electrons as a result of the collision of two paramagnetic particles, leading to an exchange
of spin states between partners. In turn, the exchange of spin states between partners
leads to a change in the width of the EPR line of the paramagnetic particle up to its
confluence with the baseline. Such broadening may appear in the presence of some inert
paramagnetic particles, e.g., Cu(II) ions, not chemically interacting with components of
solutions. Figure A5 presents the change of the EPR spectra of TEMPO radicals in aqueous
solutions in the presence of Cu(II) ions. Adding small amounts of the paramagnetic ions
firstly leads to minor broadening of the signal of motile radicals in the solution. Further
increasing of Cu(II) concentration continues to broaden the TEMPO signal up to the
baseline. The optimal concentration of Cu(II) ions is about 0.2 M, and this amount was
used for “quenching” the signal of radicals A in PNIPAM (polymer I) solutions.

Due to the spin exchange between Cu(II) ions and TEMPO, the experimental spectrum
transfers practically to a base line at the temperature range of 295–301 K. At 302 K, a new
slight signal of slow-moving radicals appears, and its intensity and double integral increase
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with temperature rising (see Figure A6, Appendix A). We suppose that the new signal
corresponds to TEMPO radicals located in inhomogeneities of the polymer solution and
not contacted with the quencher. Over 305 K, polymer globules start collapsing, and the
spectra become more intensive due to an increase in the fraction of the radicals captured
by polymer globules. Heating up to 323 K leads to a further increase in the TEMPO signal,
but the lines’ shape does not change noticeably. At 333–353 K, the components of the
spectra narrow, apparently, because of the increasing mobility of TEMPO radicals. The
number of spin probes that depends linearly on the double integral of EPR spectra stays
constant at 333–353 K. We assume that the spectrum at 353 K shown in Figure 3 matches
the TEMPO spectra of the radicals in dense PNIPAM globules (probes B). According to our
simulation results, these spectra correspond to the anisotropic rotation of TEMPO radicals
with giso and aiso equal to 2.00615 and 1.60 mT, respectively. Such value of the isotropic
hfs constant matches to the local polarity close to that of the chloroform or low-molecular
alcohols [30]. Rotational movements of radicals are anisotropic and more hindered along
the x-axis: Dx = 7.6 × 106 s−1 < Dz = 8.7 × 107 s−1 < Dy = 5.9 × 108 s−1, where Dx,y,z are
the components of the rotational diffusion tensor. The obtained magnetic and dynamic
parameters of TEMPO radicals in PNIPAM globules (probes B) were used in our simulations
of the total spectra series (Figure 1).
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ions. Blue line—experimental spectrum, red dots—simulated spectrum.

All spectra of the samples I and II at temperatures above 305 K were excellently fitted
as a sum of the spectra of two types: “hydrophilic, fast” A probes and “hydrophobic,
slow” B probes (Appendix A, Figure A7). The root-mean-square deviation obtained
from simulations of all fitted spectra was less than 1%. The complete simulation results
obtained from EPR spectra fitting at several temperatures are collected in Appendix A in
Table A1. The difference between the two samples comes out only as the content of the B
probes at 305 K: 26% in sample I and 44% in sample II. This difference may occur due to
various polydispersities of polymers I (Ð = 4.3) and II (Ð = 2.05). Actually, the content of
macromolecules with similar molecular mass is bigger in polymer II, leading to a more
rapid globule collapse and the capturing of bigger content of the TEMPO radical. The
simulation results of the EPR spectra of samples I and II registered higher than 305 K are
similar, so only the simulation results obtained for sample II will be discussed further.
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Figure 4 illustrates the fitted EPR spectrum recorded at 333 K as a superposition of
two individual spectra. The spectrum of probes A looks like a “fast limit” spectrum of
TEMPO radicals dissolved in water. Its EPR parameters become less polar with heating due
to decreasing the polarity of liquids (for example, the dielectric constant ε of water changes
from 78 to 60 at temperatures 298 and 350 K, respectively) [31]. A hyperfine coupling
constant also decreases from 1.73 to 1.71 mT, and giso increases from 2.00588 to 2.00598.
The rotation correlation time of A probes decreases with heating from 10 to 1 ps due to the
diminishing water viscosity [32]. The magnetic and dynamic parameters of type A probes
after LCST do not depend on PNIPAM concentration and are similar to those for the pure
aqueous solution without PNIPAM.
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Figure 4. Decomposition of fitted EPR spectrum (red) of TEMPO radical in 10 wt % PNIPAM solution
at 333 K into two signals: type A radicals (green) and type B radicals (blue).

The spectrum of B probes (radicals located in hydrophobic globules) is more broad-
ened and looks like a «slow-motion» signal. The EPR spectrum of type B at 353 K coincides
with the experimental spectrum of the TEMPO radical in the polymer globule obtained by
the “quenching” experiment (Figure 3).

Figure 5 shows changes of aiso and giso of radicals A and B as a function of temperature.
The complete simulation results obtained from EPR spectra fitting at several temperatures
are collected in Table A1 of Appendix A. At 305–313K, the giso values corresponding to
B particles are similar to those of probe A in aqueous solution, but after 313 K, they rise
to 2.00615 at 353 K. In contrast, aiso values corresponding to B probes do not change at
305–353 K being equal to 1.60 mT. The average rotation correlation time of particles B
is 1300 ps at 305–318 K. After 318 K, a two-fold decrease of τcorr to 620 ps resulting in
narrowing of the line width of the EPR signal of the B probes is observed, signaling that
TEMPO molecules in the globule become more mobile. The mole fraction of type B probes
rises upon heating to 353 K to 70%.
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4. Discussion

All the applied methods: DSC, spectrophotometry, and the EPR spin probe technique
determine the same value of LCST (305 K) in aqueous PNIPAM solutions of polymers
I and II, which is consistent with the literature data [33]. Coil-to-globule transition on
PNIPAM aqueous solutions studied by the EPR spin probe method occurs in a narrow tem-
perature range of 8–10 K. Thus, in solutions, hydrophilic bonds between water molecules
and PNIPAM individual chains quickly degrade, and the rapid formation of polymer
globules takes place. To the contrary, Junk et al. also fixed LCST at 305 K in PNIPAM-based
photocrosslinked films swollen in water, but the temperature range of the collapse as mea-
sured by spin-probe CW EPR spectroscopy was substantially broadened to 40–50 K [19].
Therefore, only one type of radical (A probes) prevails in the aqueous solution of PNI-
PAM below LSCT (305 K). Nevertheless, at 302–304 K, some part of TEMPO molecules
is captured into polymer globules, transferring to B probes and testifying to the genera-
tion of heterogeneities that begin to collapse at 305 K, when the coil-to-globule transition
takes place.

We suppose that the observed increase in g-factor values of B particles in the globules
with increasing temperature occurs due to the breakdown of hydrogen bonds between
water molecules and the N–O• group of TEMPO [34,35]. At higher temperatures, these
complexes decompose, and giso rises to lower polar values corresponding to individual
TEMPO radicals. In addition, water molecules may come out of the globules while heating,
making the media surrounding TEMPO radicals more hydrophobic. Such evolution from
molten globule to tight globule was previously observed by Wang et al. [36] by laser
scattering for PNIPAM with narrow mass distribution, and it may also lead to the change
of giso value to be less polar.

The changes of content in A probes obtained from spectra simulation are similar to the
normalized amplitude changes of the high-field component of the full TEMPO spectrum in
PNIPAM solutions (see Figure 2 and Table A1). Therefore, the amplitude changes may be
used not only for LCST determination but for estimation of the content of probe molecules
A(χA) in the aqueous solution after the globule collapse. Since χA+ χB = 1, the molar fraction
of B probes could be valued, too. The content of probes in the collapsed globules relates
to an affinity of the probe to the polymer and amphiphilicity of the collapsed globules.
Thus, the measuring of amplitudes of EPR spectra of probe molecules in thermoresponsive
polymers aqueous solutions gives the opportunity to determine and predict its properties
using the spin-probe technique without making challenging spectra simulations.
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5. Conclusions

The CW EPR method with the spin-probe technique and “quenching” approach was
applied for studying coil-to-globule phase transition in PNIPAM aqueous solution upon
heating at 298–353 K. The broadening of fast-moving radicals in water by spin exchange
with Cu(II) ions allows obtaining individual spectra of the spin probe in polymer glob-
ule after collapsing and reliable spin-Hamiltonian parameters of both types of TEMPO
probes in solutions. In addition, the “quenching” approach has shown the formation of
inhomogeneities in PNIPAM aqueous solution at 2–3 degrees below the critical tempera-
ture, whereas the temperature range of the collapse in PNIPAM-based photocrosslinked
films swollen in water is substantially broadened to 40–50 K. A simple analysis based on
amplitude measurement of TEMPO EPR spectra registered at different temperatures gives
a cloud point and allows estimating the content of probe in collapsed globule. According
to EPR spectra simulations, the formation of dense globules at high temperatures through
molten ones at the first step takes place in PNIPAM solutions.
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Appendix A

EPR Spectra Simulation Details

All CW EPR spectra simulations were performed using homemade scripts for MAT-
LAB program employing the Easyspin (v. 5.2.28) toolbox [23]. Quality of fitting was con-
trolled by the calculation of root-mean-square deviation for the difference spectra. Spectral
and dynamic parameters were obtained by fitting simulated EPR spectra to experimental
data using least-squares fitting algorithms.

The spectra of TEMPO radical (type A) in solutions were simulated using a model
based on fast-motion implemented as a ‘garlic’ function in Easyspin. Line broadening
was described by isotropic rotation correlation time, and by additional convolutional line
broadening caused mostly by unresolved hyperfine splitting between unpaired electron
and nuclear spin (usually 1H). As initial values for the diagonal elements of the g-tensor and
hyperfine splitting tensor on 14N nuclei for type A probes, the following values were used:

gx = 2.0092, gy = 2.0062, gz = 2.0022;

Axx = 0.71 mT, Ayy = 0.70 mT, Azz = 3.71 mT.

In addition to splitting on 14N nuclei in the case of type A probes, isotropic hyperfine
splitting on 13C isotopes of six CH3-groups with aiso = 0.54 mT was considered. To simplify
the modeling procedure, we change abundances for carbon isotopes instead of adding six
paramagnetic nuclei.
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Simulations of the spectra of radicals in polymer globule (type B) were made in a
slow-motion regime using the ‘chili’ function from the Easyspin program. The slow-motion
model ‘chili’ is based on the Schneider–Freed theory [24], solving equations for slow-
tumbling nitroxides. Line broadening was described by the anisotropic rotation correlation
time and additional Gaussian line broadening. To start fitting, the following diagonal
values of g-tensor and hyperfine interaction a-tensor were used:

gx = 2.0098, gy = 2.0062, gz = 2.0022;

Axx = 0.71 mT, Ayy = 0.70 mT, Azz = 3.35 mT.
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The initial values of magnetic parameters were taken from [37] and corrected using
experimental isotropic giso and aiso of TEMPO radical in different solvents [30]. During the
simulation, only gx and Azz components were varied, being more sensitive to the environ-
ment. Isotropic giso and aiso were calculated as an average value of diagonal elements:

giso =
1
3

(
gx + gy + gz

)
aiso =

1
3
(
Axx + Ayy + Azz

)
The average rotational correlation time τcorr was calculated using the following equa-

tions from diagonal elements of diffusion tensor Dr = [Dxx Dyy Dzz]:

Dr =
1

6τcorr
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1
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√
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Figure A5. EPR spectra of TEMPO radical in water in the presence of Cu(II) ions: (a)—[Cu(II)] = 0,
[TEMPO] = 0.5 mM; (b)—[Cu(II) = 0.003 M, [TEMPO] = 0.33 mM; (c)—[Cu(II)] = 0.01 M,
[TEMPO] = 0.25 mM; (d)—[Cu(II)] = 0.1 M, [TEMPO] = 0.5 mM; (e)—[Cu(II)] = 0.2 M, [TEMPO] = 0.5 mM;
(f)—[Cu(II)] = 0.3 M, [TEMPO] = 0.5 mM. Spectra (a–c) were divided by 15 for better representation and
comparison with (d–f).
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Figure A7. Simulation of spectra of system TEMPO/PNIPAM/H2O at different temperatures. Blue lines—experimental
spectra, red circles—simulation spectra.
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Table A1. Selected spectral parameters from simulation TEMPO EPR spectra in 10 wt% aqueous
solutions at 300–353 K.

T, K Type A Type B

giso
aiso,
mT

τcorr,
ps giso

aiso,
mT

τcorr,
ns

χB, %
(Polymer I)

χB, %
(Polymer II)

300 2.00585 1.72 16 - - - 0 0

305 2.00588 1.73 10 2.00593 1.60 1.26 26.5 44.6

306 2.00588 1.73 8 2.00593 1.60 1.31 50.0 52.6

308 2.00589 1.73 8 2.00593 1.60 1.31 56.1 54.5

310 2.00589 1.73 5 2.00593 1.60 1.31 58.3 55.9

313 2.00589 1.73 5 2.00593 1.60 1.31 61.7 58.8

318 2.00591 1.73 2 2.00599 1.60 1.31 63.1 62.0

323 2.00591 1.73 2 2.00602 1.60 1.25 64.5 63.2

333 2.00593 1.72 2 2.00608 1.60 1.01 65.9 64.3

343 2.00594 1.72 2 2.00611 1.60 0.86 68.8 67.2

353 2.00597 1.72 2 2.00615 1.60 0.74 70.1 69.9
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