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Abstract: Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and
employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan
matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The
synthesized hybrid films were characterized using various analytical techniques, such as X-ray
photo-electron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic
force microscopy (AFM). The hybrid films display excellent catalytic activities in Michael and
Knoevenagel reactions via one pot or solvent-free approaches under microwave irradiation conditions.
Chitosan/magnesia hybrid films, catalysed pyrimidine, benzochromene, coumarin and arylidene-
malononitriles derivatives formation reactions occurred with highly efficient yields of 97%, 92%, 86%
and 95% respectively. Due to the fact that the films are durable and insoluble in common organic
solvents, they were easily separated and can be recycled up to five times without a considerable loss
of their catalytic activity.

Keywords: chitosan; magnesia; heterogeneous catalyst; nanocomposites; Michael additions; Knoeve-
nagel reactions

1. Introduction

Over the past several decades, increasing attention has been directed toward the devel-
opment of cleaner/greener synthetic methods, including processes that produce maximum
yields of products, have minimum costs, avoid the use of toxic reagents and solvents, and
proceed by synthetic routes that avoid the need for isolation of intermediates [1–4]. In this
context, heterogeneous catalysts have advantages over their homogeneous counterparts
because they can be easily isolated from reaction mixtures using simple filtration and can
then be reused. As a result, reactions promoted by heterogeneous catalysts are economical
and eco-friendly [5–7]. Magnesium oxide, a heterogeneous basic catalyst, has been recently
used to promote several base-catalyzed organic transformations and is also an additive
in refractory, paint and superconductor products [8–11]. As one of the most abundant
natural biopolymers, chitosan (CS) possesses excellent properties, such as biocompatibility,
biodegradability, non-toxicity, and insolubility in most solvents. Consequently, it has been
used on its own or as part of films or fibers in several applications [12–14]. Chitosan
has garnered significant interest, owing to the essential role it plays in transition metal
catalyzed reactions [15]. For example, chitosan-supported metal complexes are used as
catalysts for Suzuki cross-coupling (CS-supported Pb) [16], Henry (Cs-supported Ti cata-
lyst) [17] and hydroformylation (CS-supported Rh catalyst) reactions [18]. Additionally, the
biopolymeric nanocomposite (CS-Pr-Me-Cu(II)-Fe3O4) was investigated as a heterogenous
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catalyst for the oxidation of benzyl alcohols/Knoevenagel condensation [19]. Recently,
we uncovered an efficient protocol for catalyzing Michael addition reactions that rely on
the use of modified and non-modified chitosan as heterogeneous recyclable catalysts [4,5].
However, the major drawback of employing chitosan as a homogeneous catalyst is related
to its propensity to form gels, which makes its separation and recovery difficult. The
widespread use of heterocyclic compounds in agricultural, pharmaceutical, analytical,
and medicinal chemistry areas has encouraged efforts aimed at the development of new
methods to synthesize members of this wide family [20]. Molecules containing pyrimidine,
coumarin, and benzopyran are highly important classes of N- and O-heterocycles that are
widely used as valuable precursors for pharmaceutical agents [21,22]. Over the preceding
decades, a considerable increase in devising microwave assisted organic processes has
been apparent, due to their economic and green advantages [23].

In continuing efforts focused on the design of novel methods to prepare nanocom-
posites, which can be employed as heterogeneous catalyst, we have turned our attention
to one pot or solvent-free approaches. Herein, we developed a method for the synthe-
sis of pyrimidine, coumarin and chromene derivatives that rely on the use of CS-MgO
nanocomposite films as heterogeneous catalysts for reactions carried out under microwave
irradiation conditions. The CS-MgO hybrid nanocomposite films were prepared by incor-
porating magnesium ethoxide in the chitosan polymer matrix through use of the sol-gel
process [24,25]. The morphology and size of the magnesia particles in the polymer matrix
were determined using scanning electron microscopy. Studies of the utilization of the hy-
brid films as heterogeneous catalysts revealed that they serve as an eco-friendly recyclable
catalyst and promote highly efficient Michael and Knoevenagel reactions.

2. Materials and Methods
2.1. Materials

Medium molecular weight grade chitosan (deacetylated 90%, M = ca. 35.000), mag-
nesium ethoxide (purity 98%) and nano-magnesium oxide powder (<50 nm particle size)
were purchased from Aldrich (Sigma-Aldrich, St. Louis, MO, USA ). All other chemicals
were of analytical grade and used without further purification. All products were char-
acterized using FTIR (Varian 610-IR microscope system, Santa Clara, CA, USA), and 1H-
and 13C-NMR.

2.2. Preparation of the Nanocomposite Films

A solution of chitosan polymer (2 wt.%) was prepared by dissolving it in a 2% acetic
acid aqueous solution. The prepared solution was permitted to stir for 48 h at room
temperature to obtain homogeneous solution. A certain amount of this solution and a
stochiometric amount of magnesium ethoxide were added to a 50 mL bottle (Scheme 1).
The mixture was permitted to stir for 1 h at room temperature. A mixture of water and
ethanol with volume ratio (1:1.5) was added to the solution and then the mixture was
stirred for 18 h at room temperature to complete the sol-gel process. This solution was then
casted in Teflon petri dishes and dried at 50 ◦C for 17 h. The films were then further dried
under vacuum conditions for 48 h at 50 ◦C.

2.3. Characterization of the Chitosan-Mgo Hybrid Films

Field emission scanning electron microscopy (FESEM) (PhotoMetrics, Inc., Huntington
Beach, CA, USA) was conducted to obtain insights into the shape and size of the prepared
films using a (JEOL JSM-7001F). X-ray photoelectron spectroscopy (XPS) (Axis Ultra DLD
Spectrometer, Kratos, Manchester, UK) was conducted to investigate the surface elemental
composition of the hybrid films using a Thermo ESCALAB 250 Xi (Thermo Fisher Scientific,
Waltham, MA, USA), using monochromatic Al Kα radiation (1486.6 eV) and a pass energy
of 20 eV. The XPS deconvoluted spectra were conducted using Thermo Avantage software
version v5.956 (Thermo Fisher Scientific) with Gauss-Lorentz maximum iterations of 100, a
convergence of 0.0001 and a Powell fitting algorithm. All the binding energy values (BE/eV)
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were corrected with regard to the adventitious Carbon (C–H/C–C) for C1s at 284.6 eV. The
surface topography was studied using a Nanoscope-IV multimode atomic force microscope
(AFM) (Nanoscience Instruments, Inc., Phoenix, AZ, USA). A scan area of 5 µm was
measured. The background was removed from the images using Nanoscope software. A
thermogravimetry (TGA) (Mettler Toledo, Columbus, OH, USA) was performed with a
10 mg sample from ambient for up to 800◦C at a heating rate of 10◦C/min in air using a
DTGA-60 Shimadzu (Shimadzu, Kyoto, Japan) automatic analyzer.
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2.4. General Procedure for Synthesis of Pyrimidine Derivatives

A mixture of aldehyde (10 mmol), guanidine hydrochloride (0.95 g, 10 mmol), mal-
ononitrile or ethyl cyanoacetate (10 mmol) and CS-MgO nanocomposite films (5 and
10% MgO content) was dispersed in 10 mL of the selected solvent (See tables). The sus-
pension was heated using microwave irradiation (100 W) for the appropriate amount
of time (monitored by TLC (Silver Spring, Maryland) using 1:1 n-hexane/ethyl acetate
as eluent). After completion, the film was removed from the hot mixture and was then
washed thoroughly with hot methanol, using the simple Soxhlet method. The remaining
mixture was then concentrated and poured into an ice/water mixture. The crude solid
that formed was separated through filtration and then crystallized using hot ethanol. The
previous method was repeated under the same employed conditions but in the presence of
a catalytic amount of MgO nanoparticles (5 wt.%) in order to compare the potency of our
nanocomposite to that of the MgO nanoparticles.

2.5. General Procedure for Synthesis of Benzochromene Derivatives

A mixture of the aldehyde (10 mmol), 1-naphthol (1.44 g, 10 mmol), malononitrile
(0.66 g, 10 mmol) and CS-MgO nanocomposite films (5 and 10% MgO content) was dis-
persed in 10 mL of the selected solvent. The mixture was heated using microwave ir-
radiation (100 W) for the appropriate amount of time (monitored by TLC using 1:1 n-
hexane/ethyl acetate as eluent). After the completion of the reaction, the film was removed,
and the crude solid product was separated through filtration and crystallized from ethanol.
Similarly, the previous method was repeated under the same employed conditions with
the presence of MgO nanoparticles (5 wt.%) for comparison.

2.6. General Procedure for Synthesis of Coumarin Derivatives

A mixture of salicylaldehyde (1.22 g, 10 mmol), the active methylene compounds
(10 mmol), and the CS-MgO nanocomposite film (5 and 10% MgO content) were mixed in
10 mL of the appropriate solvent. The mixture was heated using microwave irradiation
(100 W) for the appropriate amount of time (monitored by TLC using 1:1 n-hexane/ethyl
acetate as eluent). After the completion of the reaction, the film was removed, and the
filtrate was concentrated. The residue was added to ice/water, producing a precipitate
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that was separated through filtration and crystallized from ethanol. This method was also
repeated under the same employed conditions with the presence of MgO nanoparticles
(5 wt.%) for comparison.

2.7. General Procedure for Synthesis of Heterocyclic Arylidene-Malononitriles

A mixture of furfural, thiophene-2-carboxaldehyde or pyridine-4-carboxaldehyde
(10 mmol), malononitrile (0.66 g, 10 mmol) and CS-MgO nanocomposite films (5 and
10% MgO content) was heated using microwave irradiation (100 W) for 1 min. After the
completion of the reaction, the film was removed through simple filtration. The crude solid
product was separated by adding hot methanol followed by filtration and then crystallized
from ethanol. The procedure was repeated under the same conditions but in the presence
of MgO nanoparticles (5 wt.%) for comparison.

3. Results and Discussion
3.1. Characterization of Chitosan-Mgo Nanocomposite Films
3.1.1. Microscopic Analysis

FESEM was used to assess the morphology and size distribution of the MgO nanopar-
ticles in the polymer matrix. FESEM micrographs of pure chitosan (Figure 1A) and hybrid
films containing magnesia particles of 5 wt.% (Figure 1B) and 10 wt.% are shown in
Figure 1C. An inspection of the micrographs reveals that the surface of the pure chitosan
is homogenous, continuous, and smooth. The MgO nanoparticles in the chitosan-MgO
nanocomposite are visible in the form of clouds distributed in the polymer matrix. The
nanoparticles appear as dense phases that resemble white spherical beads with somewhat
dispersed surfaces. The blurred surfaces are a consequence of adsorption of the polymer
layers on the particles surface. The images show that the inorganic phase is well dispersed
in the chitosan matrix. The average size of the MgO nanoparticles in the 5 wt.% loading is
approximately ~14 nm while it is ~11 nm for 10 wt.% loading which is comparable with
the crystallite size of 10.7 nm calculated from XRD pattern (not shown).
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Furthermore, AFM was used to study the surface topology of the MgO/chitosan
nanocomposite composite films and to assess the roughness and uniformity of dispersions
of MgO in the polymer matrix. An inspection of the three-dimensional AFM images
displayed in Figure 1 shows that the pure chitosan film has a smooth and flat textured
surface indicating the absence of observable agglomerates (Figure 1A). In Figure 1B,C AFM
images are shown from 5 wt.% and 10 wt.% of magnesia composite films, respectively.
The surfaces of the hybrids have globular rough morphologies with some needles lying
on the surface, most of which are oriented perpendicular to the surface. This observation
indicates that the MgO nanoparticles are uniformly distributed in the chitosan matrix. As
the magnesia content increases, the interactions of MgO with the polymer increases and
the particles become well distributed and completely cover the polymer. The image of the
hybrid is blurred because the densely distributed particles are engulfed by the polymer
chains (Figure 1C).

3.1.2. XPS Analysis

X-ray photoelectron spectroscopy (XPS) was utilized to investigate the surface elemen-
tal composition of the CS-MgO hybrid films. The binding energies of the elements in the
chitosan/magnesia hybrid film, obtained from an analysis of the resolved XPS spectrum,
for C1s (A), and O1s (B), N1s (C) and Mg1s (D) are provided in Figure 2. The peaks in the
spectrum for C1s correspond to C–C/C–H (284.6 eV), C–O (286.2) and C = O (288.0 eV), the
latter being attributed to acetyl groups on the chitosan backbone [26]. The results show that
carbon, oxygen, nitrogen, and magnesium are present in the hybrid film. Two peaks exist
in the O1s spectrum, and the peak at 531.5 eV is attributed to N–C–O chemical binding in
N-acetylated-glucosamine units and the other peak, at 532.7 eV, is assigned to C–O, O–H
or bound water [27,28]. The N1s XPs spectrum of the chitosan/magnesia nanocomposite
film contains a peak at 399.1 eV that is attributed to the NH2 or NH groups and another
at 400.0 eV is associated with the amine groups in the ammonium form (NH3

+) [29]. The
N peaks in the hybrid appear at lower binding energies compared to those of the pris-
tine chitosan (399.1 and 400.0) [30], which indicates that the amine groups interact with
MgO nanoparticles. The binding energy of Mg1s at 1304.5 eV is attributed to the Mg2+ in
MgO nanoparticles [31].

3.1.3. Thermogravimetric Analysis

A thermal analysis was performed to assess the material‖s stability as a function of
temperature to gain an understanding of their degradation behavior. The thermogravi-
metric analysis was performed using the sample under air in the temperature range of
30–800 ◦C. Figure 3 presents the weight loss versus temperature profile of pure chitosan
(A) and of the hybrid materials with 5 wt.% (B) and 10 wt.% (C) of magnesia. The initial
weight reduction, occurring prior 150◦C, is a consequence of moisture loss. This is fol-
lowed by a degradation with a loss of the carboxylic and hydroxyl groups in the chitosan
between 170–450 ◦C. The thermal decomposition temperatures of the hybrid materials are
around 480 ◦C. The results show that the hybrid films are more thermally stable than the
pure polymer because of the presence of magnesium oxide. Moreover, the stability of the
hybrid increases as the content of MgO increases. The mass of the remaining residue after
treatment at 800 ◦C corresponds to the magnesium oxide content of the hybrids, indicating
that the sol-gel reaction was successful.
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3.2. Application of the CS-Mgo Nanocomposite Films As Heterogeneous Basic Catalyst

The reactions of aromatic aldehydes with guanidine hydrochloride and malonon-
itrile, which are promoted by basic catalysts, have been found to produce pyrimidine-
5-carbonitriles 1. To investigate the catalytic activity of CS-MgO films and to optimize
the reaction conditions, a preliminary study was conducted to probe the synthesis of
pyrimidine derivatives through condensation reactions between benzaldehyde, guanidine
hydrochloride and malononitrile in dry acetonitrile, which was promoted using different
MgO loadings of the CS-MgO film catalyst (0, 5, 10, 20 and 30 wt.%). The results of this
exploratory investigation demonstrate that a catalyst loading of 10 wt.% is optimal and
that the process proceeds efficiently when using microwave irradiation (100 W) at 60 ◦C
for 2 min (Figure 4). Moreover, we found that the used catalyst can be recovered; the used
catalyst was thereafter subjected to an extensive washing process with hot ethanol via
Soxhlet extraction for 1 h and reused four times without a significant loss of its catalytic
activity (Figure 5).
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uent components. Thus, in a study evaluating other catalysts for this one pot reaction, 
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In contrast to earlier observations [32,33], we found that the reaction promoted by
10 wt.% of CS-MgO film produced 2,4-diaminopyrimidine-5-carbonitriles 1 in an excellent
yield (97%) (Scheme 2). The preliminary experiments confirmed that dry acetonitrile is
the ideal solvent for the reaction. Due to the fact that the separation and contamination
of products with MgO nanoparticles presents a considerable challenge, the investigated
catalytic reactions were repeated under the same employed conditions in the presence of
a catalytic amount of MgO nanoparticles (5 wt.%) for comparison. The results revealed
that a synergistic action occurs for the combination of chitosan and MgO nanoparticles
confirming that the hybrid materials work as more of a base catalyst compared to its
constituent components. Thus, in a study evaluating other catalysts for this one pot
reaction, stirring the mixtures of the reactants in the presence of chitosan CS powder,
nano-sized MgO powder or CS-MgO film at reflux can lead to the formation of 1 in the
following order of yields CS-MgO > MgO > CS.
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A variety of substrate solvents of different polarity were employed to investigate the
scope of the CS-MgO catalyzed one pot reaction in generating 2,4-diaminopyrimidine-5-
carbonitriles (Table 1). The overall results of the investigation described above revealed that
CS-MgO serves as an efficient basic catalyst for classical one-pot Knoevenagel reactions. In
order to investigate the catalytic activity of the CS-MgO catalyst in the one pot synthesis
of 2,6-diaminopyrimidine-5-carbonitriles and to optimize the reaction conditions, a study
was conducted using different substrates, various solvents of different polarity, and under
solvent free conditions (Table 1).

A similar process involving benzaldehyde, guanidine hydrochloride and ethyl cyanoac-
etate and the CS-MgO nano-catalyst (in comparison to the MgO nanoparticles) was ob-
served, producing 6-oxo-pyrimidine-5-carbonitrile derivatives in relatively high yields
(Scheme 3). The products of these reactions were shown to have keto structures by using
NMR spectroscopy (Performed in NMR-600 Bruker) and mass spectrometry (Performed
in GCms-DFS-Thermo). Although it is in disagreement with an earlier proposal [34] we
found that the hydroxypyrimidine products do not exist in a solution in their enol forms.
This conclusion is consistent with the observation of characteristic signals at 11.8 ppm
in the 1H NMR spectra, which evidences the presence of lactam NH groups. Finally, a
brief study was conducted to compare the catalytic activity of CS-MgO to that of MgO
(Table 2). Further, the results revealed a higher catalytic effect for the hybrid nanocomposite
compared with the use of MgO nanoparticles alone.
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Table 1. Data comparing catalysts and solvent for one pot reaction forming diaminopyrimidine-5-carbonitriles (Scheme 2).

No. Product 1 Ar Solvent m.p. (◦C) MgO
%Yield

CS-MgO
%Yield

1 1a C6H5– EtOH/H2O 234–23 [31] 70 80
2 1a C6H5– MeOH 78 85
3 1a C6H5– MeCN - 92
4 1a C6H5– Solvent free - 68
5 1b 4-Cl–C6H4– EtOH/H2O 233 [31] 65 70
6 1b 4-Cl–C6H4– MeOH 72 75
7 1b 4-Cl–C6H4– MeCN - 97
8 1b 4-Cl–C6H4– Solvent free - 78
9 1c 4-MeO–C6H4– EtOH/H2O 238 [32] 72 80
10 1c 4-MeO–C6H4– MeOH 85 90
11 1c 4-MeO–C6H4– MeCN - 90
12 1c 4-MeO–C6H4– Solvent free - 85

Table 2. Data comparing the catalysts and solvents for one pot reaction forming 6-oxopyrimidine-5-carbonitriles (Scheme 3).

No. Product 2 Ar Solvent m.p. (◦C) MgO
%Yield

CS-MgO
%Yield

1 2a C6H5– EtOH/H2O 242–243 70 74
2 2a C6H5– MeOH 74 81
3 2a C6H5– MeCN - 78
4 2a C6H5– Solvent free - 69
5 2b 4-Cl–C6H4– EtOH/H2O 248–250 [35] 60 62
6 2b 4-Cl–C6H4– MeOH 66 68
7 2b 4-Cl–C6H4– MeCN - 69
8 2b 4-Cl–C6H4– Solvent free - 57
9 2c 4-NO2–C6H4– EtOH/H2O 223–224 [34] 74 75
10 2c 4-NO2–C6H4– MeOH 80 84
11 2c 4- NO2–C6H4– MeCN - 85
12 2c 4-NO2–C6H4– Solvent free - 75
13 2d 4-NC–C6H4– EtOH/H2O 357–358 69 69
14 2d 4-NC–C6H4– MeOH 78 82
15 2d 4-NC–C6H4– MeCN - 86
16 2d 4-NC–C6H4– Solvent free - 77
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A plausible mechanism for the 2,4-diaminopyrimidine-5-carbonitrile forming reaction
follows involves the initial generation of arylidene-malononitrile via deprotonation of
malononitrile by the CS-MgO catalyst (in comparison to the MgO nanoparticles) and the
addition of the enolate to the aldehyde. The arylidene-malononitrile produced in this
manner undergoes a Michael addition with guanidine, which is generated from the salt
precursor by proton transfer to the basic catalyst. The process ends by a route proceeding
through the intermediate A or B and the generate 1a (Scheme 4).
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The scope and limitations of the one-pot multicomponent reactions, promoted by
the CS-MgO nano-sized catalyst (also in comparison with the MgO nanoparticles), were
explored for this purpose and the multicomponent reactions of malononitrile, aromatic
aldehydes, and α-naphthol were conducted using the conditions presented in Scheme 5
and Table 3. As the data in Table 3 presents, these reactions produce pyrimidone-5-
carbonitriles. Again, the results presented the higher catalytic potency of the CS-MgO
hybrid nanocomposite to be an excellent promoter for the investigated reactions.
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Table 3. Data comparing catalysts and solvents for one pot reactions forming f 2-amino-4-aryl-4H-benzo[h]chromene-3-
carbonitrile (Scheme 5).

No. Product 3 Ar Solvent m.p. (◦C)
obs. Lit.

MgO
%Yield

CS-MgO
%Yield

1 3a C6H5– EtOH 218 218–219 [36] 70 75
2 3a C6H5– EtOH/H2O 75 78
3 3a C6H5– Solvent free - 71
4 3b 4-Cl–C6H4– EtOH 231–232 232–233 [36] 78 84
5 3b 4-Cl–C6H4– EtOH/H2O 88 92
6 3b 4-Cl–C6H4– Solvent free - 78
7 3c 4-NO2–C6H4– EtOH 184 184–185 [37] 70 74
8 3c 4-NO2–C6H4– EtOH/H2O 76 78
9 3c 4-NO2–C6H4– Solvent free - 67

Interestingly, the reaction of aromatic aldehydes, containing electron-donating sub-
stituents, occurs in relatively higher yields than those with electron-withdrawing groups. An
attempt was made to utilize the CS-MgO nano-catalyst to promote arylidene-malononitrile
forming reactions of pyridine-2-carboxaldehyde, furfural and thiophene-2-carboxaldehyde
(Scheme 6). These reactions, conducted using malononitrile in the presence of the opti-
mized amount (10 wt.%) of the catalyst using microwave irradiation (100 W) at 60 ◦C
for 1 min, generated the corresponding products in higher yields (85%, 92% and 98%,
respectively) than those previously reported by Bobal et al. [38] using piperidine as the
base (53%, 72%, and 78% respectively). Again, it is worthwhile to mention that CS-MgO
can be easily recovered from the reaction mixture and recycled up to four times without
a significant loss of its catalytic activity. Also, the stability of the recovered catalyst was
confirmed by comparing its IR spectra before and after the catalytic reaction.
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4. Conclusions 
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4. Conclusions

Chitosan-MgO hybrid films were prepared using the sol-gel process. The results
of this investigation demonstrate that a CS-Mg hybrid film was an efficient candidate
as a basic, recyclable, and environmentally friendly heterogeneous catalyst for Michael
addition reactions. Furthermore, preliminary studies suggested that CS-MgO (10 wt.%)
nanocomposite films can be used as an efficient catalyst for Michael additions compared
with bare chitosan and MgO nanoparticles. Moreover, the CS-MgO heterogeneous catalyst
film can be easily recovered from the reaction mixture and can be recycled up to four times
without a considerable loss of its catalytic activity. Thus, this new basic catalyst can be
used as a potential alternative to other more toxic organic catalysts for Michael addition
reactions such as piperidine and pyridine. In addition, the hybrid nanocomposite film
presented a higher thermal stability than chitosan and, therefore, can be effectively utilized
for high-temperature reactions.
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