

Supporting Information

Hydrothermal carbon as reactive fillers to produce sustainable biocomposites with aromatic biobased epoxy resins

Iuliana Bejenari,^{a,b} Roxana Dinu,^a Sarah Montes,^c Irina Volf,^b Alice Mija^{a*}

^aUniversity Côte d'Azur, Institute of Chemistry of Nice, UMR CNRS 7272, 06108 Nice Cedex 02, France

^bGheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. D. Mangeron Street, 700050, Iasi, Romania

°CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain

*E-mail : Alice.Mija@unice.fr

Total number of pages : 8

Total number of tables : 6

Total number of figures : 8

1. Compounds characteristics

Table S1. Physico-chemical characteristics of the epoxy resin components

Compound Name © © © © FV Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).	Molecular structure	Molar mass (g/mol)	Appearance	Density (g/mL at 25°C)
Resorcinol diglycidyl ether (RDGE)	o v	222.24	White to Light Yellow Semi-Solid to Solid	1.21
N, N-Dimethylbenzylamine (BDMA)	CH ₃ NCH ₃	135.21	Colorless Liquid	0.9

2,4,6-Tris(dimethylaminomethyl)phenol (DMP-30)	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	265.39	Pale yellow Viscous liquid	0.969

Table S2. Particle size distribution of hydrochar

Particle	Density	
diameter, µm	distribution, %	
0.1-0.4	0.05	
2-6	0.09	
6-20	0.15	
20-50	2.5	
80-200	3.5	
300-500	15	

Table S3. Biocomposites' formulations

	Compounds ratio in biocomposites, in wt.%				
Samples abbre- viation	Resorcinol diglycidyl ether (R)	Hydrochar (HC)	N,N-dimethylbenzylamine (B)	2,4,6-tris(dimethylaminomethyl)phenol (D)	
R95-BD5	95	0	2.5	2.5	
R94-BD5-HC1	94	1	2.5	2.5	
R90-BD5-HC5	90	5	2.5	2.5	
R85-BD5-HC10	85	10	2.5	2.5	
R80-BD5-HC15	80	15	2.5	2.5	
R75-BD5-HC20	75	20	2.5	2.5	
R65-BD5-HC30	65	30	2.5	2.5	

2. Differential scanning calorimetry

Table S4. DSC results during heating and crosslinking of the neat resin and RDGE/BD/HC formulations

Sampla codo	Reaction T _{max} (interval	Enthalpy of reac-	
Sample code	of reaction) (°C)	tion (J.g ⁻¹)	
R95-BD5	141 (66-229)	405	
R94-BD5-HC1	137 (63-215)	440	
R90-BD5-HC5	130 (60-215)	478	
R85-BD5-HC10	121 (55-207)	511	
R80-BD5-HC15	120 (56-201)	450	
R75-BD5-HC20	116 (53-188)	503	
R65-BD5-HC30	112 (52-172)	512	

3. FT-IR Spectroscopy

Figure S1. FT-IR spectra of hydrochar

Figure S2. FT-IR spectra of the raw materials

Figure S3. FT-IR spectra of unreacted and crosslinked composites

Table S5. Assignments of peaks absorptions identified in IR analysis for RDGE, BDMA and DMP-30

Compounds	Wavenumbers, cm ⁻¹	Functional groups
	3485	O-H stretching of hydroxyl groups
	3062	Stretching of asymmetrical C-H bond in aromatics
	2924, 2873	Symmetrical and asymmetrical stretching of C-H
		aromatic and aliphatic rings
RDGE	1590	Stretching vibration of C=C bond of aromatic ring
	1491, 1449, 1427	Stretching vibration of C-C bond of aromatic ring
	1340	Stretching bond deformation of C-H in plane
	1286, 1259	epoxide ring vibration
	1182, 1150, 1129, 1085, 1030	Stretching vibration of asymmetrical C-O-C bond of

		ethers
	902	Stretching vibration of C-O bond of oxirane group
	842	Stretching vibration of C-O-C bond of oxirane
	042	group
	761 686 580	Stretching vibration of C-H out of plane
	701, 080, 380	deformation in aromatic
	3085, 3063, 3027, 2973, 2941,	Asymmetrical and symmetrical stretching vibration
	2854, 2814, 2763	of C-H bond of –CH ₃ and –CH ₂ groups
	1405 1452 1262 1217	Asymmetrical and symmetrical stretching
	1493, 1432, 1303, 1317	deformation of C-H bond of -CH ₃ and -CH ₂ groups
DDMA	1258, 1174, 1146, 1097, 1075,	Stretching vibration of C-N bonds corresponding to
	1034	amine groups
	975, 908, 850, 825, 735, 697, 609	Out-of-plane deformation of =CH bonds
	2973, 2940, 2853, 2811, 2763,	Asymmetrical and symmetrical stretching vibration of C-H bond of –CH ₃ and –CH ₂ groups
	1683, 1611	Stretching vibration of C=C skeleton in benzene ring
DMP-30	1455, 1402, 1354	Asymmetrical and symmetrical stretching deformation of C-H bond of –CH ₃ and –CH ₂ groups
	1299, 1281, 1256, 1230, 1032	Stretching vibration of C-N in amine
	1175, 1139, 1097	Stretching vibration of C-O in phenol
	988, 886, 836, 789, 752, 643, 615	Out-of-plane deformation of =CH bonds

Figure S4. DTG curves of the bio-based materials

4. Thermogravimetric analysis

5. Tensile testing

Table S6. Tensile properties of the bio-based polymeric materials

	Young's Modulus	Maximum	Stress at Fail-	Maximum	Strain at	Resilience
	(MPa)	Stress (MPa)	ure (MPa)	Strain (%)	Failure (%)	(MJ/m ⁻³)
R95-BD5	1796.28 ± 38.41	63.41 ± 9.38	57.71 ± 12.48	6.84 ± 2.36	6.86 ± 2.36	216.9

R90-BD5-HC5	1731.14 ± 88.61	24.80 ± 7.62	24.80 ± 7.62	1.86 ± 0.72	1.86 ± 0.72	23.1
R85-BD5-HC10	1572.60 ± 55.57	22.84 ± 6.96	22.84 ± 6.96	1.60 ± 0.48	1.60 ± 0.48	18.3
R80-BD5-HC15	1740.94 ± 414.49	19.68 ± 0.85	19.68 ± 0.85	1.34 ± 0.24	1.34 ± 0.24	13.2
R75-BD5-HC20	1398.16 ± 160.57	17.58 ± 3.84	17.58 ± 3.84	1.46 ± 0.19	1.46 ± 0.19	12.8

Figure S5. Stress-strain curves of the RD95-BD5 (black line), RD90-BD5-HC5 (green line), RD85-BD5-HC10 (blue line), RD80-BD5-HC15 (purple line), and R75-BD5-HC20 (orange line)

Figure S6. Water absorption as a function of immersed time

6. Water absorption

7. Solvent stability

Figure S7. Solvent stability of thermosets: 1) R95-B5; 2) R94-BD5-HTC1; 3) R90-BD5-HTC5; 4) R85-BD5-HTC10; 5) R80-BD5-HTC15; 6) R75-BD5-HTC20; 7) R65-BD5-HTC30

9 of 9