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Abstract: Responsive polymer particles with switchable properties are of great importance for
designing smart materials in various applications. Recently, the self-assembly of block copolymers
(BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled
synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive
shape tuning of BCP particles and their applications have received little attention. This review
provides a brief overview of recent approaches to developing non-spherical polymer particles from
soft evaporative emulsions based on the physical principles affecting both particle shape and inner
structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer
particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their
applications, including the state-of-the-art progress in this field. Finally, the perspectives on current
challenges and future directions in this research field are presented, including the development
of surfactants with higher reversibility to multiple stimuli and polymers with unique structural
functionality, and diversification of polymer architectures.

Keywords: block copolymer particles; responsive surfactants; shape-changing particles; polymer
nanostructures; stimuli-responsive polymers

1. Introduction

Responsive polymer particles are designed to alter their properties upon exposure
to physical, chemical, and biological stimuli. Shape is one of the most fundamental
and essential features that can be imparted on polymeric particles to design their shape-
dependent functional behaviors, thus opening up new avenues for providing promising
applications in the field of soft materials science. Stimuli-triggered, dynamically shape-
switching particles have attracted significant attention due to their tunable rheological
behavior, capillary interactions, and optical properties [1–5]. Despite gradual progress
in the preparation of responsive polymer particles, most of the examples are micellar
structures [6–9], while the examples of few-micron-sized particles are very limited.

In this regard, solvent evaporation-driven self-assembly of block copolymer (BCP)
in emulsions emerges as an ideal method for the creation of soft matter-based colloidal
particles with well-defined size, shape, surface patterns, and internal morphologies [10–21].
Upon solvent evaporation, the soft and mobile interface of the emulsion leads to a spon-
taneous deformation of the particle shape, providing a convenient and robust tool for
predicting and tailoring the nanostructure of BCP particles. In this process, the precise
modulation of the interfacial activity of BCP particles by responsive surfactants is crucial in
achieving switchable shape and internal nanostructure of particles in response to external
stimuli. The challenge in the design for these shape-transforming BCP particles is to equip
appropriate surfactant pairs that can effectively alternate interfacial activity of the particles
in response to specific stimuli and to provide the driving force to facilitate the reversible
shape transformation.

A number of well-organized reviews covering recent progress in the development
of BCP particles have been published in recent years [22–27]. Previous papers reviewing
BCP particles focused on studies of the internal morphology of BCP particles under the
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3D-confinement effect. Several more reviews highlighted the progress on the develop-
ment of shape-anisotropic BCP particles in terms of physical parameters affecting the
final particle shape based on shape control principles. Despite these extensive previous
studies, little attention has been paid to the responsive shaping strategies of BCP particles
and their applications. In this paper, we focus on the recent advances in the design of
responsive polymer particles with well-defined shapes and nanostructures based on the
confined assembly of BCPs from emulsions. The remaining important challenges and
future directions in this research field are discussed.

2. 3D-Confined Assembly of BCPs in Emulsion
2.1. Physical Parameters Governing Particle Shape

A key strategy for producing polymer particles, which will be discussed throughout
the text, is the self-assembly of multi-component polymers (i.e., BCPs, small molecules,
homopolymers, brush polymers, and nanoparticles (NPs)) from solvent-evaporative emul-
sions. As the organic solvent evaporates from the emulsion, the phase separation of
polymer chains into ordered domains occurs from the droplet surface, followed by the
propagation of the polymer ordering into the particle center [24,28].

Given that the emulsion containing BCPs acts as a soft and mobile template, the spon-
taneous deformation of the particle shape is facilitated by bending and stretching of
self-assembled polymer chains [29–31]. As the microphase-separated structure of the BCPs
inside the emulsion has a three-dimensional isotropic symmetry (i.e., spheres (S) or gyroid
(G) phases), the resulting particles typically have a spherical shape (Figure 1, left) [32,33].
By contrast, oblate [34–36] or prolate [37,38] ellipsoids are formed when BCPs having
anisotropic symmetry (i.e., cylinders (C) or lamellae (L)) are confined in emulsions
(Figure 1, right). In detail, the total free energy change (∆G) for the structural development
of the BCP particle is expressed as a combination of terms describing (i) the entropic penalty
associated with BCP chain stretching upon elongation (∆Gent), (ii) the interfacial energy
between two blocks of BCPs (∆Gint), (iii) the entropic penalty of bending BCP chains near
the edge of the particles (∆Gben), and (iv) the surface energy between the BCPs and the
surrounding aqueous medium (∆Gsur) [28,39]. This counterbalance of these contributions
to minimize the overall free energy determines the final shape of the BCP particles.
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and L: lamellae) and the corresponding structure of polymer particles at neutral conditions (reprinted with permission
from [28], Copyright 2019, American Chemical Society).

2.2. Interface Engineering by Dual Surfactant

Control of the interfacial interactions between the BCPs and the surrounding medium
is crucial in breaking the symmetry of the interfacial properties of BCP emulsions. Ther-
modynamically, interfacial interactions are dominated by the surfactants coated on the
emulsion surface. Therefore, surfactant engineering can expand the richness of their
morphological behavior and shape. At the oil/water interface, surfactants direct the as-
sembly of BCP chains by inducing preferential (or neutral) wetting of either component
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(or both) [40]. Typically, when a single type of surfactant is used, the parallel orientation
of BCPs relative to the surrounding is achieved since most surfactants selectively interact
with one of the blocks. To obtain a perpendicular orientation of BCPs, neutralizing the par-
ticle/surrounding interaction is necessary. One promising approach is the use of multiple
surfactants.

A rational design of dual surfactants for polystyrene-block-polybutadiene (PS-b-PB)
particles has been reported by Jeon et al. [41]. Two different amphiphilic polymeric surfac-
tants, polystyrene-block-poly(ethyl oxide) (PS-b-PEO) and polybutadiene-block-poly(ethyl ox-
ide) (PB-b-PEO), favorably interact with PS and PB blocks, respectively. A mixture of
PS-b-PEO and PB-b-PEO in different volume fractions (fs) was carried out to demon-
strate different interfacial contributions at the surface of the symmetric PS-b-PB particle
(Figure 2a). For the simplest case when fs = 0 and 1, spherical particles with onion-like
nanostructure were formed with a specific block at the outermost layer: PB for fs = 0 and
PS for fs = 1. On the other hand, various anisotropic particles were generated when mixed
surfactants were used, to minimize the surface free energy under the commensurability of
the BCPs (i.e., prolate ellipsoids (fs = 0.46) and tulip-bulb particles (fs = 0.36)). A similar
design was reported by Klinger et al., by using cetyl trimethyl ammonium bromide (CTAB)
and 16-hydroxy-N,N,N-trimethylhexadecan-1-ammonium bromide (HO-CTAB) as a com-
plementary set of dual surfactants for symmetric polystyrene-block-poly(2-vinyl pyridine)
(PS-b-P2VP) [39]. An intermediate ratio of CTAB and HO-CTAB led to the generation of
ellipsoidal PS-b-P2VP particles with a striped nanostructure.
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Figure 2. Interfacial engineering of BCP particles to produce non-spherical BCP particles by surface neutralization.
(a) Transmission electron microscopy (TEM) images of symmetric polystyrene-block-polybutadiene (PS-b-PB) prepared by
mixed surfactants of polystyrene-block-poly(ethyl oxide) (PS-PEO) and polybutadiene-block-poly(ethyl oxide) (PB-PEO) at
different mixing ratios: spherical, tulip-bulb, and prolate particles (reprinted with permission from [41], Copyright 2008,
Wiley-VCH). (b) Scanning electron microscopy (SEM) and TEM images of oblate polystyrene-block-poly(4-vinyl pyridine)
(3-pentadecylphenol) (PS-b-P4VP (PDP)) particles prepared by a mixture of cetyl trimethyl ammonium bromide (CTAB)
and oleic acid-coated Au NPs (reprinted with permission from [42], Copyright 2014, American Chemical Society). (c) TEM
images of prolate PS-b-PB-b-PMMA triBCP (PMMA: poly(methyl methacrylate; triBCPs: triblock copolymer) particles
stabilized by the mixture of CTAB and poly(vinyl alcohol) (PVA) and tulip-bulb-like particles of PS-b-PB-b-PtBMA triBCPs
(PtBMA: poly(t-butyl methacrylate)) stabilized by CTAB as a sole surfactant (reprinted with permission from [43], Copyright
2019, American Chemical Society, and [44], Copyright 2019, Wiley-VCH). (d) TEM images of conical Janus particles
comprised of PS-b-P4VP and PMMA bends (reprinted with permission from [45], Copyright 2014, American Chemical
Society). (e) TEM images of PS-b-P4VP patchy particles with a tunable number of bulbs and SEM image of raspberry-like
PS-b-P4VP particles (reprinted with permission from [29,46], Copyright 2015 and 2012, American Chemical Society).
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Furthermore, the versatility of synthesis in the precise adjustment of NP size, shape,
and surface chemistry highlights the superior potential of NP surfactants over traditional
organic surfactant molecules [31,47]. For example, when polymer-coated Au NPs segre-
gate to the three-phase interface comprised of PS, P2VP, and the surrounding medium,
they induce a dramatic shift in the internal morphology and overall shape of the PS-
b-P2VP particles from spheres to ellipsoids with axially stacked lamellae [37]. The po-
sitioning of NPs at the surface of the BCP particles can be further controlled in terms
of their size and shape, making NP surfactants more powerful in the engineering of
the emulsion property. The relative size-and-length-ratio of NPs (d or l) over the NP-
hosting domain (L), that is, d/L (or l/L), is a critical parameter for determining their
location and ability to function as surfactants [42,48–50]. When length-controlled CuPt NPs
(i.e., 2.3 nm < l < 50 nm) were used to modulate the surface of the polystyrene-block-poly(4-
vinyl pyridine) (3-pentadecylphenol) (PS-b-P4VP(PDP)) particles, the oblate particles were
generated only in the range of 0.36 ≤ l/L ≤ 0.96, whereas the prolate particles were pro-
duced for a much wider range of l/L ≥ 0.83 without an upper limit (Figure 2b) [50]. More-
over, surfactant efficiency was greatly amplified by using chemically designed graphene
quantum dots (GQDs), which have a plate-like shape. The addition of alkyl ligand-grafted
GQDs to the cylinder-forming PS-b-P4VP(PDP) particle resulted in a dramatic transition
from conventional spherical shape to oblate particles.

Another unique system neutralizes surface interaction of triblock copolymers (triBCPs)
to generate non-spherical particles with three-phase domains (Figure 2c). For example,
a mixture of CTAB and poly(vinyl alcohol) (PVA) provides a neutral interaction for PS-
b-PI-b-P2VP triBCPs (PI: polyisoprene), affording the formation of prolate shape [43].
Confinement assembly of ABC triblock terpolymers has been further reported by varying
the type of each block: PS-b-PB-b-PMMA, PS-b-PB-b-PtBMA, and PS-b-P4VP-b-PtBMA
(PMMA: poly(methyl methacrylate), PtBMA: poly(t-butyl methacrylate)) [44,51]. Un-
der spherical confinement stabilized by CTAB, the PS-b-PB-b-PtBMA triblock terpolymer
adopts a hemispherical shape with a mixture of concentric lamella–axial lamella mor-
phology [44]. Cross-linking and disassembly of the microparticles further resulted in
well-defined nanorings or Janus nanocups with different chemistries on the inside and
outside. While microphase diagrams provide a fairly extensive opportunity to search for
morphologies found only in ABC triblock polymers, it still remains a great challenge for
the synthetic screening of all possible block compositions.

Blending another incompatible homopolymer on a BCP-containing oil-in-water emul-
sion system is a feasible way to achieve additional anisotropy of the particle. The interplay
of macrophase separation between BCPs and homopolymers and microphase separation
of BCPs determines the final shape and nanostructure of the resulting particle. Thermody-
namically, additional macrophase separation generates another polymer–polymer interface
between BCPs and homopolymers that can affect the internal nanostructure and shape by
changing the interfacial energy between each polymer component. For example, unique
conical Janus particles with hierarchical nanostructure were reported for blends of PS-b-
P4VP and PMMA (Figure 2d) [45] and blends of PS-b-PB and poly(methylmethacrylate-
statistical-(4-acryloylbenzophenone)), respectively [52]. The key is properly adjusting the
incompatibility between A-b-B and C polymers and the neutrality condition of BCPs and
their surroundings.

Finally, the morphological behavior of BCPs under strong 3D confinement within
emulsion depends on the magnified interfacial interaction between BCP particles and the
surrounding medium and the stretching/bending penalty of polymer chains. Therefore,
BCPs assembled under strong confinement, typically when the particle size is less than
100 nm (D/L0 < 4.0), can generate unconventionally structured particles with various
shapes and internal structures. In this range of particle size, the diameter of the particle
becomes comparable to the periodicity of the BCPs. Based on these principles, the fab-
rication of patchy particles with a variety of 3D shapes was demonstrated by exploiting
PS-b-P4VP having high molecular weights (Figure 2e) [29,53]. Depending on the volume
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of the particle, a series of patchy particles of snowmen, dumbbells, triangles, tetrahedra,
and raspberries were prepared [46].

Therefore, surfactants not only act as stabilizers for emulsion droplets containing
BCPs but also rearrange themselves by dynamic adsorption and desorption to minimize
surface area and support the internal structure during solvent evaporation, which gives
rise to the deformation of emulsions to anisotropic shapes.

3. Stimuli-Responsive BCP Particles

Spatial and temporal control over the interfacial properties of particles can be achieved
using surfactants that respond to a variety of triggers, including light, temperature, pH,
redox, and magnetic field [54–58]. Several examples of responsive monomeric blocks
are illustrated in Figure 3 [59]. Given that the rearrangement is driven by molecular
entities capable of responsiveness to stimuli in a given environment, it is necessary to
provide suitable molecular building blocks that can respond to polymeric solutions to
exhibit adjustable stimuli-responsiveness. In particular, BCP assemblies can undergo
morphological transformations through the solvent annealing process, where the chain
rearrangement is caused by absorbing solvents. During this process, the use of responsive
polymers at the interface not only allows the interface properties to be adjusted according
to the environment but also allows the corresponding shape-switchable properties to be
incorporated into the BCP particles.
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Figure 3. Examples of molecular structures responsive to (a) temperature, (b) pH, and (c) light (reprinted with permission
from [59], Copyright 2010, Elsevier).

3.1. Temperature

A well-known polymer with lower critical solution temperature (LCST) behavior is
poly(N-isopropylacrylamide) (PNIPAM), which exhibits the coil-to-globule phase transition
at 32 ◦C [60,61]. Lee et al. reported temperature-driven shape transformation of PS-b-P4VP
particles by utilizing PNIPAM surfactants (Figure 4) [62]. In this system, PNIPAM sta-
bilized the oil-in-water emulsions as a P4VP-selective surfactant, creating a near-neutral
interface between the PS and P4VP domains with CTAB, and anisotropic PS-b-P4VP parti-
cles (i.e., prolate and oblate particles) were realized. Importantly, the temperature-directed
arrangement of PNIPAM according to its solubility determined the overall shape of the BCP
particles. Prolate particles were produced above the critical temperature, whereas oblate
particles were obtained below the critical temperature. The temperature window of the
particle shape transition was widely adjustable by developing other PNIPAM derivatives
with different LCST values (i.e., poly(N-n-propylacrylamide) (PNNPAM) and poly(N-
isopropylmethacrylamide) (PNIPMAM)).
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Figure 4. Temperature-driven transformation of the shape and morphology of PS-b-P4VP particles
using temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) surfactants (reprinted with
permission from [62], Copyright 2017, Wiley-VCH).

More recently, this system was further improved by exploiting pH- and thermal-
responsive poly(dimethylaminoethylmethacrylate-random-N-isopropylacrylamide)
(poly(DEAEAM-r-NIPAM)) surfactants to achieve pH and temperature dual-responsive
PS-b-P4VP particles in very narrow ranges (around pH 6.5 and 40 ◦C) [63].

3.2. pH

A typical structure of a pH-sensitive polymer involves ionizable groups that undergo
reversible ionization at different pH values, causing pH-dependent swelling/deswelling
behavior. In this case, the hydrophobic volume along the polymer chain may alternately ex-
tend or collapse due to electrostatic repulsions between generated charges [59,64]. Klinger
et al. reported prolate PS-b-P2VP particles, where the cross-linked hydrogel P2VP layers
enabled a reversible anisotropic shape transformation of the whole ellipsoidal particles
(more than twice along the major axis) in response to a pH change (Figure 5) [39].
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Similar behavior was observed in the system of PS-b-PI-b-P2VP triBCP particles [20].
In addition, the selective introduction of benzophenone as a photocrosslinking group pro-
duced particles with reversible shape changes induced by triggered swelling/deswelling
where the dynamic behavior was additionally combined with other functionalities, such as
ferrocene groups or reactive pentafluorostyrene moieties [38]. For example, the ferrocene-
containing PFS block rendered these particles redox-responsive. By adding an oxidant
(i.e., FeCl3), a shape transition of the particles was observed due to a change of PFS polarity
from hydrophobic to hydrophilic upon oxidation. The combination of redox-responsive PFS
with pH-responsive P2VP domains enabled a multi-stimuli-responsive behavior, which rep-
resents a powerful platform for a wide range of applications. Very recently, the use of
pH-responsive core-cross-linked NPs to facilitate shape transformation of BCP particles has
been successfully demonstrated by exploiting polystyrene-block-poly(dimethylsiloxane)
(PS-b-PDMS) and cross-linked PS-b-P4VP NPs [65]. The PS-b-PDMS microparticles trans-
formed from elongated Janus pupa-like particles to onion-like particles by decreasing the
pH value of the aqueous phase.
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3.3. Light

If the surfactant molecule contains a suitable chromophore, light irradiation can yield
different physical photo-induced responses. Distinct from other physicochemical stimuli
(i.e., pH, temperature, redox, and biomolecules), light-responsiveness offers powerful
capabilities as a trigger stimulus because of its superior spatial and temporal resolution
with negligible time delay [66–69]. Moreover, selective light-responsive behavior can be
obtained by modulating the wavelength and intensity of light, which provides a powerful
strategy for tuning particle shape in a programmed manner [70–73]. In the pursuit of light-
responsive systems, a tremendous amount of research efforts have been made, including the
development of photo-responsive polymers and corresponding assemblies by introducing
photodegradable or photochromic units that undergo reversible isomerization upon light
irradiation [74–84].

Light-responsive shape-changing PS-b-P2VP particles (i.e., from onion to prolate
or oblate ellipsoids) were developed by using surfactants containing photocleavable ni-
trobenzyl ester or coumarin ester groups by Kim’s group (Figure 6) [85]. The cleavage of
surfactants induced sequential modulation of the amphiphilicity and interfacial activity
of the surfactants (i.e., interaction between surfactants and each block), leading to the
modification of the surface and wetting properties of BCP particles. The use of a mixture of
two photo-responsive surfactants that exhibit different activation wavelengths (i.e., 254
and 420 nm) afforded wavelength-selective shape transformations of the BCP particles.
Adding reversible properties to photoactive surfactants (i.e., photochromic units that can
be reversibly isomerized between different states when exposed to light) would result
in completely reversible and dynamic changes in particle shape and properties, greatly
expanding its usefulness for other practical applications.
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3.4. Solvent and External Fields

Utilizing BCPs as a single particle Bragg reflector is another emerging application area.
As the BCPs possess a sufficient periodic domain size, their internal nanostructures are
potentially applicable as photonic crystals whose structural color depends on the thickness
and the number of periodic layers [86]. Considering Bragg’s equation, for bright reflections
in the visible light region, the BCP periodicity should be larger than 120 nm, and the
number of nanostructured photonic layers should exceed 40 [87,88]. It remains a challenge
to extend the current strategy of BCP assembly to ultra-high molecular weight building
blocks with regularly ordered structures greater than a few tens of micrometers in diameter,
which is particularly important in optical applications. As an alternative, the addition of
molecular additives, swelling of the entire domain promoted by the solvent, and utilization
of brush block copolymers have been attempted.

Zhu et al. reported PS-b-P2VP photonic particles with high molecular weight (i.e., higher
than 250 k) with concentric lamellae. The degree of solvent swelling was controlled by
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the density of cross-linking. Selective swelling of P2VP domains by the solvent (ethanol)
enabled the reflective color to shift from blue to red as a function of cross-linking density
(Figure 7a) [89]. Similarly, responsive photonic crystal microcapsules of PS-b-P2VP have
been developed from a water-in-oil-in-water double emulsion [90]. Compared to photonic
particles, the microcapsules exhibited a bright structural color with significantly enhanced
monochromaticity due to the absence of irregular cores. The structural color of microcap-
sules showed sensitive responsiveness to pH value and evolved from blue to red when the
pH value decreased from 6.8 to 3.5 (Figure 7b). The corresponding reflection peak showed
a red-shift from 422 to 650 nm.
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An external field, such as an electric field and magnetic field, can be applied to
manipulate the orientation and movement of particles in the desired manner. Recently, pho-
tonic ellipsoids functionalized with magnetic NPs were developed by the Swager group
to explore a real-time on/off coloration activated by the magnetic field (Figure 8) [91].
The photonic ellipsoids were designed by use of dendronized brush block copolymers
composed of alkyl wedge groups and benzyl wedge groups (poly(AW-b-BnW) den-BBCP),
where the full-color reflection was achieved by tuning overall molecular weights. Surfac-
tants composed of dendritic monomer units enabled precise modulation of the interfacial
properties of the polymer particles from spheres to ellipsoids. Due to the shape anisotropy
of the ellipsoids, the photonic behavior of the prolate particles with axially-stacked lamellae
was strongly dependent on the angle of incident light to the photonic layers, which can-
not be observed in spherical photonic particles with concentric lamellae. The magnetic
field-assisted orientation-dependent photonic behavior was explored, achieving a real-time
switchable on/off color response.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 8. Magnetic-responsive color-switchable photonic ellipsoidal particles created from dendronized brush block co-
polymers (reprinted with permission from [91], Copyright 2020, American Chemical Society). 

4. Conclusions and Perspectives 
To date, remarkable progress has been made in the field of confinement self-assembly 

of BCPs from evaporative emulsions. Various strategies for modulating interface proper-
ties have successfully led to a variety of non-spherical particle libraries with controlled 
internal morphologies and overall shapes. Importantly, surfactants play a critical role in 
stabilizing the emulsion as well as directing the assembly of the polymer by determining 
the preferential surface wetting of the BCP component. In this review, we highlighted 
recent advances in shape-controlled polymer particles, especially for their responsive 
function, which is summarized in Table 1. 

Table 1. Summary of responsive BCP particles. 

Stimulus BCP Surfactants Ref. 

Temperature PS-b-P4VP 
poly(N-isopropylacrylamide) [62] 

poly(DEAEAM-r-NIPAM) (dual) [63] 

pH 
PS-b-P4VP poly(DEAEAM-r-NIPAM) (dual) [63] 
PS-b-P2VP CTAB, CTAB-OH [39] 

PFS-b-P2VP CTAB, CTAB-OH [38] 
Light PS-b-P2VP Coumarin ester-CTAB, Nitrobenzyl ester-CTAB [85] 

Solvent PS-b-P2VP PVA [89,90] 
Field poly(AW-b-BnW) den-BBCP AW-CTAB, BnW-CTAB, CTAB [91] 

While stimuli-responsive surfactants have received a great deal of attention due to 
their tunable chemical, physical, and other properties in response to a variety of external 
stimuli, the manufacturing of dynamic BCP particles that uses responsive surfactants to 
control their shape and structure remains relatively unexplored. Systematic research on 
the development of surfactants is required to create smart particles that respond highly 
reversibly to multiple stimuli without any fatigue during multiple cycles. We also note 
that most responsive polymer particles require solvent-mediated reconstruction to pro-
vide sufficient chain mobility. The use of polymers having a low glass transition temper-
ature (Tg) or cross-linkable units will be a promising alternative approach. Moreover, alt-
hough some research on non-linear polymer assemblies has been investigated recently, 
there remains a need for polymer particle design principles for new architectures (Figure 
9). Polymer architecture plays a significant role in controlling the assembly structure as 
well as its responsive behavior. Spiral polymers and gyroid polymers, for example, are 
two of the promising prospects for designing directional release systems in response to 
external stimuli. Finally, the unique structural functionality, i.e., biodegradable BCPs, can 
be expanded by modifying their compositions. 

Figure 8. Magnetic-responsive color-switchable photonic ellipsoidal particles created from dendronized brush block
copolymers (reprinted with permission from [91], Copyright 2020, American Chemical Society).



Polymers 2021, 13, 273 9 of 13

4. Conclusions and Perspectives

To date, remarkable progress has been made in the field of confinement self-assembly
of BCPs from evaporative emulsions. Various strategies for modulating interface properties
have successfully led to a variety of non-spherical particle libraries with controlled internal
morphologies and overall shapes. Importantly, surfactants play a critical role in stabilizing
the emulsion as well as directing the assembly of the polymer by determining the preferen-
tial surface wetting of the BCP component. In this review, we highlighted recent advances
in shape-controlled polymer particles, especially for their responsive function, which is
summarized in Table 1.

Table 1. Summary of responsive BCP particles.

Stimulus BCP Surfactants Ref.

Temperature PS-b-P4VP
poly(N-isopropylacrylamide) [62]

poly(DEAEAM-r-NIPAM) (dual) [63]

pH
PS-b-P4VP poly(DEAEAM-r-NIPAM) (dual) [63]
PS-b-P2VP CTAB, CTAB-OH [39]

PFS-b-P2VP CTAB, CTAB-OH [38]

Light PS-b-P2VP Coumarin ester-CTAB,
Nitrobenzyl ester-CTAB [85]

Solvent PS-b-P2VP PVA [89,90]

Field poly(AW-b-BnW)
den-BBCP AW-CTAB, BnW-CTAB, CTAB [91]

While stimuli-responsive surfactants have received a great deal of attention due to
their tunable chemical, physical, and other properties in response to a variety of external
stimuli, the manufacturing of dynamic BCP particles that uses responsive surfactants to
control their shape and structure remains relatively unexplored. Systematic research on
the development of surfactants is required to create smart particles that respond highly
reversibly to multiple stimuli without any fatigue during multiple cycles. We also note
that most responsive polymer particles require solvent-mediated reconstruction to provide
sufficient chain mobility. The use of polymers having a low glass transition temperature
(Tg) or cross-linkable units will be a promising alternative approach. Moreover, although
some research on non-linear polymer assemblies has been investigated recently, there
remains a need for polymer particle design principles for new architectures (Figure 9).
Polymer architecture plays a significant role in controlling the assembly structure as well
as its responsive behavior. Spiral polymers and gyroid polymers, for example, are two of
the promising prospects for designing directional release systems in response to external
stimuli. Finally, the unique structural functionality, i.e., biodegradable BCPs, can be
expanded by modifying their compositions.
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