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Abstract: New cryogels for selective dye removal from aqueous solution were prepared by free
radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-
ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-
sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels
have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not
methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through
selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting
cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO
and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal
of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.

Keywords: cryogel; water treatment; dye removal; methyl orange; methylene blue; dye mixture

1. Introduction

Cryogels have been known since the 1970s and are generally made by polymerization
around ice crystals [1,2]. As the ice crystals are rather large, the resulting cryogels contain
interconnected pores in the micrometer range. The large pores result in a good accessibility
for fluids or gases and cryogels have therefore been used for cell storage, tissue engineering,
bone regeneration, and drug delivery [2,3].

Besides application in the biomedical and biomaterials fields, water treatment with
cryogels has also attracted attention [1,4–7]. For example, Evli et al. [8] used acetylcysteine
modified cryogels to remove Zn(II), Cd(II), and Pb(II) from water. All ions were removed
with an efficiency of over 90%. Bilgin et al. [9] studied the removal of complex mixtures of
heavy metals from a series of industrial wastewater sources using nicotinamide decorated
poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) cryogels. According to the au-
thors, the removal of different metal cations depends on whether or not the parent polymer
matrix is modified with nicotinamide or not. In some cases, the removal efficiency is
higher with the nicotinamide modification, notably Zn(II), Al(III), or Cu(II), while in some
cases such as Hg(II) or Pb(II), the unmodified cryogels are more effective. Using a related
approach, Huseynli et al. [10] employed metal cation imprinted cryogels to remove Cd(II)
from water. Again, the authors used methacrylate polymers modified with cysteine methyl
ester residues to generate cryogels with Cd(II) removal efficiencies reaching more than 98%.
Sarkaya et al. [11] used an analogous approach to imprint poly(hydroxyethyl methacrylate)
cryogels modified with N-methacryloyl-L-cysteine with Ag+ and subsequently removed
over 70% of Ag+ ions present in test solutions. In contrast, the non-modified cryogels
(i.e., cryogels without pendant L-cysteine groups) only removed below 1% of the Ag+

present. Overall, these and many other studies show that cryogels (imprinted or not) can
be effective media for heavy metal removal [1,6].

Organic dyes have attracted tremendous attention as well in water treatment. This
is mainly due to the fact that many dyes are endocrine disruptors [12]. This is a severe
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problem, and the US National Institute of Health has precisely summarized the issues
with endocrine disruptors: “Many chemicals, both natural and man-made, may mimic or
interfere with the body’s hormones, known as the endocrine system. Called endocrine
disruptors, these chemicals are linked with developmental, reproductive, brain, immune,
and other problems. Endocrine disruptors are found in many everyday products, including
some plastic bottles and containers, liners of metal food cans, detergents, flame retardants,
food, toys, cosmetics, and pesticides. Some endocrine-disrupting chemicals are slow to
break-down in the environment. That characteristic makes them potentially hazardous
over time [13].”

MO and MB, along with many other organic dyes, therefore pose a severe threat to
plant, animal, and human health [14]. Among others, this is due to the fact that they are
highly water soluble and can thus be transported in virtually all environments. According
to El-Geudi, 2% of all manufactured dyes are released into water bodies at manufacturing
sites [15]. As a result of the rather large dye concentrations and their adverse health effects
such as neurological damage [16], there is a need for cheap, rapid, and effective methods
for dye removal from all kinds of water sources. This particularly applies to developing
countries [17].

Indeed, cryogels have already been used for dye removal. For example, Uyar et al. [18]
have shown that methylene blue (MB) can be removed effectively from water via a com-
posite alginate/clay cryogel. Similarly Ul’yabaeva et al. [19] demonstrated the effective
removal of acid yellow K with a chitosan/poly(vinyl alcohol) cryogel. Chen et al. [20]
demonstrated that the combination of a cryogel with a photocatalyst is an effective tool
for the removal of organic dyes. Specifically, these authors produced nanocellulose cryo-
gels with a positively charged, quaternized surface and N-doped titania for the removal
and degradation of methyl orange (MO). Similarly, Sahiner et al. [21] demonstrated that
graphene oxide/polymer composite cryogels are effective for MO removal as well.

The current study focuses on a new, sulfobetaine-based cryogel for dye removal from
aqueous solution. In particular, the study presents the first evidence of charge-dependent
separation of organic dyes using a betaine cryogel. Using a 1:1 mixture of MB and MO as a
model system, the cryogels can be used for selective MO removal from aqueous solution.
This is thus the first demonstration of selective dye removal from water with a cryogel.

2. Results and Discussion

The cryogels were synthesized from the highly water-soluble crosslinker N,N,N’,N’-
tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide [22] and
the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacry-
late using a redox-initiated free radical polymerization with potassium persulfate (KPS)
and tetramethylethylenediamine (TMEDA) in water. Upon polymerization at −32 ◦C
for three days, a white, opaque, and stable solid is obtained, Figure 1a. The shape can
be molded by choice of the reaction vessel and the samples typically used in this study
have a weight of 4.63 ± 0.15 g, a diameter of 2.3 ± 0.1 cm, and a height of 1.3 ± 0.1 cm
after swelling.

Cryo-scanning electron microscopy (cryo-SEM) of the material (Figure 1b,d) shows a
network with large pores in the micrometer range. The pores have irregular but typically
elongated shapes of more than 30 µm in length and about 15 µm in width. Moreover,
some of these larger features also exhibit smaller, roughly spherical features with diameters
around 1 µm. These smaller pores are reminiscent of the structure of hydrogels that were
synthesized via free radical polymerization at 70 ◦C (rather than via cryogel synthesis) [22].

The water content of the swollen cryogels is about 87% as determined via thermo-
gravimetric analysis (TGA). TGA (Figure 1e) of dry cryogels shows an additional mass loss
of ca. 2% between room temperature and 120 ◦C. This additional weight loss is, however,
hard to assign to loss of water alone because the TGA data do not show a clear step in this
temperature range. As a result, the mass loss up to ca. 200 ◦C (where a more significant
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weight loss begins) may stem from the evaporation of residual water and the beginning
cryogel decomposition.

Figure 1f shows a representative infrared spectrum of a dried cryogel. O–H stretching
vibration of remaining water is visible as a broad band at 3429 cm−1 and a medium sharp
band around 1650 cm−1. Bands at 3039 and 2981 cm−1 can be assigned to an asymmetric N-
H stretching vibration or a C–H stretching vibration of unreacted double bond in monomers.
An additional band at 1167 cm−1 correspond to the C–N stretching vibration. A sharp
and strong band at 1721 cm−1 indicates the presence of carbonyl groups and a band at
1034 cm−1 is indicative of the presence of SO3

− groups. All other bands at 1479 cm−1 and
in the range of 963–522 cm−1 stem from C–H and C–C bond vibrations of the polymer
network.
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Quantification of dye adsorption by the cryogel was done with UV–VIS spectroscopy,
Figure 2. Initially, two separate solutions of MO and MB with a concentration of 50 mg/L
each were used to evaluate the sorption capability of the cryogel. Figure 2a shows that MO
has an absorption maximum at 464 nm in aqueous solution. The intensity of this band is
strongly reduced after 24 h of exposure of the solution to the cryogel, and a quantitative
analysis shows that 97% of MO are removed from the solution within 24 h. This is also
visible by the discoloration of the solutions in the cuvettes and reaction flasks.

In contrast, the cryogel does not adsorb MB in significant amounts, Figure 2b. The
spectra of these solutions show an absorption maximum at 660 nm and this band does not
change over the course of 24 h. This indicates that essentially no MB is removed. Again,
visual inspection confirms this as the intense blue color of the aqueous solution remains
the same before and after the adsorption experiment.
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on the right). (d) Photograph of cuvettes containing the MO/MB mixtures before (left) and after (right) the adsorption
experiment.
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From UV–VIS spectroscopy and proper calibration, the actual mass of material re-
moved from the solution can be calculated (see experimental part for details). In the case
of MO, the mass of MO in solution is reduced from an initial 2.0 mg at the beginning of
the experiment to 0.3 mg at the end of the experiment. This corresponds to 85% of the
dye removed from solution. In the case of MB, only 0.2 mg (8%) disappear within 24 h.
Overall, these data clearly show a significant difference between MO and MB uptake by
the cryogels.

It must be noted, however, that also the cryogel support (see Appendix A) does adsorb
some dye. The cryogel support was used to avoid damage of the cryogel by the stir bar.
It was made by 3D printing (fused deposition modeling) of poly(propylene) (PP) using
conditions as noted in the experimental section. Adsorption experiments using the same
approach as just described but using only the cryogel support (Figure A1, Appendix A,
no cryogel present in the system) show that 4% of MO and 5% of MB are adsorbed by
the PP support structure and the reaction vessel. As a result, the true adsorption capacity
of the cryogel must be corrected for the adsorption by the cryogel support and the vial.
Consequently, the corrected values are (85-4) = 81% of MO and (8-5) = 3% of MB that are
taken up by the cryogel under identical conditions.

Finally, Figure 2c shows the same data for a mixture of MO and MB. Clearly, UV–VIS
spectra of solutions taken after 24 h of incubation with the cryogel show that only the band
at 464 nm (MO) is drastically reduced in intensity. In contrast, the intensity of the band a
660 nm (MB) only shows a minute loss in intensity, consistent with the above data. The
solutions before and after treatment with the cryogel show a turquoise tint before and an
intense blue color after treatment, Figure 2d, indicating that MO is indeed removed from
the solution, while MB is not.

Figure 3a shows the mass loss (mass removed from solution) vs. exposure time for the
first 7 h of the experiment. Consistent with the above data, MO removal is relatively fast
and the within the first 200 min of the process, the mass of MO in solution is reduced to
half the initial amount. This is followed by a slower decrease to ca. 0.75 mg after 7 h. In
contrast, and consistent with the data shown above, the mass of MB in solution remains
essentially constant and no significant reduction can be observed over time, Figure 3b.

As there is a strong preference of the cryogel for MO, the cryogels were also evaluated
for their preferential removal of MO from a MO/MB mixture, Figure 3c,d. The UV–VIS
spectra of the mixtures are a combination of the two individual spectra (Figure 2c) and the
two components can thus easily be monitored independently. Clearly, the cryogel reduces
the mass of the MO in solution by 85% from 0.50 to 0.08 mg. In contrast, the mass of MB is
only reduced by 0.05 mg (10%). These data are thus perfectly consistent with the behavior
of the individual measurements above and are again qualitatively supported by visual
inspection of the color of the solutions and the colors of the cryogels at the end of the
experiment. Specifically, the cryogels used for the treatment of the MO/MB mixtures are
orange with a slight blue hue, again indicating a highly preferential uptake of MO. Table 1
summarizes the results.

Table 1. Mass of dye in solution at the beginning of the measurement (0 h), after 7 h, and after 24 h.

Individual Solution Mixture 1:1

Time [h] Mass MO in Solution
mMO [mg] 1

Mass MB in Solution
mMB [mg] 1

Mass MO in Solution
mMO [mg] 1

Mass MB in Solution
mMB [mg] 1

0 1.96 ± 0.02 1.96 ± 0.04 0.51 ± 0.01 0.49 ± 0.01
7 0.62 ± 0.16 1.87 ± 0.09 0.18 ± 0.03 0.45 ± 0.02
24 0.30 ± 0.09 1.79 ± 0.01 0.08 ± 0.02 0.45 ± 0.01

1 raw data without correction for adsorption by vial ad PP table.
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section of the data shown in panel (c) to demonstrate the details of the two curves. Insets show cryogels before (left) and
after (right) the experiment (24 h of exposure). Note that for the measurements of the dye mixtures (data in panels (c,d)) the
concentrations of both dyes had to be reduced to 12.5 mg/L each. At higher dye concentration in the mixtures, the dyes
precipitate and produce a turbid liquid. In these systems reproducible measurements are not possible.

Table 2 shows the corresponding sorption capacities calculated from the above data
after 7 and 24 h of exposure. Clearly, the cryogels show a higher sorption capacity for MO
than for MB. This is further supported by the optical appearance; see Figure 3c.

Table 2. Sorption capacity determined after 7 and after 24 h.

Individual Solution Mixture 1:1

Time [h] MO Sorption Capacity q
[mg/g]

MB Sorption Capacity q
[mg/g]

MO Sorption Capacity q
[mg/g]

MB Sorption Capacity q
[mg/g]

7 0.278 ± 0.039 — 1 0.070 ± 0.006 0.011 ± 0.004
24 0.345 ± 0.024 0.012 ± 0.008 0.090 ± 0.003 0.004 ± 0.002

1 Within the experimental error of the measurement, no data could be recorded due to very weak sorption capacities. Note that for the
measurements of the dye mixtures (Figure 3c,d), the concentrations of both dyes had to be reduced to 12.5 mg/L each. At higher dye
concentration in the mixtures, the dyes precipitate and produce a turbid liquid. In these systems, reproducible measurements are not
possible. Moreover, the absorption band at 660 nm (MB) is much more intense, and higher concentrations lead to very high absorption that
cannot be quantified anymore.

Clearly, it would be interesting to compare the results with findings from other studies.
However, as stated in the introduction, the number of studies on the subject is rather
limited and some of the studies used different dyes [19], which further complicates a
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comparison. Our data can thus only be compared to a few other datasets [18,20,21,23],
where MO or MB was removed with different cryogels from aqueous solution. The removal
rates in these studies were between 48 and 99% for both MB and MO. This shows that
the current materials are comparable with these previously reported materials but have
the advantage that they are (1) selective for MO and (2) are much simpler as far as their
chemical composition goes. Only the materials reported in Reference [21] show a similar
selectivity but with the tradeoff that the material is much more complex. Only very recently
a further study has presented MB selective cryogels made from dextran, i.e., the exact
inverse of the current materials [24].

3. Conclusions

In summary, the current study shows that sulfobetaine cryogels are effective adsor-
bents for MO but much less so for MB. Although the exact mechanism of dye adsorption is
not known at the moment, the fact that one of the dyes (MO) is negatively charged while
the other dye (MB) is positively charged may be a major factor in these studies. Considering
the chemical structure of the cryogel, which is based on a sulfobetaine monomer and a
di-cationic crosslinker, it is likely that anionic dyes have a higher chance of being taken
up by the cryogel. In spite of this, the high fraction of MO uptake is quite surprising and
may possibly also be related to details of the internal structure of the cryogels. As stated
in our previous study, [22] one of the main advantages of the sulfobetaine groups is the
fact that they tend to stabilize the hydrogel structure via numerous ionic interactions thus
providing stable materials that have the potential for application in water remediation.

Finally, while the sorption capacities of the current material can still be improved,
the current cryogels show an additional feature, selective dye removal, which has not
been reported for cryogels before. As a result, the current materials are prototypes for
advanced, selective adsorbent that may find application in water treatment, but possibly
also in chromatography or liquid management.

4. Materials and Methods

Materials. 2-Dimethylaminoethyl)methacrylate (DMAEMA, stabilized with hydrochi-
none monomethylether for synthesis, Merck, Darmstadt, Germany), 1,3-dibrompropane
(98%, Alfa Aesar, Kandel, Germany), dimethyl formamide (DMF, water < 150 ppm,
VWR Prolabo, Darmstadt, Germany), acetone (GPR RECTAPUR®, VWR, Darmstadt, Ger-
many), tert-butyl methyl ether (99%, Alfa Aesar, Kandel, Germany), 3-[dimethyl-[2-(2-
methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SPE, Merck, Darmstadt,
Germany), potassium peroxydisulfate (≥99%, Fluka Analytical, München, Germany),
tetramethylethylenediamine (TMEDA, Reagen Plus® 99%, Sigma Aldrich, Darmstadt, Ger-
many), methylene blue (C.I. 52015, AppliChem, Darmstadt, Germany), methyl orange (C.I.
13025 ACS, Reag. PH Eur., Merck, Darmstadt, Germany), and polypropylene filament
(Ultimaker PP) were used without further purification.

Crosslinker synthesis. The crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-
ethylmethacrylat)-propyl-1,3-diammonium dibromide (TMBEMPA/Br) was synthesized
as described previously [22]. In short, 2 equivalents of DMAEMA and 1 equivalent of
1,3-dibromopropane were dissolved in 20 mL of DMF. The reaction mixture was stirred at
30 ◦C for 30 min and then stirred overnight at room temperature. The resulting white solid
was washed two times with 250 mL of acetone and two times with 250 mL of MTBE and
then dried under high vacuum overnight, yielding a white solid (75% yield). Analysis was
consistent with previous analytical results.

Crosslinker characterization. Melting point: 76.7 ◦C (onset of DSC signal). CHN
analysis: experiment (calculated) C: 43.64% (44.20%), H: 6.94% (7.03%), N: 6.43% (5.43%).
1H-NMR (300 MHz, D2O) δ (ppm): 1.88 (s, 3-H), dqtt, J = 6.22; 5.27; 5.27; 5.27; 3.58; 3.58;
2.64; 2.64 Hz, 9-H); 3.21 (s, 6-H, 7-H, 11-H, 12-H), 3.42–3.56 (m, 8-H, 10-H), 3.81 (dt, J = 4.66;
2.28 Hz, 5-H, 13-H), 4.6 (br. s., 4-H, 14-H), 5.67–5.78 (m, 2-H, 16-H), 6.1 (d, J = 0.94 Hz, 1-H,
17-H). 13C-NMR (300 MHz, D2O) δ (ppm): 16.5, 17.9, 52.3, 59.2, 62.9, 64.3, 125.2, 136.0,
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167.2. MS (ESI in water) (m/z): [M+] calc. for C19H36Br2N2O4 516.10, found 435.18 for
C19H36BrN2O4. Note: only a species with one bromide was observed. ATR-IR (diamond,
298 K, (ṽ, cm−1)): 3449, 3384, 3237, 3019, 2963, 1718, 1634, 1473, 1453, 1427, 1404, 1370, 1320,
1295, 1172, 1043, 1030, 1012, 955, 918, 897, 865, 815, 661, 567, 471.

Cryogel synthesis. For cryogel synthesis, the crosslinker TMBEMPA/Br (0.12 mmol,
0.0612 g) and the monomer SPE (4 mmol, 1.1175 g) were dissolved in 2.6 mL of distilled
water. After purging with nitrogen for 30 s, the polymerization catalyst TMEDA (50 µL)
was added. The initiator KPS (0.02 mmol, 5.4 mg) was dissolved separately in 1 mL of d.i.
water. After combining the two precursor solutions, 3 mL of the reaction mixture were
transferred to a bottle with rolled rim and snap-on lid and placed where in a refrigerator
for three days at −32 ◦C.

Note: the same synthesis can also be done at room temperature. Unlike the cryogels,
the materials resulting from these reactions are not dimensionally stable; see Figure A3
(Appendix C) for details.

Water content. For determination of water content in cryogel, a gravimetric approach
were done in first step with a compartment drier (Memmert UF55Plus with grating, opened
system setup, ventilation 30%, T = 40 ◦C, t = 24 h). Quantification of remaining water
was done via thermogravimetric analysis (Linseis STA PT-1600, compressed air, 10 K/min,
21–1000 ◦C).

Adsorption measurements. All adsorption experiments were done in poly(propylene)
screw cap vials. A 3D printed sample holder (Figure A1, Appendix A) was made from
polypropylene (PP) prepared with an Ultimaker 3 (Ultimaker, Utrecht, The Netherlands)
via fused deposition modelling with Cura Software 4.5. With a nozzle diameter of 0.4 mm
and a printing temperature of 205 ◦C, a sample with layer height of 0.1 mm with print
speed of 25 mm/s was printed on an 85 ◦C build plate.

This sample holder was used to hold the cryogel away from the stir bar to avoid
mechanical damage.

In the adsorption experiments, 40 mL of a 50 mg/L parent solution of MO, MB, or a
1:1 mixture of MO and MB were added. After defined time intervals, 200 µL of the reaction
solution were transferred to a poly(methyl methacrylate) (PMMA) cuvette (semi-micro,
VWR), and 1.8 mL of ultrapure water were added. For determination of the adsorption
capacities of the cryogel, a UV-1900 spectrophotometer (Shimadzu) was used. All spectra
were measured from 1000–250 nm with 1 nm sampling interval in the absorbance mode.
All measurements were done as a triplex.

Additionally, measurements with only magnetic stirring bar and PP table were done
as blank measurement to determine the adsorption of the dyes by the vessel and the
PP support table. For calculation of the total amount of organic dye in the solution, a
calibration curve with seven points and linear regression with an R2 of >0.999 was used.
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Appendix B

Individual spectra of MB solutions before and after the experiment. The spectra are
essentially identical and thus overlap completely in Figure 2b.
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Appendix C

Synthesis of gels at room temperature. The general gel synthesis is identical to the
approach described in the experimental section. The only difference is the temperature and
time for polymerization: While the cryogels described in the main body of the article were
obtained by polymerization at −32 ◦C for three days, polymerization at room temperature
produces a translucent, colorless, and rather soft hydrogel with no defined outer shape
already after 20 min. In contrast to the cryogels, which show regular swelling and a defined
shape, these materials show no controlled outer shape even after swelling. The water
content of these hydrogels is at least 97%, but their softness and irregular shape makes it
rather difficult to perform experiments under controlled conditions. In spite of this, the gels
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show large and rather uniform pores in cryo-SEM and the TGA and IR data are comparable
to the data shown in the main text (Figure 1), Figure A3.
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11. Şarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions.
Sep. Sci. Technol. 2019, 54, 2993–3004. [CrossRef]

12. Grassi, M.; Rizzo, L.; Farina, A. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban
wastewater: Implications for agricultural reuse and their removal by adsorption process. Environ. Sci. Pollut. Res. 2013, 20,
3616–3628. [CrossRef] [PubMed]

13. National Institute of Enviromental Health Science-Endocrine Disruptors. Available online: https://www.niehs.nih.gov/health/
topics/agents/endocrine/index.cfm (accessed on 21 December 2020).

14. Bazin, I.; Ibn Hadj Hassine, A.; Haj Hamouda, Y.; Mnif, W.; Bartegi, A.; Lopez-Ferber, M.; De Waard, M.; Gonzalez, C. Estrogenic
and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol. Environ. Saf. 2012, 85, 131–136. [CrossRef] [PubMed]

15. Elgeundi, M. Colour removal from textile effluents by adsorption techniques. Water Res. 1991, 25, 271–273. [CrossRef]
16. Gillman, P.K. CNS toxicity involving methylene blue: The exemplar for understanding and predicting drug interactions that

precipitate serotonin toxicity. J. Psychopharmacol. 2011, 25, 429–436. [CrossRef]
17. Tellakat, S. The Borgen Project—How Chemical Dyes are Harmful to Workers in Developing Nations. Available online: https:

//borgenproject.org/chemical-dyes-harm-workers/ (accessed on 14 December 2020).
18. Uyar, G.; Kaygusuz, H.; Erim, F.B. Methylene blue removal by alginate–clay quasi-cryogel beads. React. Funct. Polym. 2016, 106,

1–7. [CrossRef]
19. Ul’yabaeva, G.R.; Podorozhko, E.A.; Kil’deeva, N.R.; Lozinskii, V.I. Adsorption of an Acid Textile Dye from Aqueous Solutions

by a Chitosan-Containing Polyvinyl Alcohol Composite Cryogel. Fibre Chem. 2019, 51, 199–203. [CrossRef]
20. Chen, Y.; Liu, H.; Geng, B.; Ru, J.; Cheng, C.; Zhao, Y.; Wang, L. A reusable surface-quaternized nanocellulose-based hybrid

cryogel loaded with N-doped TiO2 for self-integrated adsorption/photo-degradation of methyl orange dye. RSC Adv. 2017, 7,
17279–17288. [CrossRef]

21. Sahiner, N.; Yildiz, S.; Sagbas, S. Graphene oxide embedded P(4-VP) cryogel composites for fast dye removal/separations. Polym.
Compos. 2018, 39, 1694–1703. [CrossRef]

22. Ihlenburg, R.B.J.; Mai, T.; Thünemann, A.F.; Baerenwald, R.; Saalwächter, K.; Koetz, J.; Taubert, A. Sulfobetaine hydrogels with
complex multi-length scale hierarchical structure. J. Phys. Chem. B 2020. submitted, jp-202010601g.

23. Dragan, E.S.; Dinu, M.V. Spectacular Selectivity in the Capture of Methyl Orange by Composite Anion Exchangers with the
Organic Part Hosted by DAISOGEL Microspheres. ACS Appl. Mater. Interfaces 2018, 10, 20499–20511. [CrossRef] [PubMed]

24. Ari, B.; Yetiskin, B.; Okay, O.; Sahiner, N. Preparation of Dextran Cryogels for Separation Processes of Binary Dye and Pesticide
Mixtures from Aqueous Solutions. Polym. Eng. Sci. 2020, 60, 1890–1901. [CrossRef]

http://doi.org/10.3390/gels5010008
http://www.ncbi.nlm.nih.gov/pubmed/30795568
http://doi.org/10.1016/j.chroma.2007.03.064
http://doi.org/10.1002/jssc.201000019
http://doi.org/10.1021/ie301254z
http://doi.org/10.1016/j.watres.2012.05.028
http://doi.org/10.1007/s12034-020-2060-5
http://doi.org/10.1007/s11356-018-2784-6
http://doi.org/10.3390/polym12051149
http://doi.org/10.1080/01496395.2018.1556300
http://doi.org/10.1007/s11356-013-1636-7
http://www.ncbi.nlm.nih.gov/pubmed/23532534
https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm
https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm
http://doi.org/10.1016/j.ecoenv.2012.08.003
http://www.ncbi.nlm.nih.gov/pubmed/22947508
http://doi.org/10.1016/0043-1354(91)90006-C
http://doi.org/10.1177/0269881109359098
https://borgenproject.org/chemical-dyes-harm-workers/
https://borgenproject.org/chemical-dyes-harm-workers/
http://doi.org/10.1016/j.reactfunctpolym.2016.07.001
http://doi.org/10.1007/s10692-019-10074-9
http://doi.org/10.1039/C7RA00450H
http://doi.org/10.1002/pc.24120
http://doi.org/10.1021/acsami.8b04498
http://www.ncbi.nlm.nih.gov/pubmed/29799721
http://doi.org/10.1002/pen.25425

	Introduction 
	Results and Discussion 
	Conclusions 
	Materials and Methods 
	Experimental Set-Up of the Adsorption Measurement 
	
	
	References

