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Abstract: Due to its relatively simple structure, low-density polyethylene (LDPE) can be considered
as a model polymer for the study of its properties. Herein, the effect of processing variables on the
microstructure and crystallinity of injection-molded LDPE specimens was quantitatively determined.
The polymer was injected at different temperature conditions in the barrel and the mold. The
specimens were characterized by scanning electron microscopy and X-ray diffraction. With the data
obtained, an analysis of variance (ANOVA) was carried out, and response surface graphs (SRP)
were constructed to quantify and to observe the behavior of the processing variables, respectively.
Different models were obtained to predict the effect of the experimental factors on the response
variables. The results showed that the interaction of the two temperatures has the greatest effect
on the size of the spherulite, while the temperature of the mold affects the crystallinity. The SRP
showed different behaviors: for the spherulite, the size increases with the mold temperature, while
for the crystallinity, higher values were observed at an intermediate mold temperature and a low
melt temperature. The results presented herein are valuable for setting empirical relations between
the microstructure, crystallinity, and the molding conditions of LDPE.

Keywords: injection molding; low-density polyethylene (LDPE); microstructure; spherulites; ANOVA;
response surface methodology

1. Introduction

Polyethylene (PE) is a commodity polymer widely used in the plastics market, oc-
cupying about one-third of the total production in the world [1]. Based on the complex
structural hierarchy, there are three different types of PE, named low-density PE (LDPE),
high-density PE (HDPE), and linear low-density PE (LLDPE), with all of these polymers
differing in molecular weight distribution and chain branching [2,3]. LDPE is employed
in the manufacturing of bottles, films, wire insulators, and molded parts [4–7]. In the
academic field, it is used as a model polymer for the understanding of the relation between
the structure and properties [1,8,9]. Although LDPE exhibits a spherulitic supramolecular
structure in the bulk of thick specimens (>200 nm) such as those injected molded, other
morphologies may be obtained by varying the film thickness in confined systems [10–12].
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Because of its semicrystalline nature, the microstructure presents ordered regions of poly-
mer chains known as spherulites, which are conformed of fold back chains or lamellae
growing out from nucleation points, interconnected by disordered polymer chains or
amorphous regions [6]. The ratio of the crystalline to amorphous regions influences the
different physical properties, such as mechanical, thermal, surface, and hardness [13,14].
Consequently, several works have qualitatively related this ratio with the final measured
properties [10,15–22]. Zheng et al. [6] employed X-ray diffraction (XRD) to calculate the
intensities ratio of the amorphous halo to the most intense diffraction peak of LDPE hot-
pressed at different conditions. They found different results when comparing the calculated
ratios against the full-width half-maximum (FWHM) values. Alapati, Meledath, and Kar-
markar [5] employed differential scanning calorimetry (DSC) to determine the melting
temperature (Tm) and crystallinity degree of LDPE filled with alumina nanoparticles. They
observed that Tm remained unchanged while the crystallinity decreased by about 3% in the
filled polymer. Nilsson, Hjertberg, and Smedberg [10] studied the effect of the crosslinking
degree on the size and shape of the supramolecular structure of LDPE. They explained
that crosslinking decreases the size of the spherulite and modifies its shape. Ma et al. [18]
showed that the addition of TiO2 nanoparticles did not affect the overall crystallinity of
LDPE but disordered the lamellar organization. Wang et al. [21] demonstrated by XRD
and DSC that, even though polyethylene terephthalate (PET) may act as a nucleating site
for the crystallization of LDPE, the addition of recycled PET did not affect the crystal
form of LDPE. Picu and Osta [20] determined the elastic modulus by AFM indentation of
isotactic polypropylene (iPP) spun fibers cooled at a high cooling rate (>100 ◦C/min). They
found that the modulus was 52% lower when measured in the axial direction of the fiber
than that measured in the transversal direction. Kalay et al. [23] employed XRD and DSC
techniques to evaluate changes in the crystallinity of HDPE samples. Their results showed
an increment in the intensity of the diffraction peak and a larger enthalpy of fusion in the
shear-controlled oriented samples.

On the other hand, the development of quantitative relations requires the measure-
ment of the spherulite size and the use of statistical tools to relate the size measurements
with the properties. In this sense, the observation of spherulites in thick samples is not
a straightforward task but involves adequate sample preparation, including polishing,
chemical etching, and contrasting with staining agents [24]. The most common observa-
tion methods of spherulites include light microscopy, birefringence studies, amplitude-
modulation atomic force microscopy (AM-AFM), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM) [25–27]. The analysis of variance (ANOVA) is a
statistical tool generally employed to quantify the contribution of the experimental factors
on the response variables and their interactions and calculate the experimental error within
a significance value [8,28–30]. Although several works have used ANOVA in the optimiza-
tion of the processing conditions of LDPE, HDPE, or polypropylene (PP) [23,31–35], only
a few have related the processing conditions with the size of the spherulites [36–39]. For
example, Katti and Schultz [33] reviewed the microstructure of injection-molded semicrys-
talline polymers, including polyethylene. They identified four distinct morphological
zones in cross-section samples that showed differences in the locally measured properties,
such as yield stress. Guo, Isayev, and Demiray [37] carried out a complete study of the
effect of injection molding conditions on the spherulite’s size of iPP, finding that mold
temperature was the variable with the largest effect on the increment of the size of the
spherulites. Almanza et al. [35] found that the size and morphology of the spherulites of
LDPE foams are different from those of thin sheets, and consequently, the macroscopic
properties, such as Young’s modulus. Recently, Leyva-Porras et al. [8] developed an em-
pirical approach derived from the ANOVA and surface response methodology (SRM) to
predict the Young’s modulus of LDPE processed at different mold and barrel temperature
conditions of injection-molded specimens. Among their findings, it was reported that mold
temperature was the main variable affecting the Young’s modulus, and qualitatively, they
discussed the microstructure changes in terms of the degree of crystallinity. Therefore, it is
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still necessary to establish empirical relationships based on phenomenological observations
that can quantitatively associate the microstructure with the macroscopic properties.

In this sense, the present work aims to establish quantitative relationships between the
mold and barrel temperatures for the injection molding process of LDPE specimens. For this
purpose, an experimental design of type 32 was performed, and the obtained specimens
were analyzed. ANOVA and SRM were carried out for each of the characterizations,
including the size of the spherulites and the crystallinity degree. The work contributes
to understanding the way the microstructure of LDPE varies with the injection-molding
processing conditions and its relation to the macroscopic properties, such as crystallinity.

2. Materials and Methods
2.1. Materials

Low-density polyethylene (LDPE) thermoplastic resin (product No. PX-18450 G,
injection grade, PEMEX, Mexico City, Mexico) with a flow index of 45 g/10 min and
density of 0.9185 g/cm3 was employed as raw material for the injection molding of the
specimens. Thermal properties of LDPE presented a melting enthalpy of 42.8 J/g and
a melting temperature of 107.1 ◦C. Pellets were dried overnight at 80 ◦C to remove any
surface moisture.

2.2. Design of Experiments

A factorial design allows determining the effect of a given factor at various levels
on one or more response variables [28]. A full factorial experimental design of type 32

with 10 replicates was used. The two factors tested were the melt temperature and mold
temperature; the three levels for each of the factors were varied as 120, 140, and 160 ◦C for
melt temperature, and 10, 40, and 80 ◦C for mold temperature. The combination of these
factors and the corresponding levels results in a set of nine experiments.

The temperature profile inside the injection barrel consisted of four zones identified
as feeding zone (TF), compression zone (TP), dosing zone (TD), and nozzle zone (TN). The
temperature variation between the zones was 5 ◦C, where TF < TD < TP < TN. The melt tem-
perature reported herein corresponds to the injection nozzle zone. The temperature range
used in this work was selected based on the previously reported results by Leyva-Porras
et al. [8], who observed a greater variation in the results in the lower temperature range.

2.3. Injection Molding of the Specimens

The injection molding of the specimens was carried out in an industrial injection-
molding machine (Negri-Bossi, model V55-200, Milan, Italy). Mold cavities met the sample
dimensions specified in ASTM D 638. For example, the dimensions of the necked specimens
were 25.4 × 2.54 × 0.254 cm (L × W × T). Melt and mold temperatures were varied as
described in the design of experiments section. The injection-molding settings, such as
molding pressure, holding pressure, injection volume, cooling time, among others, were
kept constant during all the experiments; these settings are described in Table 1. For
each experiment, fifteen injection-molding cycles were carried out, removing the first five
samples and storing the last ten.

Table 1. Processing conditions for the injection molding of LDPE specimens.

Processing Condition Value

Barrel rotation speed 120 (RPM)
Back pressure 5 (bar)

Filling pressure 100 (bar)
Cooling time 60 (s)

2.4. Morphological and Microstructural Characterization

XRD was employed for analyzing the overall crystallinity of the molded specimens.
Analyses were carried out in with a Malvern Panalytical Empyrean X-ray diffractometer



Polymers 2021, 13, 3597 4 of 12

(Panalytical B.V., Almelo, The Netherlands) equipped with Cu-kα radiation and θ−2θ
geometry in the range of 15−70 2θ degrees, step size of 0.02◦, and 3 s per step. A complete
specimen was introduced in the diffractometer sample holder, analyzing the central region
of the specimen with an area of approximately 2 × 2 cm. Three zones on each specimen
were analyzed.

For observing the spherulites in the bulk of LDPE molded specimens, several micro-
graphs were acquired using a scanning electron microscope (SEM) Hitachi SU3500 (Tokyo,
Japan) operated at 15 kV, low vacuum conditions (60 Pa), and with a backscattered electron
detector (BSE). Micrographs were acquired at magnifications of 100, 250, 500, and 1000×.
Sample preparation consisted of cutting a section across the width of the molded specimen.
The cut was obtained from the central region of the specimen, and then the section was
embedded in epoxy resin and placed inside a mold. Once the epoxy resin hardened, it was
polished with sandpaper (No. 1000 and 1200) and with alumina powder (particle size of
1 micrometer). The polished surface was chemically etched for 20 min with a solution of
sulfuric acid and 7% potassium permanganate. Then, it was rinsed with distilled water
and stored in a desiccator. To avoid charging effects during the observation in the SEM, a
thin layer of gold was deposited on the prepared samples by a sputtering operated at 40
mA for 40 s.

2.5. Statistical Analysis of Results

An individual two-way analysis of variance (ANOVA) was performed for quantifying
the effect of the experimental variables (melt and mold temperatures) on the different
response variables (spherulites size and crystallinity degree). The surface response method-
ology (SRM) was employed to visualize the influence of the experimental factors and
corresponding levels on the response variables. Equation (1) was employed for establishing
quantitative approaches derived from the SRM results. These response functions relate the
effect of the two independent variables (Xi and Xj) on the specific response variable (Y) as:

Y = b0 + biXi + bjXj + biiXi
2 + bjjXj

2 + bijXiXj (1)

where Y is the predicted response variable, Xi and Xj are the input variables, Xi
2 and Xj

2 are
the square effects, and XiXj is the interaction effect. The bx are regression terms obtained
after fitting the curve: b0 is the offset term, bi and bj are the linear effects, bii and bjj are the
squared effects, and bij is the interaction effect.

3. Results and Discussion
3.1. Spherulite Size Distribution

Figure 1 shows representative micrographs for each of the samples molded at the
defined conditions. Spherulites were observed in different zones of the prepared specimens
(Figure 1A). At low magnification (100×), spherulites were observed as a discontinuous
grain structure, surrounded by continuous regions where the amorphous polymer re-
mained after the etching. At higher magnifications (1000× and 5000×), the spherulites
were observed as hemispherical particles with radially grown lamellae. The empty area
between adjacent spherulites corresponds to the removed amorphous polymer during
etching. Other features observed in the micrographs were: (i) A thin layer of polymer
causing an effect of an under-focused image. (ii) Dissolved spherulites, presented as surface
fragments of the lamella. (iii) Deposited gold, observed as high contrast rods or irregu-
lar shape particles. However, other morphologies, such as band rings and shish kebabs
found in the bulk of gas-assisted injection-molded LDPE specimens, were not observed [3].
The average size of the spherulite was determined by measuring the length of at least
600 spherulites on micrographs acquired at 1000× for each sample (Figure 1B). Figure 2
shows the corresponding histogram for the spherulite size distribution of injection-molded
LDPE specimens. Spherulite size distribution tends to displace toward larger particle size
with melt temperature, while the amplitude of the distribution becomes narrow with the
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increase in the mold temperature. These observations were confirmed by numerically com-
paring the average spherulite size and standard deviation reported in Table 2. The larger
average size was observed for samples prepared at the lower mold temperature (10 ◦C),
and spherulite size decreased with the increment in this temperature. The increase in the
barrel temperature also increased the size of the spherulite. Overall, spherulite size was
relatively smaller (6–11 µm) than those reported in the literature for compression-molded
LDPE (10–14 µm) [10].
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Figure 2. Histogram for the spherulite size distribution of LDPE injection-molded specimens.

Table 2. Summary of the spherulite size and crystallinity measurements of LDPE injection-molded specimens.

Injection Molding Condition
(Melt–Mold)

Spherulite Crystallinity

Average Size (µm) Std. Dev. (µm) Ratio (A/C) X (%)

120–10 7.03 1.80 0.26 31.5
120–40 6.87 2.17 0.26 29.8
120–80 6.64 2.68 0.27 31.5
140–10 11.46 3.53 0.27 33.6
140–40 8.39 2.30 0.26 33.9
140–80 7.76 2.18 0.26 32.2
160–10 10.88 4.32 0.26 33.5
160–40 6.28 2.25 0.26 31.4
160–80 8.35 2.34 0.28 31.7

According to Liparoti et al. [26] for iPP, the microstructural organization typically
found in the thickness of injection-molded specimens is known as skin-core morphology
and comprises four distinct regions, named: (i) Oriented skin layer composed of globular
elements. (ii) Highly oriented non-spherulitic zone or shear layer. (iii) Transitional or
morphology evolving region. (iv) Spherulitic core with small orientation. Each of these
regions differs in morphology and properties, such as elastic modulus. In addition, they
observed that as the mold temperature increases, the cooling rate decreases, providing
enough time for the microstructural arrangement of the core region. According to Kamal
and Chu [40], HDPE containing a nucleating agent developed a grainy microstructure
composed of small spherulites (about 10 µm) that remained unchanged with the tem-
perature conditions in isothermal and non-isothermal crystallization. However, when
HDPE without a nucleating agent was molded, the polymer developed a microstructure
composed of a transcrystalline region and spherulites (about 100 µm) deformed in the
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direction of the heat removal. Another factor influencing the microstructure is the thickness
of the molded specimen. For specimens thicker than 100 nm, spherulites are formed in
the bulk by a surface crystallization process [11]. The samples analyzed herein were cut
from the cross-section perpendicular to the injection flow, and the micrographs shown are
representative of the sample and were acquired from different areas of the sample. As
mentioned above, no other morphologies like those described in [26] were observed in the
samples. This indicated that the supramolecular structure of LDPE of injection-molded
specimens was spherulitic.

Although the spherulites may deform and elongate in the direction of the flow un-
der intermediate levels of deformation [36], the slight deformation observed in some
spherulites was caused by the mechanical deformation exerted during the sample prepara-
tion, i.e., polishing.

3.2. Qualitative Characterization

Figure 3 shows the XRD diffractograms of LDPE injection-molded specimens. The
most distinguishable features are the diffraction peaks corresponding to the different
crystalline planes in LDPE at 2θ of 21.3, 23.6, 29.7, and 36.1◦, and the broad peak located
at 19.3◦ associated with the amorphous segments of polymer. The visual comparison
shows little changes in the main crystalline plane (110) intensity, suggesting the difficulty
of deducing qualitative relations between the experimental conditions and the intensity
values from XRD diffractograms. For example, the ratio of amorphous to crystalline
intensities (Table 2) showed similar values about 0.26 for each experimental condition. In
addition, Zheng et al. [6] reported a value of 0.22 for an LDPE sample rapidly solidified
between a polyethylene terephthalate (PET) film by compression molding and a value of
0.21 when solidification was slower.
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In diffraction, the intensity is related to the number of diffracting planes, while the
integration of the area under the curve is related to the diffracting volume and phase
fraction. Thus, the area under the curve was employed for determining the crystallinity
degree (X). This parameter was calculated by dividing the area of the diffracting peaks by
the total area of the amorphous and crystalline peaks. The calculated values expressed
in percentage (%) are presented in Table 2. The crystallinity degree showed values in
the range of 29.8–33.9%. These values were relatively lower than those calculated from
DSC measurements [8] because the latter are usually obtained by normalizing the melting
enthalpy with a constant value of a fully crystallized sample. Liparoti et al. [41] analyzed
by XRD the heated side of iPP samples molded by asymmetric heating. They found
a crystallinity degree in the range of 55–61% and explained that the differences in the



Polymers 2021, 13, 3597 8 of 12

crystallinity are caused by the orientation index, described as the ratio of the diffraction
peaks. According to them, the orientation of the microstructure decreases with the increase
in the mold temperature because there is more time to relax the molecular stretch. This
suggested that the differences in the intensity of the (110) diffraction peak may be caused
by different orientations rather than by slight variations in the crystallinity.

In isothermal crystallization, increasing the temperature of the mold or the crystal-
lization temperature induces a lower degree of crystallinity in the sample [40,42]. At these
conditions, the nucleation and growth process of crystals, such as spherulites, are slower.
This means that longer crystallization times will be required to reach a certain value of
the degree of crystallinity. On the other hand, in non-isothermal crystallization, a slow
cooling rate promotes a higher degree of crystallinity. However, there is also evidence
showing an opposite behavior—that is, a higher cooling rate induces a higher degree of
crystallinity [21]. Nevertheless, from these two thermal processes, injection molding is
governed by non-isothermal crystallization, where the cooling rate mainly depends on the
logarithmic ratio of the injection nozzle and mold temperatures. The cooling rate increases
with the temperature of the nozzle, while it decreases with the temperature of the mold.
Recent Large-Scale Atomic/Molecular Massively Parallel Simulations (LAMMPS) have
shown that the increase in crystallinity is affected by the release of heat and changes in the
density of the polymer [43]. Likewise, the experimental conditions, such as the temperature
difference between the molten polymer and the mold, the injection pressure, and the high
molecular weight, strongly favor the crystallization of LDPE. In addition, these simulations
showed that the crystallinity degree rapidly increases about 20% during the first microsec-
ond of quenching. The results presented herein suggest that the crystallinity of the LDPE
was relatively stable over the range of selected molding temperatures, reaching similar
values in the first seconds of the solidification within the mold.

3.3. Quantitative Analysis by ANOVA and SRM

ANOVA is used to determine the quality of the data, i.e., if the means of the different
groups are significantly similar or not, and to quantify the contribution of each of the
factors [30]. The F-test is employed for comparing the experimental factors. If the F-value
is equal to or lower than 1 (F < 1), the effect of the factor is null. While if F > 1, the factor
influences the response variable. In order to test the quality of the data, the probability
(p-value) must be lower than the significance level (0.05).

The calculated ANOVA for the spherulite size and the crystallinity percentage are
reported in Table 3. Slight differences were observed between the ANOVA for the two
response variables. For the spherulite size, both factors (melt and mold temperatures) were
significant on the response variable. However, the effect of the mold temperature was
about 1.32 times higher than the melt temperature. The individual factors, melt and mold
temperatures, were 2.4 and 3.2 times higher than the interaction factor, respectively.

Table 3. ANOVA results determined for the spherulite size and crystallinity degree of LDPE injected-molded specimens.

Spherulite Size Crystallinity

Source DF a SS b MS c F P d DF a SS b MS c F P d

Melt 2 5126.83 2563.41 351.23 0 2 4.89 × 10−4 2.41−4 21.22 3.91−4

Mold 2 6798.29 3399.14 465.74 0 2 0.00167 8.32−4 73.04 2.73−6

Interaction 4 4203.62 1050.9 143.99 0 4 7.54−4 1.88−4 16.53 3.53−4

Model 8 16,128.75 2016.09 276.24 0 8 0.0029 3.62−4 31.83 1.02−5

Error 4923 35,929.47 7.29 9 1.02−4 1.14−5

Total 4931 52,058.23 17 0.00301
a Degrees of freedom. b Sum of squares. c Mean squares. d Calculated at a significance level of 0.05.
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The calculated ANOVA for the crystallinity of the injected-molded specimens showed
that the effects of the two factors and their interaction were significant (p-value). However,
the quantification of the effect (F-value) was relatively smaller. For example, the effect of
the mold temperature was 3.4 times higher than the melt temperature. Conversely, the
individual factors, melt and mold temperatures, were 1.3 and 4.4 times higher than the
interaction factor, respectively.

Figure 4 shows the response surface plots (SRP) for the spherulite size and crystallinity.
The behavior of the spherulite size was close to what was expected, i.e., the largest sizes
were obtained at the hottest molding conditions (melt 160 ◦C and mold 80 ◦C). Under these
conditions, the molten polymer chains have enough time to arrange in a more orderly way,
allowing the lamellae to grow, being observed as larger spherulites. On the other hand, at
the coldest molding conditions (melt at 120 ◦C and mold at 10 ◦C), solidification is carried
out more rapidly, providing less time for the nucleation and growth of the spherulites. The
color fringes of the SRP indicated an almost linear behavior of the size of the spherulite
with the mold conditions, where the increase in the temperature of the mold influenced the
increase in the size. For example, for a spherulite size of 10 µm (yellow fringe), the size
hardly varies over the range of melt temperatures.
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Derived from the non-linear surface fit, the predicting model for the spherulite size is
presented in Equation (2):

S = 81.91 + 0.2428X − 1.08022Y − 0.00137X2 + 0.00377Y2 − 6.83 × 10−4XY (2)

where S is the predicted spherulite size, X is the mold temperature, and Y is the melt
temperature. The coefficient of determination (R2) from the SRP fit was 0.789. As observed
from the equation, the mold temperature presented a low positive contribution (0.2428),
while the contribution of the melt temperature was negative (−1.108022). The contribution
of the square factors was in the same order of magnitude but with contrary signs, i.e.,
negative for the mold and positive for the melt. The contribution of the interaction of the
two factors (XY) was negative.

The shape of the SRP for the crystallinity was different from that of spherulite size.
The highest crystallinity values (orange to dark red fringes) were obtained at intermediate
molding conditions, i.e., low melt temperatures (120 ◦C) and high mold temperatures
(>40 ◦C). In contrast, the lowest crystallinity values (green to yellow fringes) were obtained
in two opposite areas of the surface: (i) At low mold temperatures over all the range of
melt temperatures; (ii) At high mold temperatures (80 ◦C) and intermediate and high
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melt temperatures (>140 ◦C). The predicting model for the crystallinity is presented in
Equation (3):

C = 59.97 + 0.2412X − 0.4424Y − 0.00149X2 + 0.00158Y2 − 6.29 × 10−4XY (3)

where C is the predicted crystallinity (%), X is the mold temperature, and Y is the melt
temperature. The coefficient of determination (R2) from the SRP fit was 0.451. The contribu-
tion of the mold temperature was positive (0.2412), while that of the melt temperature was
negative (−0.4424). The square factors were in the same order of magnitude but differed
in the sign, negative for the mold temperature and positive for the melt temperature. The
contribution of the two factors was negative. It is worth mentioning that the SRPs and the
derived predicting models are only valid in the molding conditions employed in this work,
i.e., 120–160 ◦C for the melt temperature and 10–80 ◦C for the mold temperature.

In order to understand the differences in the shape of the two response surfaces, it
is necessary to explain the way the characterizations were performed. Although both
characterizations involve the analysis of injection-molded specimens, the measurement of
the size of the spherulites was carried out in the cross-section of the sample by devastating
during the polishing a few hundred micrometers from the surface and removing with
the acid solution the amorphous phase by etching. On the other hand, the X-ray analysis
was carried out on one of the sides of the specimen. In this case, the penetration of the
X-ray beam is in the order of tens of micrometers, and its path through the sample volume
involves the interaction with both crystalline and amorphous phases. Additionally, the
ANOVA was calculated with a set of 548 data per experimental condition, while the XRD
calculation involved two measurements per sample. Evidently, these facts may give rise to
different behaviors in both the ANOVA and the RSP.

Based on the melting enthalpy of LDPE, Leyva-Porras et al. [8] observed an increase
in the degree of crystallinity with the mold temperature and a decrease with the melt
temperature. They qualitatively explained that in injection-molded samples, the increase
in crystallinity was caused by the increase in the number of nuclei sites that subsequently
grew as spherulites. According to Hall, Percec, and Klein [43], the high pressure exerted
during the injection-molding process acts as a large driving force to induce long-chain
crystallization (nucleation). In the present work, it was quantitatively demonstrated that the
interaction of the two processing variables (melt and mold temperatures) largely influenced
the development of the microstructure in LDPE processed at high shear rates. Clearly, the
processing condition exerted herein promoted the nucleation and growth of crystalline
moieties, observed as the variations in the spherulite size and changes in the crystallinity.

4. Conclusions

The effect of the processing conditions of injection-molded LDPE specimens on the
microstructure and crystallinity was studied. The variations in the melt and mold tempera-
tures induced an average spherulite size of 6–11 µm, while the degree of crystallinity was
29.9–33.9%. These results suggested the relatively high stability of the LDPE to modify
its microstructure over the range of exerted molding temperatures. A two-way ANOVA
was employed to quantify the effect of the molding conditions. The factor with the major
effect on the spherulite size and crystallinity was the mold temperature, with less effect
the melt temperature, while the interaction of the ywo variables presented the lowest
effect. SRPs were constructed employing a second-order model that was easy to relate
to the physical phenomenon. The spherulite size increased at high mold temperatures
and remained almost invariable in all the range of melt temperatures. The behavior of
the crystallinity presented higher values at intermediate molding conditions and lower
values at two processing conditions. A predicting model was derived from each data set.
In both models, the mold temperature presented a positive effect; the melt temperature
presented a negative effect, while the interaction of the two factors was also negative but
numerically significant. The results presented herein are valuable for setting empirical
relations between the microstructure, crystallinity, and the molding conditions of LDPE.
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