Supporting information

Functionalization of an alginate-based Material by Oxidation and Reductive Amination

Ronny G. Huamani-Palomino^{1,*}, Bryan M. Córdova¹, E. Renzo Pichilingue L.², Tiago Venâncio ³, and Ana C. Valderrama ^{1,*}

- ¹ Laboratory Investigation of Biopolymers and Metallopharmaceuticals (LIBIMET), Faculty of Sciences, Chemistry Department, National University of Engineering. Av. Túpac Amaru 210, 15333, Lima 25, Peru; bcordovav@uni.pe
- ² National University of Engineering Av. Túpac Amaru 210, 15333, Lima 25, Peru; epichilinguel@uni.pe
- ³ Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de Sao Carlos, São Carlos, São Paulo CP 676, 13565-905, Brazil; venancio@ufscar.br
- * Correspondence: rohuamanip@uni.pe (R.G.H.); ana.valderrama.n@uni.edu.pe (A.C.V.)

The molecular weight of commercial sodium alginate was evaluated by Size-exclusion chromatography (SEC) with online multi-angle static laser light scattering (MALLS), which were performed at ambient temperature on an HPLC system consisting of a solvent reservoir, on-line degasser, HPLC isocratic pump, automatic sample injector, pre-column, and a G6000PW main column. The column outlet was connected to a Dawn HELEOS-II multiangle laser light scattering photometer (Wyatt, U.S.A.) ($\lambda 0 = 663.8$ nm) followed by Shodex RI-501 refractive index detector. The eluent was 0.15 mol L⁻¹ NaNO₃, 0.01 mol L⁻¹ EDTA (pH = 6.0) and the flow rate was 0.5 mL min⁻¹. Samples (1 mg mL⁻¹) were filtered (pore size 0.45 µm) before injection and each sample were analyzed twice with injection volume 50 and 100 µL. Data were collected and processed (with dn/dc = 0.150 mL g⁻¹) using the Astra (v. 7.3.0) software (Wyatt, U.S.A.). The analysis was performed according to the ASTM protocol nr. F2602 – 13.

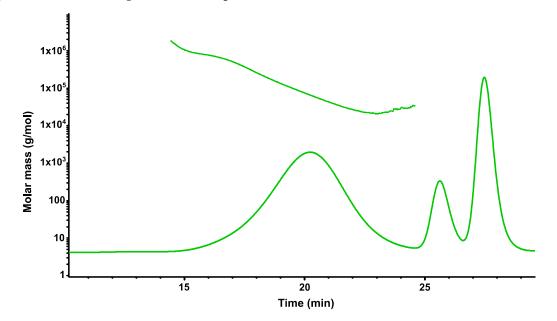


Figure S1. Refractive index chromatogram of commercial sodium alginate used as starting material.

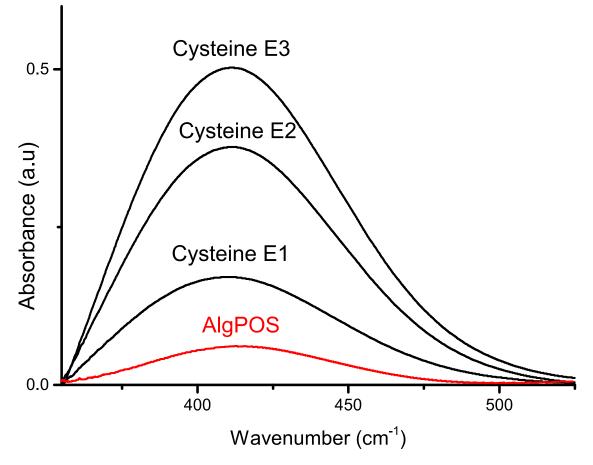


Figure S2. UV-Vis spectra of cysteine standards (E1, E2 and E3) and AlgPOS. Evaluation of thiols group by Ellman's reaction.

Table S1. Values obtained of commercial sodium alginate by SEC-MALS

Sample	Mn	Mw	PI (Mw/Mn)
Sodium alginate	58.6	124.7	2.1
(Sigma Aldrich)	57.0	123.7	2.2
Average	57.8	124.2	2.1

Table S2. Values obtained of commercial sodium alginate by ¹H NMR

Sample	FG	Fм	Fgg	Fgm	Fмм	Fggm	FMGM	Fggg	N(G>1)	M/G
Sodium										
alginate	0.49	0.50	0.30	0.18	0.31	0.07	0.11	0.24	5.33	1.02
(Sigma	0.49	0.50	0.30	0.10	0.31	0.07	0.11	0.24	5.55	1.02
Aldrich)										

Sample	Absorbance	[C] (µM)	V(mL)
Cysteine E1	0.171	24.6	10
Cysteine E2	0.377	49.2	10
Cysteine E3	0.503	61.5	10
AlgPOS	0.086	74.7	200

Table S3. Values obtained of AlgPOS by UV-Visible.