Supporting Materials

Typical procedure for polymerization of TMC initiated by ROP-amine with MSA in one step.

Propylamine (1 eq.) and MSA (0.2 eq.) were added into a solution of TMC (100 eq.) in CH2Cl2 (1.0 mol.l-1). Then the mixture was stirred at room temperature until the complete consumption of the amine. After 24 hours then reaction was uncompleted (conv. 50%), the crude solution was precipitated in methanol.

¹H NMR (δ in ppm, CDCl₃, 400 MHz): 4.4 (t, CH₂ TMC), 4.2 (t, CH₂), 4.0 (m, CH₂), 3.8 (m, CH₂), 3.0 (MSA), 2.2 (q, CH₂ TMC), 2.0 (q, CH₂), 1.8 (m, CH₂), 1.0 (t, CH₃).

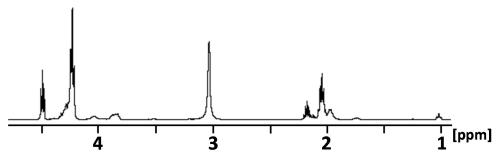


Figure S1. ¹H NMR at 24 hours in one step of PTMC with MSA (CDCl₃).

Typical procedure for polymerization of TMC initiated by ROP-amine with TBD in one step

1,6-Hexanediamine (1 eq.) and TBD (0.2 eq.) were added into a solution of TMC (100 eq.) in CH₂Cl₂ (1.0 mol.l⁻¹). Then the mixture was stirred at room temperature until the complete consumption of the amine monitoring by ¹H NMR. After complete conversion, TBD was quenched with benzoic acid. The crude solution was precipitated in methanol.

¹H NMR (δ in ppm, CDCl₃, 400 MHz): 4.2 (t, CH₂), 3.7 (m, CH₂), 2.0 (q, CH₂).

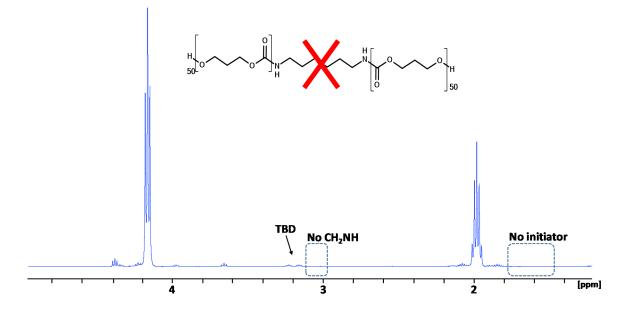
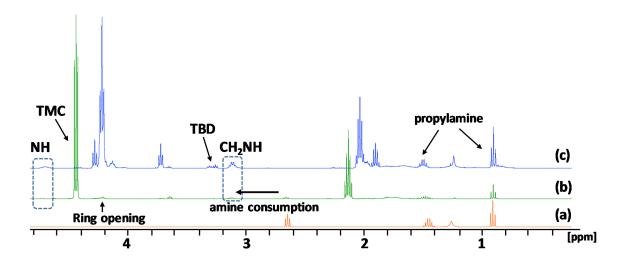



Figure S2. 1H NMR in one step of PTMC initiated by 1,6-hexanediamine with TBD (CDCl₃).

Typical procedure for polymerization of TMC initiated by ROP-amine with TBD in one pot two step

Propylamine (1 eq.) was added into a solution of TMC (100 eq.) in CH₂Cl₂ (1.0 mol.L⁻¹). The mixture was stirred at 30 °C until the complete consumption of the amine. Then a solution of TBD (0.2 eq.) in CH₂Cl₂ was added to the reaction mixture. After complete reaction, TBD was quenched with benzoic acid. The crude solution was precipitated in methanol.

¹H NMR (ð in ppm, CDCl₃, 400 MHz): 4.7 (m, 1 H, NH), 4.2 (t, 40 or 400 H, CH₂), 3.8 (m, 2 H, CH₂), 3.4 (TBD), 3.2 (m, 2 H, CH₂), 2.0 (q, 20 or 200 H, CH₂), 1.5 (m, 2 H, CH₂), 0.9 (t, 3 H, CH₃).

Figure S3. ¹H NMR in one pot two steps of (a) propylamine, (b) crude after 6 hours at 30 °C and (c) PTMC after addition of TBD (CDCl₃)

Typical procedure for functionalization of PTMC end chain by urethane

The urethanisation of the PTMC terminal groups achieved with propyl isocyanate (Sigma-Aldrich, France). PTMC (1 eq.) was dissolved in CH₂Cl₂ (1.0 mol.L⁻¹) before adding propyl isocyanate (3 eq.). The reaction was catalyzed with 0.8 wt.% of dibutyltin dilaurate (DBTDL) from Sigma-Aldrich (Saint-Quentin-Fallavier, France). The solution was carried out at 60 °C under magnetic stirring for 2 hours. The polymer was recovered by precipitation in methanol.

¹H NMR (δ in ppm, CDCl₃, 400 MHz): 4.7 (m, 1 H, NH), 4.2 (t, 40 or 400 H, CH₂), 3.2 (m, 4 H, CH₂), 2.0 (q, 20 or 200 H, CH₂), 1.5 (m, 4 H, CH₂), 0.9 (t, 6 H, CH₃).

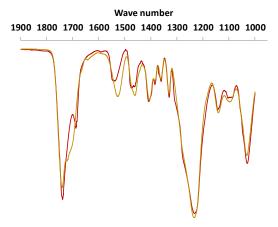


Figure S4. FT-IR spectra in cm⁻¹ of PTMC_{D-NH} (red) and PTMC_{F-NH} (yellow)

Table S1. Thermal properties of PTMC_{D-NH} (DPn=100) after 24 hours, 2 weeks, 4 weeks and 16 weeks.

Time	T _g (°C)	T _m (°C)	ΔH_m (J.g ⁻¹)
24 hours	-31.3	-	-
2 weeks	-30.6	37.0	25.6
4 weeks	-25.0	40.8	52.5
16 weeks	-27.0	38.3	50.6

Table S2. Thermal properties of PTMC_{F-NH} (DP_n=100) after 2 weeks.

РТМС	T _g (° C)	T _m (°C)	$\Delta H_m \left(J_{\cdot}g^{-1}\right)$
PTMC _{D-NH}	-30.6	37	25.6
PTMC _{F-NH}	-31.1	39	46.3

The addition of urethane function by end chain modification with isocyanate increases the number of urethane groups. This leads in IR by a band even more intense at 1523 cm⁻¹ and in DSC by an improvement of the crystallization (Figure S4 and Table S2).