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Abstract: PPy/silane composite film on a magnesium alloy surface was prepared by one-step cycle
voltammetry. The mixed solution of methanol and water was used as the hydrolysis solvent of
a γ-(2,3-glycidoxypropyl) trimethoxysilane coupling agent (KH-560). The surface morphology of
the PPy/silane film, the electro-polymerization progress of KH-560 and PPy, the influence of the
silane coupling agent and the corrosion behavior of the coated AZ31 Mg alloy were all investigated.
The results indicated that the PPy/silane film on AZ31 Mg alloy via one-step cyclic voltammetry
could provide better corrosion protection for an Mg alloy when the volume fraction of KH-560 in the
hydrolysis solution was 15% and the time span of hydrolysis was 24 h with the 5.935 × 10−10 A cm−2

corrosion current density.

Keywords: PPy/silane film; Mg alloy; cyclic voltammetry; corrosion resistance

1. Introduction

Magnesium alloy is a potential alternative material in aeronautical and automotive
applications despite the fact it does not possess high corrosion resistance, which is one
of the main problems restricting its applications in many industries. Coating techniques
are effective methods to protect Mg alloy. Many types of them have been researched,
such as chemical conversion coating, anodic oxide film, laser surface treatment and or-
ganic coating [1–4]. Recently, conducting polymers (CPs) such as polyaniline (PANI) [5],
polypyrrole (PPy) [6] and polythiophene (PTh) [7] have become the research hotspot in
organic coatings on the Mg alloy. Among the various kinds of conductive polymers, PPy
has been used to improve the corrosion resistance of metal [8–10]. It is one of the most
suitable candidates for corrosion protection because of its relatively easy synthesis, ex-
cellent stability and low toxicity of pyrrole monomer. Bhattacharya et al. [11] prepared
polypyrrole–polysulfone (PPy–Psf) composite membranes by diffusive chemical oxidative
polymerization technique of pyrrole, using FeCl3 as oxidant. However, Cl- is easy to be
doped in the traditional chemical oxidation method, which will lead to the corrosion of
the magnesium alloy and increase the brittleness of the powdered polypyrrole film. In
contrast, the electrochemical preparation of conducting polymers can prevent this problem,
so the electrochemical method is a feasible means of preparing conducting polymers on the
surface of Mg alloys. Oscar et al. [12] researched the electrodeposition of PPy on carbon
steel by cyclic voltammetry (CV) and chronoamperometry (CA). The growth occurs by the
slow oxidation of the deposited polymer, followed by the rapid addition of monomers.
The group that PPy deposited with the technique of cyclic voltammetry showed better
electrochemical, morphological, and spectroscopic properties for application. Metehan
et al. [13] researched the PPy film on Mg–Al alloy, which was electro-synthesized by cyclic
voltammetry (CV) in bicarboxylate electrolyte. The result displayed that the corrosion
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resistance of the Mg–Al alloy was improved. Srinivasan et al. [14] prepared the PPy film on
an AZ31 Mg alloy in an salicylic salt electrolyte using CV. They found typical cauliflower
morphology with a rough surface on PPy-coated AZ31 Mg alloy.

Mei L. [15] added TiO2 particles to the dodecyltrimethoxysilane (DTMS) films coated
onto AA2024-T3 substrates, by using the cathodically electro-assisted deposition process.
The results show that applying the method can facilitate the deposition process of silane
films, giving a thicker deposit and higher coverage surface along with higher roughness and
hydrophobicity, and thereby improving their corrosion resistance. Xueming W. et al. [16]
prepared KH560 silane film. The results indicate that the concentration of silane solution
has an obvious effect on the performance of the membrane, and the performance of the
membrane is better when the concentration of the hydrolysis reagent silane is approxi-
mately 10%. Franquet et al. [17] researched that an increase in the BTSE bath concentration
induces the formation of a thicker but very porous layer. Indeed, the condensation reaction
of Si–OH groups to form Si–O–Si links leads to the formation of a less porous layer. This
step increases the barrier properties of the BTSE film and improves the corrosion protection.
The Si–OR group in silane is hydrolyzed to form Si–OH, which reacts with the metal matrix
to form a hydrogen bond. The specific group on the organic functional group is connected
with the organic matter, thus establishing the connection between the metal matrix and the
organic material. The pH environment for hydrolysis and the condensation reaction of the
silane coupling agent prepared by traditional method is contradictory. Using the electrode-
position method can solve the problem. PPy film can improve the corrosion resistance of
an Mg alloy, and the combination of the silane coupling agent and conductive polymer
polypyrrole can overcome the brittleness of polypyrrole film. The co-electrodeposition
of conductive polymers and silane coupling agents has rarely been reported, and their
combination will be more and more popular among scholars and researchers.

In this paper, PPy/silane composite film was obtained in sodium salicylicum solution
which included 0.15 mol/L pyrrole and various volume fractions of silane coupling agent
by one-step CV. The influence of diverse volume fractions of silane coupling agent on the
corrosion resistance of the Mg alloy surface was investigated.

2. Materials and Methods

Specimens with the dimensions 25 mm × 20 mm × 8 mm were used for the conversion
film treatment, and the surface and section of matrix were polished with 320#, 600# and
800# metallographic emery papers. The polished samples were ultrasonically cleaned for
10 min after being immersed in the mixed solution of ethanol (Zhi Yuan Chemical Reagent
Co. Ltd., Tianjin, China) and acetone (Zhi Yuan Chemical Reagent Co. Ltd., Tianjin, China)
(1:1 of volume ratio). Afterwards, they were cleaned with distilled water and then dried
for utilization.

In this experiment, the silane coupling agent-γ-(2,3-Epoxypropoxy) propyl
trimethoxysilane (KH-560) (Silicon Union Chemical Co. Ltd, Nanjing, China) was utilized.
The silane coupling agent needed to be prehydrolyzed before polymerization. Different
volume fractions of silane coupling agent (5%, 10%, 15% and 20%) were put into a mixed
solution of methanol and water, respectively, and then hydrolyzed for 24 h at room tempera-
ture. The volume ratios of KH-560, H2O and methanol are listed in Table 1. Electrochemical
corrosion measurements were conducted in a three-electrode electrochemical cell: the Mg
alloy substrate as a working electrode, the graphite rod as an auxiliary electrode, and the
saturated calomel electrode (SCE) as a reference electrode.

Table 1. The volume ratio of KH-560, H2O and methyl alcohol.

Volume Fraction 5% 10% 15% 20%

Ratio 1:18:1 1:8:1 3:14:3 1:3:1
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The PPy/silane composite film was electro-synthesized on the AZ31 Mg alloy surface
by CV with 7 mV/s of scanning speed, 0 V~2 V of sweep voltage range and 7 cycles of
scanning cycle.

The surface morphology of PPy/silane film was examined through scanning electron
microscopy (SEM; JSM-S4800, Electronics Co. Itd, Beijing, China) made in Japan electro
company with 20 kV of working voltage. The thickness of coating was calculated using
DIGIMIZER by taking average of 10 values. The surface function groups of the film were
analyzed by ATR-IR pattern of Fourier transform infrared spectrometer (FT-IR Spectrome-
ter; Spectrum 100, Perkin Elmer, Waltham, MA, USA). The same three-electrode system as
above was applied in the electrochemical testing. Electrochemical impedance spectrum
(EIS) and potentiodynamic polarization curve were tested to characterize the corrosion
resistance of PPy/silane film in 3.5 wt% NaCl solution. The testing frequency of EIS varied
from 10 kHz to 0.1 Hz, amplitude was 20 mV and the scanning speed of polarization was
10 mV/s.

3. Results and Discussion
3.1. The Infrared Spectrum Analysis of PPy/Silane Film

The PPy/silane film formed on Mg alloy surface were analyzed using ATR-IR spectro-
scopic studies and the ATR-IR spectroscopy is shown in Figure 1.
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Figure 1. The ATR-IR spectroscopy of the PPy/silane film.

The peaks at 1455 cm−1 and 1581 cm−1 are attributed to the absorption peaks of the
C=C stretching vibration of the pyrrole ring skeleton. The stretching vibration peak of
N–H is detected around 3400 cm−1 [6,18]. The characteristic peaks of Si–OH formed after
hydrolysis are found at 3200 cm−1~3380 cm−1 because some Si–OH had no condensation
reaction of dehalohydrination or dehydration with other Si–OH or metal substrate during
the electro-polymerization and curing process [19]. The silanol formed after the hydrolysis
of KH-560 produced dehydration condensation reaction to generate the Si–O–Si which
has an asymmetric vibration peak at 1030 cm−1 and 1083 cm−1 [20]. The sharp peak at
1248 cm−1 is the feature peak of the epoxy group (CH2OCH-) [21], which illustrates that the
epoxy ring was not open during the reaction. The absorption peak at 865 cm−1 is Si–O–Mg
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which was formed through connecting silanol formed after hydrolysis and the -OH on
the Mg alloy surface by covalent bonds. The in-plane bending vibration peak of C–H and
the stretching vibration absorption peak of C=O are detected at 600 cm−1~756 cm−1 and
1700 cm−1, respectively.

3.2. Formation Mechanism of PPy/Silane Composite Film on Mg Alloy Surface

The chemical and electrochemical reactions occurred on the AZ31 Mg alloy surface in
the absence and presence of an electric field, respectively, and the formation mechanism of
the PPy/silane film by one-step CV was analyzed. The surface morphology after chemical
or electrochemical reaction in sodium salicylate solution is shown in Figure 2.
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Figure 2. The surface and cross section morphology after chemical or electrochemical reaction in sodium salicylate solution:
(a) the surface morphology without an electric field; (b) the surface morphology with an electric field; (c) the section
morphology without an electric field; (d) the section morphology with an electric field; and (e) EDS map analysis of the
element N (when with an electric field).
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The surface morphology of the Mg alloys without and with an electric field are shown
in Figure 2a,b, respectively. Many cracks and holes are clearly observed in the surface
without an electric field, while the film after electro-chemical reaction present a uniform
surface with smaller pores and no cracks. Figure 2c,d are the morphology of cross sections
after the chemical and electrochemical reactions, respectively. In Figure 2d, the conversion
film on Mg alloy was clearly observed, and the thickness value of the film is 28 µm. In
contrast, there is clearly no layer on the Mg alloy surface according to the cross section
in Figure 2c. Figure 2e shows that N elements which could be related to PPy are uniform
distributed on the surface of the Mg alloys. These phenomena illustrate that the Mg alloy
in sodium salicylate solution was corroded in the absence of an electric field and formed a
thin conversion film in the existence of an electric field [22].

Figure 3 shows the surface morphology of an Mg alloy with chemical and electro-
chemical reaction for 66 min in the mixed solution containing 0.5 mol/L sodium salicylate
and 15% volume fraction of silane coupling agent after prehydrolyzing for 24 h.
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with an electric field); and (f) EDS map analysis of the element Si (when with an electric field).
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The thin films on the Mg alloy surface in the absence and existence of an electric field
are shown in Figure 3. The thickness value of the film in the existence of an electric field
(Figure 3d) was 16 µm thicker than that in the absence of an electric field (Figure 3c), which
illustrates that the presence of an electric field had influence on the composite film in the
mixed solution of sodium salicylate and the silane coupling agent [23]. The Si-OH through
the hydrolysis of the silane coupling agent then carried on with the condensation reaction
with -OH on the Mg alloy surface and connected with each other by covalent bonds in
lack of an electric field. [24]. Nevertheless, with the application of an electric field, sodium
salicylate formed a thin film on the Mg alloy surface and some of the silane coupling
agent was chemically absorbed on the metal surface, other was electrodeposited on the Mg
alloy surface. The reason is that applying an electric field resolved the contradictoriness of
the hydrolysis and condensation of the silane coupling agent, and the alkaline of the Mg
alloy surface was beneficial for condensation polymerization, while the rest of electrified
solution was acid which was advantageous for forming Si–OH. Therefore, the solution in
the presence of an electric field was beneficial for forming a silane film which was thicker
than that in the absence of an electric field.

Figure 3e,f show the EDS result of the PPy/silane film. The presence of the N and
Si elements is evident, as these originated from PPy and silane, respectively. The EDS
result showed that the PPy/silane film suggests a uniform dispersion on the surface of Mg
alloys [25].

From the above, the sodium salicylate and silane coupling agent deposited a com-
posite film on the surface of the Mg alloy under the electric field. Thereby, when the
PPy/silane composite film was formed on the Mg alloy surface by electrochemical meth-
ods, sodium salicylate formed a passive film to reduce the anodic dissolution of the Mg
alloy, as the PPy film could be easily deposited by electro-polymerization. During the
polymerization progress of PPy/silane film, some of the silane coupling agents connected
with metal via chemical absorption on the surface of Mg alloy and others depended on
electro-deposition [26]. Eventually, the pyrrole monomer and silane coupling agent were
electro-deposited together on the Mg alloy surface to prepare the PPy/silane film.

3.3. Composite Film Prepared by Cyclic Voltammetry

With an electric field, the pyrrole monomer was electro-polymerized on the Mg alloy
surface and KH-560 produced the electro-deposition and chemical absorption. PPy/silane
films prepared by CV at different volume fractions of KH-560 are shown in Figure 4.
The illustration in the upper-right corner in Figure 4 is the first of seven cycles of the
cyclic voltammetry curves. At the beginning of applying current, the current density
decreased sharply, which accounted for the reduction in the reaction rate of the Mg alloy
anodic dissolution [27]. It has been proposed that SS is the most suitable candidate for the
formation of adherent and homogenous PPy films on oxidizable metals by electrochemical
polymerization [28]. The oxidation potential of sodium salicylate is reported to be 0.8 V.
The oxidation peaks at 0.8 V in the first cyclic of Figure 4a,b indicate that the passive film
was formed due to the reaction of sodium salicylate on the Mg alloy. With the growth of the
volume fraction of KH-560 in the electrolyte, the oxidation peak of the passive film moved
to the negative potential. When the volume fraction of KH-560 was 15%, the oxidation
potential to form the passive film was 0.06 V and when the volume fraction of KH-560 was
raised to 20%, the oxidation potential rose to 0.4 V. Consequently, the addition of KH-560
firstly influenced the oxidation peaks which formed the passive film of sodium salicylate
on the Mg alloy surface.
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Figure 4. CV and the first cycle of different volume fractions of KH-560-prepared PPy/silane film on the AZ31 Mg alloy:
(a) 5% KH-560; (b) 10% KH-560; (c) 15% KH-560; and (d) 20% KH-560.

In Figure 4a,b, the oxidation peaks also emerged at 0.8 V in the second cyclic, which
illustrated that while sodium salicylate was continuing to form the oxidation film, pyr-
role monomer began participating in the process of polymerization. With the cycle of
reciprocation, the potential of the oxidation peak moved to the positive direction [29].
As more KH-560 was added in the electrolyte, the variation of oxidation potentials in
Figure 4c,d are less obvious than that in Figure 4a,b. At the end of anodization scanning,
the current density ascended slightly, which illustrates how the pyrrole monomer formed
the active free radical cations firstly in the presence of an electric field and then formed a
dimer with another active free radical cation due to its instability. With the occurrence of
polymerization, the tripolymer was achieved and then the PPy film on the surface of Mg
alloy was prepared. In this experiment, the silane coupling agent promoted the process of
polymerization and formed the PPy/silane composite film.

3.4. The Influence of Volume Fraction of Silane Coupling Agent on the Morphology of
Composite Film

Figure 5 shows the surface morphology of the PPy/silane film prepared at different
KH-560 volume fractions (5%, 10%, 15% and 20%). As a whole, the morphology was
wrinkled. As shown in Figure 5a, a great number of cracks emerged from the morphology
of the film prepared with 5% silane coupling agent. With the improvement in the content of
silane coupling agent to 10%, no obvious improvement of the cracks was observed. When
the volume fraction of the silane coupling agent was 15%, the cracks vanished and the
surface became smooth, as shown in Figure 5c. Although the addition of silane coupling
agent improved the detection of the brittle crisp and bad mechanical property of the PPy
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film, too much silane coupling agent in the electrolyte also had negative effects on the PPy
film. In Figure 5d, when the volume fraction of the silane coupling agent was increased
to 20%, cracks appeared on the surface of the PPy/silane film again. The reason is that
the high content of silane coupling agent decreased the stability of the solution so that the
expected objective of ameliorating PPy with silane was not achieved.
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3.5. The Electro-Chemical Influence of Silane Coupling Agent on Composite Film

The EIS results of samples containing different volume fractions of silane coupling
agent are shown in Figure 6. The Nyquist plot (Figure 6a) shows that the capacitive arc
radius of the 5% treated sample has the minimum diameter, and the 15% treated sample
has the maximum diameter. The corrosion resistance is proportional to the diameter of
the capacitive arc [30], and this indicates that the volume fraction of silane at 15% has the
best anti-corrosion effect. Compared to the other samples, the volume fraction of silane at
15% has the bigger capacitive loop diameter, which is attributed to the dense surface being
resistant to the corrosive ions reaching the substrate through passivation film.

Moreover, a bigger |Z| modulus tending towards 0 means better corrosive resistance,
and the double logarithmic impedance versus frequency plot (Figure 6b) shows that
the |Z| modulus is 5.05 × 104 Ω·cm−2, 1.5 × 105 Ω·cm−2, 2.69 × 107 Ω·cm−2, and
2.37 × 107 Ω·cm−2 for the volume fraction of silane is 5%, 10%, 15% and 20%, respectively.
Compared with the |Z| modulus of the 5% sample, the |Z| modulus of the 15% sample
and 20% sample increased by three orders of magnitude, and the 15% sample is highest
among all the samples. The result means that the corrosion resistance increased the most
when the volume fraction of silane was 15%. In addition, there are three time constants
in Figure 6c, which at high frequencies (103–104 Hz) related to the PPy/silane film, the
capacitive loop grows larger and wider, demonstrating that the PPy/silane film is dense
and homogeneous when the electrolyte with 15% volume fraction of silane. The medium
frequencies (10–103 Hz) related to the thin film formed by sodium salicylate. The low
frequency (10−1–10 Hz) related to the Mg(OH)2 film [31].
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The ZSiDemo was used to fit the EIS result; the equivalent electric circuit (EEC) is
shown in Figure 6d, and the electrochemical parameters of EEC are listed in Table 2. The
first component indicates the resistance of solution, the next component indicates the con-
stant phase element (CPE1) and the resistance of pores on the surface (Rpore), the last compo-
nent indicates the constant phase element (CPE2), the resistance of charge transfer (Rct), and
the trend of diffusion (Zw). The values of Rpore and Rct increased from 2.59 × 103 Ω·cm−2

to 2.46 × 106 Ω·cm−2 and from 9.70 × 103 Ω·cm−2 to 2.87 × 106 Ω·cm−2 when the volume
fraction of silane coupling agent is 15%. The result indicates that increases in the values
of Rpore and Rct are related to the improvement of surface morphology. As a result, the
optimal volume fraction of the silane coupling agent in electrolyte to prepare the film
was 15%.

Table 2. The electrochemical parameters of EEC for the different concentration of the silane coupling agent.

Concentration Rs(Ω·cm−2) CPE1(F·cm−2) Rpore (Ω·cm−2) CPE2(F·cm−2) Rct(Ω·cm−2) Zw(Ω−0.5·cm−2·S−1)

5 wt% 340 7.36 × 10−8 2.59 × 103 2.35 × 10−7 9.70 × 103 3.07 × 10−5

10 wt% 790 6.02 × 10−9 2.66 × 104 5.89 × 10−8 3.41 × 103 1.35 × 10−5

15 wt% 0.0138 1.41 × 10−10 2.46 × 163 1.26 × 10−9 2.87 × 106 5.43 × 10−7

20 wt% 0.02442 5.14 × 10−11 9.11 × 105 1.69 × 10−9 9.11 × 105 1.07 × 10−7

The polarization curves of PPy/silane film in 3.5 wt% NaCl solution are shown in
Figure 7. Table 3 is the corresponding electrochemical parameters. With the increase in
the volume fraction of silane coupling agent in electrolyte, the corrosion current density
firstly decreased from 1.833 × 10−7 A·cm−2 to 5.935 × 10−10 A·cm−2 and then increased
to 1.888 × 10−9 A·cm−2. The addition of silane coupling agent effectively remedied
the disadvantages of the electrolyte and reduced the cracks on the film surface, which
prevented corrosive solution from penetrating into film through the holes and cracks. When
the volume fraction of silane coupling agent was 15%, the corrosion current density was
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5.935 × 10−10 A·cm−2, which was three orders of magnitude lower than the PPy/silane
film prepared at 5% and 10% silane coupling agent, and one order of magnitude lower
than that prepared at 20% silane coupling agent.
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Figure 7. The polarization curves of PPy/silane composite at different concentrations of silane
coupling agent in 3.5 wt% NaCl solution.

Table 3. The corresponding electrochemical parameters of polarization curves.

Concentration 5% 10% 15% 20%

Corrosion Current Density
((A·cm−2)) 1.833 × 10−7 1.736 × 10−7 5.935 ×

10−10 1.888 × 10−9

Potential (V) −0.410 −0.664 −0.576 −0.659

The polarization curves of the PPy/silane film in 3.5 wt% NaCl solution are shown
in Figure 7. Table 3 is the corresponding electrochemical parameters, and a saturated
calomel electrode was used to record the potential values. With the increase in the volume
fraction of the silane coupling agent in electrolyte, the corrosion current density firstly
decreased from 1.833 × 10−7 A cm−2 to 5.935 × 10−10 A cm−2 and then increased to
1.888 × 10−9 A cm−2. The addition of silane coupling agent remedied the disadvantages
of the electrolyte effectively and reduced cracks on the film surface, which prevented the
corrosive solution penetrating the film through holes and cracks. When the volume fraction
of silane coupling agent was 15%, the corrosion current density was 5.935 × 10−10 A cm−2,
which was three orders of magnitude lower than the PPy/silane film prepared at 5% and
10% silane coupling agent, and one order of magnitude lower than that prepared at 20%
silane coupling agent.

4. Conclusions

(1) The PPy/silane film without defect was successfully prepared, and the thickness
value of film is 16 µm thicker in the presence of an electric field. The optimal volume
fraction of the silane coupling agent in electrolyte to prepare the PPy/silane film was 15%.
The corrosion current density of the PPy/silane composite film on the Mg alloy surface
reached 5.935 × 10−10 A·cm−2 when the volume fraction of the silane coupling agent was
15% and with hydrolysis at room temperature for 24 h.
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(2) The oxidation potential of the passive film which formed on the Mg alloy surface
was impacted by the addition of silane coupling agent. The electrochemical preparation of
the PPy/silane film belongs to the simultaneous process of polymerization and deposition.
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