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Abstract: In recent decades, the fabrication of composite membranes using nanoparticles has played a
vital role in membrane distillation (MD) technique. It could make available membranes with superior
characteristics as excellent candidates for MD technique. The most well-known obstacles regarding
the MD method are the low productivity and high cost. Thus, fabricating membranes with superior
properties is a significant challenge. In the current study, a composite membrane has been fabricated
using 0.25, 0.5, and 0.75 weight percent (wt.%) of graphene nanoparticles (GNPs) with polystyrene
(PS) as a base polymer and characterized using SEM, FTIR, and contact angle. The characterization
results prove the successful fabrication using electrospinning and the validity of the fabricated
membranes to be applied to direct contact membrane distillation (DCMD). In addition, a DCMD
experimental setup has been designed to examine the performance of the fabricated membranes and
compare the performance of blank PS with composite PS/GNPs membranes. The results show that
all fabricated membranes produced an approximately similar average flux of about 10 kg/m2 h, while
the highest GNPs wt.% showed the highest salt rejection. Accordingly, this composite membrane has
been examined at different operating parameters and showed stable performance. Moreover, feed
temperature and the rate of flow have a positive impact on the overall performance of the DCMD.

Keywords: membrane distillation; ftir; graphene nanoplates; membrane fabrication; electrospinning

1. Introduction

Composite membranes are now playing a vital role in the area of water purification.
The stand-out feature of these kinds of membranes is the possibility of changing the fillers,
which may be metal-organic frameworks (MOFs), or just controlling the weight percent of
a certain MOF to obtain a different enhanced property. Furthermore, it could reduce the
fabrication cost compared to available commercial membranes [1]. One of the most critical
applications is the membrane distillation (MD) technique, which acts on a thermal basis,
and shows good performance and excellent rejection rate [2]. The operating mechanism
of MD depends on the vapor transfer across the utilized hydrophobic membrane due to
the difference in vapor pressure across the membrane surfaces, which is a consequence
of the temperature difference on both sides of the membrane [3–5]. There are four major
types of MD: (1) direct contact membrane distillation (DCMD), (2) membrane distillation
with air gap (AGMD), (3) membrane distillation using sweeping gas (SGMD), and (4) a
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vacuum based membrane distillation (VMD) [6–8]. Figure 1 shows a schematic diagram
that illustrates the mechanism of the four mentioned types. In DCMD, the hot and cold
water flow across the membrane surfaces provides a vapor pressure difference that forces
the vapor to be transferred through the membrane pores to be condensed in the permeate
channel. In AGMD, an additional air gap is supplied to reduce the heat transfer and
then improves the system thermal efficiency. Furthermore, in VMD, a vacuum is applied
behind the membrane which allows more vapor to be transferred and increase the system
productivity. Finally, in SGMD, an inert gas is used to remove the vapor and then flow
through a condenser to obtain the pure water. Among the four types, DCMD is the most
stable and provides a satisfactory performance, due to its simple construction and reduced
accessories [9]. It is composed of two channels, one for the salt hot water flow, the second
for the cold pure water flow and the in-between hydrophobic porous membrane [10]. There
are two configurations based on flow direction: (1) parallel flow and (2) counterflow [11,12].
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Various polymers are available for membrane fabrication, especially polystyrene (PS),
which has proven to be economical and has superior characteristics regarding spinnability,
and produces a hydrophobic membrane with suitable porosity for the MD process [13].
Electrospinning is a technique used for providing fibers with nano-sized diameters with
excellent porosity, so it is an ideal candidate for MD membrane fabrication [14,15]. The
morphology and characteristics of the electrospun fabricated membranes depend on the
polymer solution conditions, the surrounding atmosphere, and the setting of the electro-
spinning machine [16–18].

One of the most recent fillers added to the polymers-based solution to fabricate
a composite membrane with superior characteristics are MOFs, which are suitable for
MD [19]. GNPs have also attracted the attention of researchers recently for its hydrophobic
character, thermal and mechanical stability, and ion selectivity. Hence adding GNPs to MD
membranes was found to boost some membrane characteristics, such as antifouling and
increasing the tortuosity of the fabricated membranes for water pathways [20,21]. In the
last decade, much research has been conducted on fabricating novel membranes suitable for
water purification. An electrospun fabricated polyvinylidene fluoride (PVDF) membrane
has been fabricated successfully with superior properties [22]. The authors concluded that
the fabricated PVDF membrane has a mostly steady and stable operation on DCMD for
15 h of continuous operation. They also found that the system productivity of pure water
when applying the fabricated PVDF membrane on the DCMD system was 21 kg/m2 h,
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at operating conditions of 20 ◦C, 50 ◦C, and 35,000 ppm for cold water temperature, hot
saltwater temperature, and feed salinity, respectively. Another approach introduced a
different PVDF membrane fabrication using a facile bottom-up method with a predicted
pure water production of 41.4 kg/m2 h when operating at cold and hot side temperatures
of 20 ◦C and 70 ◦C, respectively [23]. The authors also concluded that the low cost of the
proposed technique allowed it to be a superior candidate for large-scale production.

A numerical simulation was introduced to compare the performance of a fabricated
blank PS membrane with a fabricated multiwalled carbon nanotubes composite (MWCNTs)
on DCMD [24]. They used the electrospinning technique for the membrane fabrication,
proved the successful fabrication via SEM characterization, and showed that the fabri-
cated membrane has a hydrophobic nature by measuring the surface contact angle. The
authors found that the composite membrane outperforms the blank membrane at any
operating conditions. Such performance was attributed to the improved porosity, which
was about 28%. A novel membrane was fabricated using the electro-blowing method
to obtain fibers with nanoscale, forming a composite membrane of styrene-acrylonitrile
in N, N-dimethylformamide (DMF) [25]. The authors checked the fabricated membrane
via SEM and show the validity of the proposed technique. They also studied the fab-
rication conditions and introduced their effect on the membrane’s surface morphology,
which was captured by contact angle and liquid entry pressure tests. They found that the
performance on the DCMD system was promising, however much thinner or thicker the
utilized membrane was. A super-hydrophobic membrane labeled (FZP) was fabricated
to be applied with MD technologies [26]. The authors reported an excellent contact angle
of 162.3◦ for the electrospun fabricated membrane and higher LEP. They concluded that
their proposed fabricated membrane could fix the anti-wetting problems that are related to
other membranes.

On the other hand, a mechanical vision for improving the overall performance of
the MD technique could be achieved by improving the heat transfer process and mass
transfer. Spacers-filled channels considerably enhance thermal performance and reduce
the temperature gradient by promoting turbulences [27,28]. The most recent techniques
used to overcome the polarization in temperature challenge in MD were comprehensively
reviewed [8]. Additionally, renewable energy (i.e., solar energy) has been hybridized with
MD for two purposes: the first one is to produce fresh water and electricity simultaneously,
and the second purpose is to build an energy-efficient, economical, and ecofriendly MD
system that excludes any external conventional power supply [29–31].

A comprehensive review of the polymeric membranes has been conducted to highlight
the importance of the newly fabricated composite membrane in the desalination and
purification field [32]. The authors reported the new trend of many researchers to use a
renewable polymer to reduce the number of technical polymers. A hybrid filtration to
extract mercury (II) from water has been introduced [33]. They characterized the produced
water with time to examine the water quality. They also concluded that the membrane could
be successfully reused without further chemical processing. On the other hand, Polysulfone,
which is considered one of the most important polymers for membrane fabrication, has
been concisely reviewed [34]. The authors reported the superior properties of that polymers,
such as mechanical and thermal stability, which recommended it as an excellent candidate
for membrane fabrication. Additional applications have been further introduced in the
latest mentioned review, such as catalyst and ion exchange. An interesting modification has
been performed on a nanofiltration membrane by adding modified graphene oxide, that
was applied on water desalination [35]. The modified membranes have been completely
characterized using SEM, TEM, FTIR, etc., to ensure their successful preparation. As a
result, the modified membrane was significantly outperforming the basic membrane.

In this regard and following the available literature, the main obstacle of the MD
technique is to fabricate a porous membrane with a hydrophobic nature, and excellent
characteristics. Using GNPs (0.25 wt.%) with PS to fabricate a composite membrane has
been introduced in the authors’ recent published work [36]. It was investigated numer-
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ically to study the effect of operating conditions on the system productivity, coefficient
of polarization, and efficiency. In the current work, the authors aim to study the effect of
the weight percent of GNPs on the fabricated membranes. In addition, the present work
introduces the experimental results of the fabricated membranes when used in the DCMD
system. Also, it experimentally introduces the stability of the fabricated membranes with
time and compares the quality of the produced fresh water. The main target of any new
fabricated membrane is to provide high freshwater production and high salt rejection.
Therefore, the originality of the proposed study is to composite polystyrene (PS) with
graphene nanoplates (GNPs) to fabricate composite PS/GNPs membranes for the MD
process. The fabrication process was performed via electrospinning using different weight
percentages (wt.%) to compare the composite membrane with the blank PS performance
on DCMD. The DCMD used is a lab-scale test rig that compares composite PS/GNPs with
blank PS at different operating conditions.

2. Materials and Methods

Polystyrene (PS) (pellets, Mw = 192,000) purchased from Alpha Chemika, Mumbai,
India; and N,N-dimethyl formamide (DMF) (99.8% GC, ACS reagent) and Graphene
nanoplatelets (GNPs) (Carbon > 85 wt.%) from Sigma-Aldrich, Taufkirchen, Germany.

2.1. Fabrication Process

The first step is to dissolve PS in DMF, followed by 6 h of stirring at normal room
conditions. The weight percent followed of PS was the optimum value (18 wt.%) that
has been concluded by [4]. Authors of that study used PS solution concentration of
(15, 18, and 20 wt.%) for electrospinning at fixed voltage, flowrate and tip to collector
distance –mentioned later in this paragraph – and concluded that 18 wt.% PS solution gives
continuous, uniform beadles fiber. The weight percentages of GNPs introduced in the
current work were (0.25, 0.5, and 0.75) wt.%, added to the prepared polymer solution. The
composite solution was left in sonication for 1 h after a similar stirring period to assure a
homogeneous solution. After that, the electrospinning was set for: (a) a needle discharge of
0.6 mL/h, (b) a distance between the tip and collector of 18 cm, and (c) an applied voltage
difference of 28 kV. Finally, the proposed samples were kept overnight in the oven at 60 ◦C,
then pressed via cold press under 2000 kPa for 1 min.

2.2. Characterization

Characterization for the fabricated membranes is mandatory to ensure the successful
fabrication of blank and composite membranes and the validity of the fabricated membrane
for the target application. Therefore, the following characterizations were applied in the
current work:

2.2.1. Scanning Electron Microscope (SEM)

The surface morphology of the produced membranes was studied using (JSM-6010
LV SEM, Tokyo, Japan). Samples of the blank and composite membranes were fixed on an
aluminum stub using carbon tape and vacuumed for two minutes under an accelerating
voltage of 20 mV.

2.2.2. Fourier-Transform Infra-Red (FTIR)

Pellets of the blank and composite membranes samples were formed by mixing with
KBr in the ratio of 1:100 w/w and then studied using FTIR (Bruker scientific instruments,
Vertex 70, Baden Württemberg, Germany) at room temperature. The wave range used was
4000–400 cm−1.

2.2.3. Contact Angle

A static water contact angle test was carried out for the fabricated membranes to study
the surface hydrophobicity. In this test, a single drop of water is dropped onto the membrane
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surface and captured by a high-speed camera at the drop-surface interface. A drop size
analyzer (DSA 100, Kruss), paired with software to analyze the image, measured the water’s
contact angle, and an average value of measurements at ten different spots was taken.

3. Experimental Work

The fabricated (blank PS and composite PS/GNPs) membranes’ performance was
examined on DCMD existing system. The system is composed of two identical aluminum
parts representing the hot and cold channels. The fabricated sample (membrane) was
fixed between the channels with the addition of gaskets to prevent any leakages. Figure 2
shows the existing MD system, as can be seen from the figure, the two parts were adjusted
together, and the thermocouples were fitted at the inlet and outlet ports of both hot and
cold flow channels. These thermocouples were connected to a data logger to capture the
temperature at the recommended points digitally. The left figure shows a magnification for
the flow channel.
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Figure 2. Experimental membrane distillation test rig.

Table 1 shows the system dimensions. Two pumps were used to feed the system with
fluids, one for the pure water and the other for the saltwater. The used pumps are suitable
for the low flow rate range to provide the recommended flow rate, i.e., to be within the
laminar flow regime.

Table 1. System dimensions.

Item Dimension

Channel length 4.5 cm
Channel width 4.5 cm
Channel height 2.5 mm

Active area 20.25 cm2

Inlet port diameter 4 mm
Outlet port diameter 4 mm

The ranges of the operating parameters that were used in the current work are listed
in Table 2. As detailed in the table, the present study was performed at different operating
conditions (i.e., saltwater temperature, flow rate, and feed salt concentration) and various
weight percentages of GNPs, to examine the membrane performance at different conditions.

After utilizing the fabricated membranes, the temperatures at the inlet and outlet
for cold and hot water were captured through the data logger. Furthermore, the flow
rate was indicated on the pumps monitors and could be adjusted manually to control the
pumps’ discharge. The salt concentration of the feed was measured at the feed inlet and the
permeate outlet to highlight the rejection rate of the proposed membranes when applied to
the DCMD system.
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Table 2. System dimensions.

Item Dimension

Flow rate 100–200 mL/min
Saltwater inlet temperature 55–85 ◦C

Coldwater temperature (permeate) 12 ◦C
Salt concentration 10,000–30,000 ppm

GNPs wt.% 0.25–0.75%

4. Results and Discussion

The results regarding the proposed experimental work have two main issues. One is
relevant to the fabricated membranes’ characterization, which introduces the evidence
of the successful fabrication and existence of the proposed nanoparticles in the polymer
solution. Moreover, some of these characterizations show the validity of the fabricated
membranes to be applied to the MD technique. On the other hand, the second part of the
results shows the performance of the fabricated membranes when applied to the DCMD
system at different operating conditions. The actual performance test on the DCMD system
examines the fabricated membranes at different saltwater temperatures, flow rates, and
feed salinity.

4.1. Membranes’ Characterization

Figure 3 displays the SEM views of neat PS and composite PS/GNPs samples at
the given electrospinning conditions. The produced fibers’ uniform and beadles feature
ensures that the selected electrospinning conditions are adequate for the proposed PS
solution. The average fiber diameter of the blank PS membrane was 1.013 µm, whereas
that of the composite fiber was 0.719 µm. This decrease in the average fiber diameter is a
consequence of the enhanced conductivity of the PS doped solution due to the addition of
GNPs [20]. Increasing the GNPs concentration also resulted in some aggregate formation
as can be noticed in Figure 3c,d this observation is in agreement with [20].

The addition of GNPs also significantly enhanced the fabricated membranes’ hy-
drophobicity. The static water contact angle increased from 73.79◦ for the blank PS mem-
brane to 91.68◦, 95.65◦and 105.08◦ for the PS/GNPs with 0.25 wt.%, 0.5 wt.%, and 0.75 wt.%,
respectively, as shown in Figure 4. This increase in membrane hydrophobicity may be
attributed to the increased surface roughness as the concentration of the added GNPs
increases [24].

The IR spectra of the fabricated neat PS and composite PS/GNPs membranes are given
in Figure 5. The symmetric and asymmetric vibration of the C-H group is observed from
3100–2800 cm−1 in all the IR spectra. The pronounced peaks in the range of 2000–1680 cm−1

are due to the aromatic mono substitution, while the peaks observed at 1446.41 cm−1 are
attributed to the CH2 bending vibration. The characteristic peaks at 754.61 and 695.93 and
543 cm−1 are assigned to the phenyl ring’s CH out-of-plane bending vibrations and CH
out-of-plane deformation, respectively [37,38]. These peaks confirms that PS structure was
not changed and that no chemical reactions took place during the compositing process to
alter the structure of PS. The effect of the addition of GNPs is pronounced in increasing the
strength of the characteristic peaks by increasing the percentage of GNPs added [39].

4.2. Membranes’ Performance

In this section, the performance of the fabricated composite PS/GNPs membranes
would be introduced at different operating conditions and would be compared with the
blank PS membrane. At first, the performance of all fabricated membranes (i.e., blank PS,
0.25 wt.% composite PS/GNPs, 0.5 wt.% composite PS/GNPs, and 0.75 wt.% composite
PS/GNPs) would be compared. The comparison of these membranes would concern the
productivity and the quality of the produced water (i.e., total dissolved salts (TDS)) when
operated at the same conditions for a continuous period of 7 h. After that, the membrane
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which recorded the best performance would be examined separately at different operating
conditions to highlight the effect of the mentioned operating parameters.
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At the outset, an experimental comparison was carried out on the performance of the
fabricated membranes in the DCMD at constant operating conditions. The saltwater feed
temperature and the cold pure water temperature were adjusted to fixed values of 64 ◦C
and 12 ◦C, respectively. The water flow rate was kept at 100 mL/min, while the salinity
of the hot water was adjusted to 10,000 ppm. Figure 6 shows the productivity of blank
PS, composite PS/GNPs with (0.25, 0.5, and 0.75) wt.% of GNPs over the operating time
of 7 h. The figure shows that the fabricated membrane has a largely similar productivity
which fluctuated around an average value of almost 10 kg/m2 h. This fluctuation may
be attributed to the uncertainty in measurements, although this trend is similar to that
reported in [40]. One could conclude from this figure that adding GNPs to the blank PS
would not significantly affect the system productivity.

Indeed, as can be seen in Figure 7, blank PS has the worst permeate water quality,
which increases dramatically with time. After one hour of operation, the produced pure
water quality was about 2.5 ppm, and after the test period, the water quality reached
a value of 185 ppm. On the other hand, all the composite PS/GNPs membranes have
considerably higher quality (lower TDS). However, the composite PS/GNPs membranes
with 0.5 wt.% and 0.75 wt.% have the best quality, which is approximately similar, noting
that the 0.75 wt.% composite has slightly higher quality. For instance, in the first three
hours, the composite membranes produced water of nearly similar quality. After 3 h, the
quality of the produced water from the 0.25 wt.% composite PS/GNPs membrane has
considerably decreased as it recorded TDS of about 85 ppm after 7 h. The other 0.5 and
0.75 wt.% composite PS/GNPs membranes have an excellent quality after the test period,
as the maximum recorded TDS was about 20 ppm. Accordingly, the composite PS/GNPs
membrane of 0.75 wt.% has the best performance amongst the whole studied membranes
on the DCMD system, of about 10 kg/m2 h productivity and 99.8% salt rejection.
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Accordingly, the 0.75 wt.% composite PS/GNPs membrane has been selected to be a
candidate for the DCMD system. Consequently, this membrane has been tested on DCMD
to study its performance at different operating conditions. The targeted performance
parameters are the produced pure water (permeate flux) and the quality of the produced
water (i.e., TDS) as these are the most important criteria for membrane distillation. For
the subsequent results, the experimental runs were repeated four times to obtain the
uncertainty, and this is presented on the following figures as error bars.

Figure 8 shows the effect of hot saltwater temperature on the permeate flux and
produced water TDS at 100 mL/min rate of flow and 10,000 ppm feed salt concentration.
According to the actual performance on DCMD presented in Figure 8, the composite
PS/GNPs membrane proved a stable operation with good productivity of about 4.5 kg/m2

h at the maximum studied temperature and excellent water quality of 4.5 ppm (i.e., 99.955%
salt rejection). It is also very clear from the figure that the feed inlet temperature consid-
erably impacts the overall performance. For example, increasing the temperature from
55 ◦C to 85 ◦C increased the productivity from 0.75 kg/m2 h to 4.5 kg/m2 h, with the
water TDS being reduced from 13 ppm to 4.5 ppm, respectively. This finding matches
with that concluded in [41–43]. This improvement due to increased temperature is at-
tributed to the increased vapor pressure difference (vapor transfer driving force). It is a
direct consequence of the temperature difference across the membrane surfaces and hence
enhanced productivity.

Furthermore, the effect of flow rate on productivity and quality of the produced water
has been presented in Figure 9. This experimental test has been carried out at the maximum
mentioned temperature (85 ◦C) and fed at a salt concentration of 10,000 ppm. As shown in
Figure 9, increasing the rate of flow improves the system productivity considerably, but it
negatively affects the quality of the produced water. As presented in the figure, increasing
the rate from 100 to 200 mL/min increases the produced pure water flux from 4.5 kg/m2

h to about 10 kg/m2 h which is significantly higher than that produced from [44], while
the produced pure water salinity was increased (negative effect) from 4.5 ppm to 70 ppm.
The physical concept here is that increasing the flow rate would improve the heat transfer
coefficient in the two-fluid parts, decreasing the temperature polarization phenomenon.
This will keep the membrane surfaces’ temperature as close as possible to the fluid bulk



Polymers 2021, 13, 3499 10 of 14

temperature, increasing the driving force and system productivity. This result matches
well with that introduced in [9,41,45].
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Finally, the effect of feed salt concentration on both system productivity and the
pure water quality has been introduced in Figure 10. This result has been conducted at
100 mL/min and 85 ◦C, rate of flow, and saltwater temperature, respectively. At the same
time, the permeate was kept at a fixed temperature of 12 ◦C. As can be seen in the figure,
increasing the saltwater concentration within the studied range shows a negligible effect
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on the produced permeate flux, as increasing the feed TDS from 10,000 ppm to 30,000 ppm
shows a productivity change of about 5%. On the other hand, increasing the feed salinity
reduces the produced water TDS. As shown in the figure, increasing the feed TDS from
10,000 ppm to 30,000 ppm has increased the TDS of the produced water from 4.5 ppm to
6 ppm, which means that the salt rejection has been improved from 99.955% at 10,000 ppm
to be 99.98% at 30,000 ppm. This improved rejection rate is a direct consequence of the
nature of the fabricated PS/GNPs sample, as GNPs additives (0.75 wt.%) play a vital role
in the rejection process if compared to the blank PS membrane, as illustrated in Figure 7.
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5. Conclusions

The nanoparticles composite membrane has been successfully fabricated using
three different weight percentages (wt.%) of 0.25, 0.5, and 0.75 of graphene nanoplates
(GNPs) with the base polymer polystyrene (PS). The membranes, fabricated via electro-
spinning technique have been characterized using SEM, FTIR, and contact angle, present
a successful fabrication. The contact angle of the composite membranes was captured
and found to be higher than that of the blank membrane. The highest recorded contact
angle was 105.08◦ for the 0.75 wt.% composite PS/GNPs membrane. Utilizing the blank
and composite fabricated membranes in the DCMD system shows almost stable opera-
tion over the test period of approximately similar productivity of 10 kg/m2 h, while the
0.75 wt.% composite PS/GNPs membrane produces pure water with the best quality of
about 99.955%. Moreover, this membrane was tested at different operating conditions to
check its stability and performance. The experimental results show that this membrane
is stable over the test time and under the studied range of operating conditions. It has a
productivity of about 4.5 kg/m2 h at the proposed feed temperature, lowest mentioned
rate of flow, and 10,000 ppm salinity, with a salt rejection of 99.955%.
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