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Abstract: Polylactide (PLA) is a biodegradable thermoplastic aliphatic polyester. The thermal
stability and crystallization behavior of PLA are extremely sensitive to storage, processing, and
usage conditions. This work systematically studied the thermal stability and crystallization behavior
of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and a PLLA/PDLA (LD) blend, which were
stored under two sets of laboratory storage conditions: (1) stored in a vacuum-free desiccator and
(2) stored in vacuum-sealed bags. Both were stored at room temperature for 3 years. Gel permeation
chromatography results revealed that the PLLA, PDLA, and LD samples hydrolyzed slowly when
stored in vacuum-sealed bags and degraded significantly when stored in a vacuum-free desiccator;
this process significantly reduced the thermal stability of the samples stored in the vacuum-free
desiccator. Owing to hydrolysis, the levorotation and dextrorotation (L- and D-) molecular chains
were shortened; consequently, more nuclei were formed, and this caused the melting points of the
PLLA, PDLA, and LD samples to decrease and the melting enthalpy of the crystals in these samples
to increase. Wide-angle X-ray diffraction analysis revealed that when the L- and D- molecular
chains were packed side by side to form stereocomplex crystals and the randomly arranged L- and
D- molecular chains were easy hydrolyzed and degraded, this interfered with the formation of
homocrystals in LD. When PLLA, PDLA, and LD samples are stored in a vacuum-free desiccator,
they will be significantly hydrolyzed, resulting in the formation of only stereocomplex crystals, and
no homocrystals are observed.

Keywords: polylactide; stereocomplex; crystallization; storage condition

1. Introduction

Polylactide (PLA) is a biodegradable thermoplastic aliphatic polyester; its ester back-
bone is susceptible to chemical hydrolysis in aqueous environments [1]. This characteristic
of PLA is of interest with respect to materials that require biodegradable applications [2];
however, it is also a main problem when storing and processing these materials. The
degradation of PLA is primarily due to the hydrolysis of the ester linkages, which occur
more or less randomly along the polymer backbone. The presence of weakly hydrolyzed
bonds makes PLA sensitive to moisture and heat. Moisture will promote the hydrolysis
of PLA due to the cleavage of the –C–O– ester bond [3–5]; thus, the properties of PLA,
especially their mechanical and rheological properties [6], are extremely sensitive to storage,
processing, and usage conditions [7–9]. For example, the following storage conditions are
recommended for crystalline lactide: storage at ambient temperature for 1 year and at 4 ◦C
throughout one year in airtight bags and vapor barriers (including an inner plastic bag
and outer aluminum pouch). Crystalline lactide may be oxidized by specific components
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(e.g., moisture, oxygen, and acid contamination) in the environmental atmosphere and
therefore may rapidly decompose in air. The rate of lactide decomposition depends on the
contact surface and temperature [10]. The formation of homocrystal and stereocomplex
crystal in chips and fibers of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) of varying
weight ratio has been investigated [11,12]. Because PLA can be hydrolyzed to obtain
lactic acid under biological conditions, potential biomedical applications are concerned
with the difference in hydrolytic activity between stereocomplex crystals with β-form
31-helices and homocrystals with α-form 103-helices. Li and Vert [13] demonstrated that
stereocomplex crystals formed during the hydrolysis of poly(L-lactide-co-D-lactide) (L/D
ratios of 62.5/37.5; intrinsically amorphous) films in a phosphate buffer solution. The
relatively random monomer unit sequences without the addition of stereocomplex crys-
tals produced greater hydrolysis. On the other hand, poly(L-lactide-co-D-lactide) with
L/D ratios of 62.5/37.5 formed stereocomplex crystals after long-term hydrolysis [14].
Owing to the stereoselective interaction between PLLA and PDLA chains, stereocomplex
crystals with a dense crystal structure exhibit hydrolysis resistance superior to that of
homocrystals; therefore, homocrystals become easily detached from the surface during
the etching process [15–17]. Multiple studies have investigated the hydrolytic degrada-
tion of well stereocomplex blends of PLLA/PDLA and nonblended films prepared with
solvent casting technology [18–22]; these studies have reported that a well stereocom-
plex 1:1 blended film is more resistant to hydrolysis than a nonblended film is, because
of the strong interaction between L- and D-lactide unit sequences and the solid three-
dimensional micronetwork formed after stereocomplexation [18]. The activation energy for
the degradation of stereocomplex crystals (97.3 kJ mol−1) is considerable higher than that
required for the degradation of PLLA α-form crystals (75.2 kJ mol−1) [21]. The hydrolysis
of samples stored under different storage conditions is significantly different, and the
thermal stability and crystallization behavior of PLA are extremely sensitive to storage,
processing, and usage conditions. Therefore, this study systematically studied the thermal
stability and crystallization behavior of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA),
and a PLLA/PDLA (LD) blend, which were stored under two sets of laboratory storage
conditions: (1) stored in a vacuum-free desiccator and (2) stored in vacuum-sealed bags.
Both were stored at room temperature for 3 years. Thermogravimetric analysis (TGA), gas
chromatography–mass spectrometry (GC–MS), gel permeation chromatography (GPC),
differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXD) were
employed to investigate the homocrystallization and stereocomplex crystallization of LD
after storage under both sets of conditions.

2. Materials and Methods

PLLA (Synterra® PLLA 1510) and PDLA (Synterra® PDLA 1010) were supplied in
chip form by Synbra Technology BV (Etten-Leur, Netherlands), the residual monomer of
PLLA was less than 1% and the L-Isomer of PDLA was less than 1%. The initial thermal
degradation temperatures of the received PLLA and PDLA were 300 ◦C, as measured using
TGA. LD was prepared by melt-blending in a mixer at 190–220 ◦C with mechanical stirring
at 100 rpm and a throughput rate of 3.5 kg/h, with a PLLA:PDLA feed ratio (by weight)
of 50:50. As mentioned, PLLA, PDLA, and as-blended LD were stored under two sets of
conditions, both of which are common in most polymer laboratories. The duration of the
experimental storage was 3 years. The sets of storage conditions are described as follows:

1. Storage in a zipper bag in a vacuum-free desiccator containing silica gel at a room
temperature of 25 ± 3 ◦C and 50% relative humidity.

2. Storage in a vacuum-sealed bag at a room temperature of 25 ± 3 ◦C.

The received PLLA, PDLA, and as-blended LD samples used in this study were
denoted as PLLA-R, PDLA-R, and LD-R, respectively. The PLLA-R, PDLA-R, and LD-
R samples stored in zipper bags in a vacuum-free desiccator were denoted as PLLA-D,
PDLA-D, and LD-D, respectively, and those stored in vacuum-sealed bags were denoted as
PLLA-V, PDLA-V, and LD-V, respectively.
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The thermal degradation behavior of each sample was characterized through TGA
(TGA2050, Du-Pont, Delaware, DE, USA) with a thermal analysis system (TA2000, Delaware,
DE, USA). The instrument was calibrated with Ni. The sample was heated from room
temperature to 600 ◦C at a rate of 10 ◦C/min. Dry nitrogen was used as the purge gas at a
rate of 100 cm3/min.

Degradation products were analyzed using a Mettler-Toledo Analytical instrument
(2-HT, Novate Milanese, Italy), which was coupled to a gas chromatograph (7890A, Agilent
Technologies, Madrid, Spain) equipped with a mass selective detector (5975, Agilent
Technologies, Madrid, Spain). The column used for analysis was a 30 m-long HP-5 (0.25 mm
thickness), using helium as a carrier gas, and the split ratio was 50:1. The GC oven was
programmed at 40 ◦C for 5 min, then gradually increased at 10 ◦C min−1 to 280 ◦C, and
held for 5 min. The mass selective detector was programmed to detect masses between 1.6
and 1050 amu. PLA samples were pyrolyzed at 180 ◦C for 0.5 s. The identification of PLA
degradation products was confirmed by the characteristic fragment patterns observed in
GC/MS spectra and compared with the literature mass spectra.

The crystallization and melting behaviors were observed through DSC (DSC Q10,
Du-Pont) with a thermal analysis system (TA2000). The instrument was calibrated with In
and Pb. The flow rate of the purge gas, N2, was approximately 50 cm3/min.

The number-average molecular weight (Mn), weight-average molecular weight (Mw),
and intrinsic viscosity (I.V.) of the sample were measured using the Viscotek GPC System
(1122 pump, 2707 Auto-Injector, 270 LS Laser Light Scattering Detector/Viscometer, Shodex
71 RI Detector, OmniSEC 4.6 Station, Malvern, United Kingdom) with an HFIP 806M Shodex
column. The sample was dissolved in hexafluoroisopropanol (HFIP) for 12 h and then filtered
through a 0.2 µm polytetrafluoroethylene filter membrane. The oven temperature, flow rate,
and analysis time were set at 30 ◦C, 1 mL·min−1 with HFIP, and 60 min, respectively.

The crystal structure was obtained using a wide-angle X-ray diffractometer (D8 Dis-
cover, Bruker) with Cu Kα radiation. The electric voltage and current were 50 kV and
1000 µA, respectively. The 2θ scanning angle was between 10◦ and 30◦ with a scan step
size of 0.02◦ and a scan step time of 0.5 s.

3. Results and Discussion

The thermal stability of PLLA, PDLA, and LD under the two sets of storage conditions
is shown in Figure 1. PLLA-R, PDLA-R, LD-R, PLLA-V, PDLA-V, and LD-V had onset
temperatures (T0) of thermal degradation of 300 ◦C and a maximum degradation rate
(Tmax) of 370~371 ◦C. The T0 values of PLLA-D, PDLA-D, and LD-D were 89, 64, and
130 ◦C, respectively, and their Tmax values were 368, 367, and 369 ◦C, respectively. The
thermal stability of PLLA-R, PDLA-R, LD-R, PLLA-V, PDLA-V, and LD-V were almost
identical, whereas those of PLLA-D, PDLA-D, and LD-D were markedly lower; LD-D
had the highest thermal stability, followed by PLLA-D and then PDLA-D. The samples
stored in the vacuum-free desiccator exhibited significant levels of hydrolytic degradation,
leading to a significant reduction in the T0 and Tmax values of PLLA-D, PDLA-D, and
LD-D; this finding indicates that storage conditions can significantly affect the thermal
stability of PLA. According to the T0 of the sample, the degradation products of PLLA-D,
PDLA-D and LD-D were analyzed using gas chromatography–mass spectrometry at 180 ◦C.
Each degradation product was detected and identified by the mass spectra of each main
chromatographic peak (see Figure 2). There was a peak at 1.4 min, and the mass-to-charge
ratio (m/z) was 44. The characteristic fragmentation patterns observed in the Py–GC/MS
spectra are shown in Figure 3. McNeill and Leiper studied the degradation of PLLA under
controlled heating and isothermal conditions and reported that the main products were
cyclic oligomers, including lactide and other low-boiling products such as carbon dioxide,
acetaldehyde, ketene, and carbon monoxide [23,24]. After the library search and literature
mass spectra analysis, PLLA-D, PDLA-D and LD-D degradation products were identified,
and the main degradation product was found to be acetaldehyde [25,26]. The results
showed that all samples had the same main degradation products at 180 ◦C.
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Figure 1. (a) Thermogravimetric analysis (TGA) and (b) derivative thermal gravimetric (DTG) curves
of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and the PLLA/PDLA (LD) blend at a heating rate
of 10 ◦C/min.

Figure 4 demonstrates the GPC curves of the PLLA, PDLA, and LD samples under the
two sets of storage conditions. The molecular weight distributions of all the samples shifted
to lower molecular weights during storage. The Mn, Mw, and I.V. of PLLA, PDLA, and LD
obtained through GPC are plotted in Figure 5. The results of Mn, Mw, and I.V. revealed
that the samples stored in vacuum-sealed bags hydrolyzed slowly, whereas those stored in
the vacuum-free desiccator degraded significantly. This indicates that the hydrolysis levels
of PLLA, PDLA, and LD samples under two different storage conditions, both of which
are common in most polymer laboratories, are quite different. Although the molecular
weight of LD-R is lower than that of PLLA-R and PDLA-R before hydrolytic degradation,
the molecular weights of LD-D were significantly higher than that of PLLA-D and PDLA-D
after hydrolytic degradation. In addition, the thermal stability of LD-D was higher than that
of PLLA-D and PDLA-D (Figure 1). These results indicate that stereocomplexation strongly
prevented hydrolytic degradation, which have been reported in the literature [18–22].
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Figure 2. GC–MS chromatogram of (a) PLLA-D, (b) PDLA-D, and (c) LD-D pyrolyzed for 0.5 s at 180 ◦C.

The melting behaviors of PLLA, PDLA, and LD are illustrated in Figure 6. The first
heating curves of PLLA-V and PDLA-V revealed melting behaviors almost identical to
those of PLLA-R and PDLA-R. These heating curves had a melting peak at 175–177 ◦C;
these peaks were caused by the melting of homocrystals [27]. The corresponding cooling
and reheating curves of PLLA and PDLA at 10 ◦C/min after melting at 200 ◦C for 3 min are
shown in Figure 7. PLLA-V and PDLA-V exhibited homocrystallization behaviors almost
identical to those of PLLA-R and PDLA-R during cooling (Figure 7a). They demonstrated
cold crystallization peaks followed by melting peaks at 173–175 ◦C during reheating owing
to the melting of homocrystals. The melting enthalpy values in the reheating curves of
PLLA-V and PDLA-V were 51.3 and 52.5 J/g, respectively (Figure 7b). These values were
slightly higher than the corresponding values for PLLA-R and PDLA-R, which were 50.7



Polymers 2021, 13, 238 6 of 14

and 50.4 J/g, respectively. However, the melting behaviors of PLLA-D and PDLA-D dif-
fered significantly from those of PLLA-R and PDLA-R; the melting peaks of the first heating
curves of PLLA-D and PDLA-D occurred at 164.7 and 161.8 ◦C, respectively (Figure 6).
The cooling curve of PDLA-D indicated high crystallization enthalpy (Figure 7a). During
reheating, the melting peaks of PLLA-D and PDLA-D occurred at 159.8 and 149.3 ◦C,
respectively (Figure 7b). No cold crystallization peak of PDLA-D was observed during re-
heating. The melting enthalpy values in the reheating curves of PLLA-D and PDLA-D were
52.1 and 54.0 J/g, respectively. Evidently, the melting peaks of PLLA-D and PDLA-D were
significantly lower than those of PLLA-R and PDLA-R. However, the melting enthalpy values
of PLLA-D and PDLA-D were higher than the corresponding values of PLLA-R and PDLA-R.
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Figure 3. GC–MS characteristic fragmentation patterns of (a) PLLA-D, (b) PDLA-D, and (c) LD-D of peak 1.4 min.

During the first heating, the melting and crystallization behaviors of LD-V were
almost identical to those of LD-R (Figure 6). LD-V had a low melting peak at 170.9 ◦C
with a melting enthalpy value of 1.7 J/g owing to homocrystals as well as a melting
peak at 240.1 ◦C with a melting enthalpy value of 102.2 J/g owing to stereocomplex
crystals [27]. The melting enthalpy of LD-V stereocomplex crystals was almost identical to
that of the LD-R stereocomplex crystals: approximately 103.0 J/g (Figure 8). The cooling
curves of LD-R and LD-V exhibited double crystallization peaks, which were caused
by homocrystallization at 102–105 ◦C and stereocomplex crystallization at 117–124 ◦C
(Figure 7a). The crystallization enthalpy value of LD-V (15.9 J/g) was lower than that of
LD-R (37.1 J/g) during cooling. The reheating curves of LD-R and LD-V exhibited cold
crystallization peaks followed by double melting peaks (Figure 7b). The lower melting
peak temperature resulted from the melting of homocrystals at 169–171 ◦C, whereas the
higher melting peak temperature resulted from the melting of stereocomplex crystals at
222–224 ◦C. The melting enthalpy values resulting from the homocrystals of LD-R and LD-
V were 27.0 and 37.8 J/g, respectively, and the melting enthalpy values resulting from the
stereocomplex crystals of LD-R and LD-V were 53.8 and 50.3 J/g, respectively (Figure 8).
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The melting behavior of LD-D differed significantly from that of LD-R. During the
first heating process, LD-D exhibited a melting peak at 236.4 ◦C due to the melting of
stereocomplex crystals (Figure 6) [27]. No homocrystals were observed. LD-D exhibited
high crystallization enthalpy in its cooling curve and only one melting peak during reheat-
ing; these observations resulted from the crystallization and melting of the stereocomplex
crystals (Figure 7). The melting peak and melting enthalpy values of LD-D were 213.0 ◦C
and 78.8 J/g, respectively (Figure 8). Homocrystallization did not occur in LD-D.

Homocrystals were observed in PLLA-R, PDLA-R, PLLA-V, PDLA-V, PLLA-D, PDLA-
D, LD-R, and LD-V during the first heating, cooling, and reheating processes. Compared
with the thermal behaviors of the received PLLA-R, PDLA-R, and as-blended LD-R samples,
no significant differences were observed in the corresponding behaviors of the PLLA-V,
PDLA-V, and LD-V samples stored in vacuum-sealed bags. In contrast, the cooling and
reheating curves indicated that the samples stored in the vacuum-free desiccator exhibited
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significant hydrolytic degradation; specifically, the melting peaks of PLLA-D, PDLA-D,
and LD-D were significantly lower than those of the other samples, and their melting
enthalpy values were significantly higher. These findings indicated that when the L- and
D- molecular chains were shortened by degradation, more nuclei were formed, resulting in
lower melting points and higher melting enthalpy in PLLA-D, PDLA-D, and LD-D. In other
words, once nuclei have formed under specific storage conditions, crystals form under
suitable crystallization conditions. Notably, only stereocomplex crystals were formed in
LD-D; that is, no homocrystallization occurred in LD-D during the first heating, cooling,
and reheating processes. This finding indicated that when the LD-D sample was stored
in the vacuum-free desiccator, no homocrystal nucleus formed. It was also found that
at higher molecular weights as in LD-R and LD-V, homocrystal formation prevails as in
LD-R and LD-V, whereas at lower molecular weights as in LD-D, stereocomplex crystals
formation prevails.
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The WAXD profiles of PLLA, PDLA, and LD are shown in Figure 9. PLLA-R, PDLA-R,
PLLA-V, PDLA-V, PLLA-D, and PDLA-D all exhibited four diffraction peaks at 14.7◦, 16.6◦,
19.0◦, and 22.3◦, which corresponded to the (010), (110/200), (203), and (015) homocrystal
reflections, respectively (Figure 9a–f) [28]. After melting at 200 ◦C for 5 min and then
cooling to room temperature at 10 ◦C/min, these six samples all had identical homocrystal
reflection results. PLA is polymorphic, meaning that it depends on crystallization con-
ditions so that different crystal structures may develop. The crystallization of the melt
at temperatures higher than 120 ◦C leads to the formation of orthorhombic α-crystals, in
which the molecular segments adopt a 103-helix conformation. At lower crystallization
temperatures, the growth of pseudohexagonal α′-crystals is favored, with the molecule
segments showing the same helical structure as in α-crystals, but exhibiting conforma-
tional disorder [29,30]. Since the WAXD diffraction peaks of the α-crystals and α′-crystals
highly overlap, it is difficult to identify separately. In this study, the experimental condi-
tions of PLLA and PDLA were melting at 200 ◦C and then cooling to room temperature
at 10 ◦C/min. Due to the homocrystallization range of 130–60 ◦C during cooling (see
Figure 7a), both the α-type and α′-type will grow [30,31]. This indicated that homocrystals
formed regardless of storage conditions. Here, a heater (THMS 600, Linkam) was equipped
with an electric microscope controller (TMS91, Linkam), and was used to prepare the
sample preparation. LD-R, LD-V, and LD-D all exhibited three diffraction peaks at 11.9◦,
20.7◦, and 24.0◦, which corresponded to the (110), (300/030), and (220) stereocomplex
crystal reflections, respectively (Figure 9g–i) [28]. After melting at 290 ◦C for 3 min and
then cooling to room temperature at 10 ◦C/min, LD-R and LD-V each exhibited seven
diffraction peaks: four at 14.7◦, 16.6◦, 19.0◦, and 22.3◦, which were related to homocrystal
reflections, and three at 11.9◦, 20.7◦, and 24.0◦, which were related to the stereocomplex
crystal reflections [28]. However, among the crystalline diffraction peaks of LD-D before
and after melting, only three crystal diffraction peaks related to the stereocomplex crystal
were observed; no diffraction peak related to the homocrystal was observed before or after
melting. One possible reason for these findings is the strong interaction between the L-
and D- molecular chains in LD. When these chains are packed side by side, more stable
stereocomplex crystals are formed. The randomly packed L- and D- molecular chains in LD
are relatively highly prone to hydrolysis and degradation. Therefore, when these chains
are packed side by side to form stereocomplex crystals and randomly arranged L- and D-
molecule chains are easily hydrolyzed and degraded, this interferes with the formation
of homocrystals in LD. Consequently, the structure of the stereocomplex crystals formed
by the L- and D- molecular chains packed side by side is more resistant to hydrolysis
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than the structure formed by other arrangements of L- and D- molecular chains in the
blended sample.
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then cooling to room temperature at a rate of 10 ◦C/min. Here, (010), (110/200), (203), and (015) are
related to homocrystal reflections; whereas (110), (300/030), and (220) are related to stereocomplex
crystal reflections.

4. Conclusions

In this study, PLLA, PDLA, and LD were stored under two sets of laboratory conditions
for 3 years to investigate the thermal stability and crystallization behaviors of homocrystals
and stereocomplex crystals. The thermal stabilities of PLLA, PDLA and LD stored under
two sets of storage conditions are very different. When samples are stored in vacuum-
sealed bags, they will degrade slowly; however, when samples are stored in a vacuum-free
desiccator, they will degrade significantly. The GPC results of Mn, Mw, and I.V. revealed
that the PLLA, PDLA, and LD samples hydrolyzed slowly when stored in vacuum-sealed
bags and hydrolyzed significantly when stored in a vacuum-free desiccator. These processes
resulted in considerably reduced thermal stability in the PLLA, PDLA, and LD stored in a
vacuum-free desiccator.

Compared with the crystallization and melting behaviors of the received PLLA, PDLA,
and as-blended LD samples, no significant differences were observed in the melting points
or melting enthalpy values of the corresponding samples stored in the vacuum-sealed bags.
However, storing the samples in a vacuum-free desiccator caused significant hydrolytic
degradation. When the L- and D- molecular chains were shortened by hydrolysis, more
nuclei were formed, and this caused the melting points of the PLLA, PDLA, and LD samples
to decrease and the melting enthalpy values of the crystals in these samples to increase.

WAXD analysis revealed that only stereocomplex crystals formed in LD-D; no homocrys-
tals were observed. This finding indicated that L- and D- molecular chains packed side by
side can form a relatively stable stereocomplex crystal. However, the L- and D- molecular
chains randomly packed in LD are highly prone to hydrolysis and degradation. When L-
and D- molecular chains are packed side by side the formed stereocomplex crystals, and
randomly arranged L- and D- molecular chains are easy hydrolyzed and degraded, which
interferes with the formation of homocrystals in LD.

Consequently, in this study, it was found that under two sets of laboratory storage
conditions: (1) stored in a vacuum-free desiccator and (2) stored in a vacuum-sealed
bag, the hydrolysis levels of PLLA, PDLA and PLLA/PDLA (LD) blends vary greatly.
When samples are stored in a vacuum-free desiccator, they will hydrolyze significantly.
When the L- and D- molecular chains were shortened by hydrolysis, more nuclei were
formed. Due to the strong interaction which occurred between the side-by-side packed
L- and D- molecular chains, stereocomplex crystals formed that were more resistant to
hydrolysis than were the other arrangements of L- and D- molecular chains in the blended
samples. When the LD sample was stored in a vacuum-sealed bag at room temperature
for 3 years, only stereocomplex crystals formed, and no homocrystals were observed.
Therefore, the structure of the material before degradation will affect the thermal stability
and crystallization behavior of the material after degradation.
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