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Abstract: Fiber-reinforced polymer (FRP) composites are becoming more frequently adopted as
so-called “corrosion-resistant” concrete reinforcement materials due to their excellent mechanical
properties and formability. However, their long-term reliability must be thoroughly investigated
in order to understand failure mechanisms and to develop service life models. This study is on
the mechanical properties of a prototype basalt fiber-reinforced polypropylene (BFPP) rod under
quasi-static and sustained loading. Static strength and modulus at elevated temperatures do not
decrease significantly, but the variability in strength increases with temperature, as shown by a
Weibull analysis. Creep behavior is typical of unidirectional FRP, where the creep rupture strength
follows a power law. Fatigue at various stress ratios R reveals the sensitivity of composite strength
to the matrix damage, which increases at lower values of R (i.e., higher stress amplitudes). These
results are discussed in the context of service life and concrete structure design guidelines.

Keywords: thermoplastic composite; basalt fiber; fatigue properties; creep properties

1. Introduction

Reinforced and prestressed concrete is the most common structural system in the
world, given its low cost per unit weight and formability [1]. However, corrosion of the
steel reinforcing/prestressing materials such as bars and strands leads to concrete cracking
due to internal pressure caused by low-density iron oxide byproducts; costly repairs and
even replacement can outweigh the initial construction costs [1–3]. Epoxy-coating carbon
steel and stainless steel reinforcing products are obvious alternatives, but fiber-reinforced
polymer (FRP) composites are becoming more frequently adopted as so-called “corrosion-
resistant” concrete reinforcement materials due to their excellent mechanical properties,
low density, and resistance to galvanic corrosion [4–8]. Numerous studies on FRP for
structural reinforcement are reported every year, covering topics such as environmental
durability [9–16] and material mechanics [16,17].

Considering the time scale of service life for a concrete structure, long-term durability
and reliability of the reinforcing materials are extremely important. Thus, creep and
fatigue studies provide crucial data and analysis regarding the long-term performance
of FRP reinforcement and methods for service life prediction. Extensive work has been
conducted on three common types of composites: carbon (CFRP), glass (GFRP), and
aramid (AFRP) [18–27]. Extrapolating available experimental data to at least 50-year
service periods, numerous studies found that, while CFRP exhibits excellent creep and
fatigue resistance (less than 20% decrease in strength), GFRP and AFRP tend to show drastic
deterioration of mechanical properties (as much as 90% decrease in strength) [18,19,21–27].
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While CFRP is clearly superior in terms of mechanical reliability and durability, its high
cost is a hindrance toward its widespread use in infrastructure compared with cheaper
materials such as GFRP [4,8,22].

Basalt fibers, which are drawn from basalt rocks and come at relatively low cost,
have recently gained more attention as an alternative to glass fibers due to having supe-
rior mechanical properties [28–31]. The creep behavior of basalt FRP (BFRP)—especially
containing epoxy matrices—has been investigated on cylindrical bars [32,33], and fatigue
has been studied in various geometries with respect to failure mechanisms [34–37], stress
ratios [38], matrix type [39], and environmental conditions [40]. Several studies found
significant reductions in stiffness over the fatigue life caused by increased matrix damage
and fiber rupture at longer cycles, with a 107-cycle fatigue strength around 70–75% of
the initial static strength [37–39]. However, the effect of stress ratio R (i.e., the ratio of
minimum and maximum applied stresses in a sinusoidal cycle) has not been investigated
in great depth, as only R = 0.1, 0.5, and 0.8 were reported [37,38]. These studies found that
the failure mode of basalt/epoxy laminates changes from interfacial debonding to fiber
rupture as R decreases. However, as matrix damage and interfacial debonding are largely
matrix-dominant, a comparison with other matrix resins is needed.

Furthermore, polypropylene—a low-cost commodity polymer with excellent moisture
resistance—has been used as a matrix for GFRP and BFRP in some studies, showing lower
strength and modulus than a thermosetting epoxy [15,27,41–45]. The fatigue behavior of
glass fiber-reinforced polypropylene (GFPP) was discovered to improve when polypropy-
lene was modified with maleic-anhydride (MA) due to the improved interfacial bonding
with the glass fibers, which resulted in a fiber-rupture failure mode rather than interfa-
cial debonding (at R = 0.1) [41,42]. In particular, the stiffness degradation was minimal
with MA-modified GFPP in stark contrast to the epoxy- or polyester-based GFRP [42,43].
Furthermore, MA-modified PP sizing for BFPP composites showed roughly 20% higher
flexural strength compared with neat PP [41,45].

Although glass and basalt share some similarities in their chemical composition, simi-
lar studies on the long-term mechanical behavior of basalt fiber-reinforced polypropylene
(BFPP) were not found in the literature (to the authors’ knowledge). This paper reports the
static, creep, and fatigue properties of a prototype BFPP rod that is intended for passive
reinforcement (i.e., non-prestressed) in the concrete foundation of high-speed railway
systems. The thermal and mechanical properties of the rapidly produced thermoplastic
composite were primarily evaluated by mechanical testing (static and fatigue) and electron
microscopy, supported by an analysis of the material service life considering that the
influence of stress ratio R is presented.

2. Materials and Methods
2.1. Materials and Preparation

The material in this study was a heat-resistant basalt fiber (Nakagawa Sangyo Co.,
Ltd., Inuyama, Japan) with a matrix made from blended polypropylene (Prima Polymer)
and maleic acid-grafted polypropylene (Mitsui Chemical, Tokyo, Japan, MA: 0.25 wt%).
Straight rods were manufactured by a pultrusion technique at a rate of 15 m/min by
the following process: m-PP pellets were melted and transferred to a resin bath via a
screw extruder, where the BF rovings were impregnated before being fed through a die
and subsequent water cooling, and finally collected in bundles of seven rods, which
were twisted to form a stranded cable. The fiber volume fraction was measured as 0.44
(by cross-sectional analysis). The low fiber content is due to the prioritization of excess
polypropylene for additional chemical resistance. The cables were slightly twisted (angle
of approximately 11◦, measured by digital microscope) to retain the diameter and fiber
consolidation during pultrusion. The diameter of the straight rods was 4.38 mm, and they
were cut to 500 mm lengths for tensile testing. All tensile test specimens (static, creep, and
fatigue) were prepared by fixing steel tubes (inner diameter 16 mm and length 200 mm) to
both ends by an expansive grout (Bristar 100, non-explosive demolition grout) and left to



Polymers 2021, 13, 3136 3 of 13

cure for at least three days before testing (Figure 1a); alignment was ensured by enclosing
the tubes with PVC caps having concentric holes (diameter ~4.5 mm), and the specimens
were secured in steel angles. It was found that the expansive pressure from the grout could
cause early fatigue failure inside the tubes, so a polyurethane coating was applied in the
gripping region to more evenly distribute the gripping pressure [46].
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Figure 1. (a) Basalt fiber-reinforced polypropylene (BFPP) composite rod (center rod from a seven-wire strand) and tensile
specimen diagram (all dimensions in mm), (b) static tensile test setup including localized heater, (c) fatigue tensile test
setup, and (d) creep tensile test setup.

2.2. Characterization Methods

Static tensile tests were conducted at a displacement rate of 1 mm/min on a universal
testing machine (Autograph AGX, Shimadzu, Kyoto, Japan; Figure 1b), and strain was
measured by foil gauges and a video displacement system (TRViewX, Shimadzu). In
addition to room temperature (~23 ◦C), higher temperatures of 80 (±2) and 120 (±2) ◦C
were applied through a local heating device (with internal K thermocouple) to avoid
slippage in the gripping area. Once the testing temperature was reached, the specimen was
allowed to equilibrate for one hour before conducting the tensile test. Ten specimens were
tested for all temperatures.

Fatigue tensile tests were conducted at room temperature on a servohydraulic testing
machine (Servopulser, Shimadzu; Figure 1c) under force control at a frequency of 10 Hz
and stress ratios R (=σmin/σmax) of 0.1, 0.3, 0.5, 0.7, and 0.9; this frequency was selected
because it allows for faster turnover of the testing equipment without introducing internal
heating effects [39,47], and no particular frequency is specified by ASTM [48]. Strain was
measured by foil gauges connected to a datalogger. One specimen was tested at each stress
level, with run-out (endurance limit) set to Ne = 107 cycles. Creep tests (R = 1) were also
conducted at room temperature on a lever-arm creep machine (Shimadzu; Figure 1d) at
five different stress levels; 2000 h was chosen as the termination time.

To further investigate the thermomechanical properties of the BFPP, dynamic me-
chanical analysis (DMA 7100, Hitachi Hi-Tech, Tokyo, Japan) was conducted in flexural
mode and differential scanning calorimetry (DSC 7020, Hitachi Hi-Tech) was performed
using roughly 7–10 mg of neat polymer blend (called m-PP) over a range of 30–200 ◦C at a
heating rate of 10 ◦C/min (heat–cool–heat). Fracture surfaces were observed by scanning
electron microscope (Quanta 200, FEI, Hillsboro, OR, USA).
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3. Results and Discussion
3.1. Thermomechanical Properties

Thermal analysis of the neat polymer by DSC (Figure 2a) revealed the melting temper-
ature Tm to be 166.0 ◦C (onset around 145.7 ◦C) and a crystallinity χc of 35.8%, which are
typical values for m-PP [43]. The storage modulus E’ of the BFPP as measured by DMA
(f = 10 Hz) showed typical behavior, with a gradual reduction in stiffness followed by a
sharp drop at the onset of melting; no influence from the fibers on PP melting was detected.
Reductions in E’ of 35.1% and 66.2% were observed at the selected static tensile test tem-
peratures of 80 and 120 ◦C, respectively (marked by star symbols). A linear dependence of
log(E’) vs. log(f ) can be seen in Figure 2b, consistent with the literature [49].
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Figure 2. (a) Thermal properties of a m-PP matrix and BFPP measured by DSC and DMA, and (b) frequency dependence of
the storage modulus of BFPP measured by DMA.

3.2. Static Properties at Elevated Temperatures

The static tensile strength and modulus at room temperature were 733.5 MPa and
26.7 GPa, respectively; the constitutive behavior was mostly linearly elastic with a small
inelastic portion near failure (Figure 3a). At higher temperatures, the strength shows an
insignificant decrease (<2%) even at 120 ◦C, while the modulus decreases slightly (9.5% and
10% at 80 and 120 ◦C, respectively) but not with statistical significance. Tensile properties at
each temperature are listed in Table 1 and shown in Figure 3b. Despite significant softening
occurring in the m-PP matrix at higher temperatures, the fiber-dominant properties of
the unidirectional composite do not significantly decline. This means that, although the
tensile strength of the BFPP is not comparable with other standard materials such as
GFRP or CFRP, the performance retention at sub-melting temperatures shows promise for
thermoplastic composite reinforcing rods.

Table 1. Static tensile properties of BFPP rods.

Temperature (◦C) σu (MPa) EL (GPa) m (-)

~23 733.5 26.7 24.55
80 733.5 23.9 21.67

120 718.8 23.7 17.83
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The tensile strengths at each temperature were fit to a two-parameter Weibull distri-
bution (total of n specimens, with i from 1 to n) [50]:

ln
[

ln
(

1
1 − PF

)]
= m[ln(σu)− ln(σ0)] (1)

PF =
i

n + 1
(2)

where PF is the cumulative probability of failure at the applied tensile stress σu, m is the
Weibull shape parameter, and σ0 is the characteristic stress or Weibull scale parameter. The
higher the value of m, the lower the probability of fracture at stresses approaching the
mean. Figure 3c shows the Weibull distributions for each temperature, which revealed
that m decreases linearly with increasing temperature (Figure 3d). The polymer matrix
softens at higher temperatures, which ultimately reduces the interfacial properties and
increases the scatter in strength values. This has implications for BFPP rods used at elevated
temperatures, such as the curing of prestressed concrete, which takes place at ~60 ◦C for
6–12 h [51]. While concrete curing temperatures and service temperatures are not likely
to exceed 80 ◦C in most cases and, therefore, the mean tensile strength is not expected to
decrease significantly, the decrease in m suggests that failure can occur more frequently
at stresses well below the statistical mean and should be accounted for when considering
safety factors in design and construction.
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Specimens at room temperature exhibited a typical broom-like failure mode, where
the fiber twist is clearly visible (Figure 4a). At room temperature, failure mainly consists of
cohesive failure, indicated by matrix hackles and a residual matrix adhered to the exposed
fiber surfaces. Conversely, the failure mode became more localized at higher temperatures
due to the softening of the polypropylene, which reduces brittle fracture and increases
the probability of localized fiber stress concentrations during loading. Micrographs of the
fracture surfaces (Figure 4b) show more fiber fragmentation and debonding as temperature
increases, which is an expected outcome considering the significant softening of the matrix
discussed in Section 3.1. This corroborates the results of the Weibull analysis regarding
the increase in scatter despite small changes in the mean. Fracture surfaces of individual
fibers (Figure 4c) become slightly more angular at higher temperatures, but no significant
difference was noted; this is expected for fibers marketed as heat-resistant.
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3.3. Creep Behavior (R = 1) at Room Temperature

Creep can be considered a special case of fatigue where R = 1, since there is no
fluctuation in the applied load but failure still occurs at stresses below the static tensile
strength. The creep rupture stress σcr over time is shown in Figure 5a, along with the total
strain (elastic + creep) for the stress level σcr/σu = 0.77. The creep rupture data follows a
typical power law:

σcr = a
(

t f

)b
(3)

where a and b are empirical parameters (listed in Table 2), and tf is the time-to-failure. The
creep endurance stress level (i.e., terminated at 2000 h) was σe,cr/σu = 0.75, but extrapolating
with Equation (3) to 106 h (114 years) yields σe,cr/σu = 0.71. The strain also shows typical
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creep behavior, with a steady state region in the short-term and a sudden increase shortly
before failure. Strain data from other specimens were not recoverable, but this specimen
shows the anticipated behavior for FRP.

The micrographs in Figure 5b show more damage in the resin for longer creep dura-
tions, comparing 10 min with 2000 h. The residual static tensile strength was measured
immediately following the termination of the 2000 h creep test, showing no statistically
significant change (<0.7%). Creep rupture at short durations despite less matrix damage
suggests that internal defects and strength distribution affect the probability of fiber-
dominated failure at higher stress levels, since more matrix damage appears to be tolerable
at longer durations. Further experimental work is needed to reveal the damage accumula-
tion mechanism under creep loading in BFPP.
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Figure 5. (a) Creep rupture strength diagram and creep strain until failure, and (b) comparison of fracture surfaces for short
and long creep lives (scale bars are 50 µm).

Table 2. Fatigue life parameters of BFPP rods.

R a b σe,max/σu

0.1 1211.1 −0.092 0.15
0.3 1054.0 −0.116 0.20
0.5 663.0 −0.115 0.20
0.7 575.6 −0.114 0.25
0.9 391.5 −0.121 0.40
1.0 607.8 −0.011 0.75 *

* Extrapolation to 106 h gives 0.71.

3.4. Fatigue Behavior (0 < R < 1) at Room Temperature

Figure 6a shows the S–N curves in terms of mean stress σm for each value of R, while
Figure 6b shows the S–N curves in terms of stress amplitude σa. Replicates were not tested
for each stress level so a statistical analysis could not be performed, but the data appear to
follow a power law similar to Equation (3):

σm = a
(

N f

)b
(4)

where a and b are empirical parameters, and Nf is the cycles to failure; a and b are listed
in Table 2, along with the maximum stress at the endurance limit (σe,max/σu). It is clear
that a smaller stress amplitude (higher R) results in a higher tolerable mean stress for a
given fatigue life while a higher mean stress results in a lower tolerable stress amplitude
for a given fatigue life. It is easy to understand that a smaller stress amplitude creates
less damage and thus correlates to higher mean stress. From a reliability perspective, for
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a given mean stress, a higher stress amplitude translates to a higher probability that the
maximum stress approaches the mean static strength, as shown by the Weibull distribution
(Section 3.2).
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This is especially clear in the fatigue failure diagram in Figure 6c, where the rela-
tionship between stress amplitude and mean stress are linear for each value of R, and
the fatigue endurance (run-out) line is formed by the smallest values from each series.
A variety of fatigue failure criteria has been developed for metal alloys and applied to
composite materials [52–54], most notably the Goodman criterion, which is given by the
following:

σa = σw

(
1 − σm

σu

)
(5)

where σw is an upper bound on the stress amplitude when the mean stress approaches zero—
i.e., fully reversed loading. However, this criterion clearly does not fit the experimental data
for BFPP, as the fatigue limit is overestimated. Other common criteria such as Soderberg
and Gerber are also more suitable for metal alloys, which exhibit a yielding behavior, and
thus, the fatigue limit is affected by plastic deformation [52]. A new empirical criterion is
introduced here to more accurately represent the experimental results of this study:

σa = σw + A(σm)
2 + Bσm (6)
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where the coefficients σw, A, and B are defined by the following:

σw =
2.5(σu)

2

EL
(7)

A =
2.5
EL

=
σw

(σu)
2 (8)

B = −5σu

EL
= −2Aσu (9)

where EL is the longitudinal tensile modulus. This formulation is expressed in terms of
maximum strain energy density at failure for an elastic material. In this context, the fatigue
endurance limit σe follows a convex surface where a higher mean stress corresponds to
an increasingly lower tolerable stress amplitude. The comparison between the Goodman
criterion and the proposed quadratic criterion is shown in Figure 6c (enlarged in the inset).

3.5. Implications for Service Life and Design

The endurance limit for each stress ratio is shown in Figure 6d, where σe increases
with R according to the following:

σe = 1.5σw

(
(1 − R) + 1.5σw

(
1 + R
2σcr,e

))−1
(10)

where σe,cr is the creep endurance strength (i.e., σe at R = 1). The residual static strength σr
was measured from specimens after reaching run-out (N = 107 cycles) and was found to
increase with R according to the following:

σr = 5σw

(
(1 − R) + 5σw

(
1 + R
2σu

))−1
(11)

which is similar to Equation (10) except that the static tensile strength is used as the upper
bound instead of the creep endurance strength. As mentioned above, more damage is accu-
mulated at higher stress amplitudes (lower R), so the residual static strength is significantly
reduced. Conversely, the post-creep (R = 1) residual static strength is unchanged. This is
supported by the micrographs in Figure 7, which show significant resin damage for lower
values of R while higher values do not differ from static tensile fracture surfaces. This
deviates from results for basalt/epoxy composites [38,39], which is assumed to be caused
by the difference in stiffness and ductility between epoxy and polypropylene. However,
these results may extend the observations of the effect of limited ductility for toughened
vinylester-based BFRP [39]. No significant reduction in stiffness (E/E0) was observed for
any of the loading conditions in this study due to the fiber-dominant behavior of unidi-
rectional composites. Further experimental and analytical investigation is needed to fully
characterize and quantify damage under sustained loading.

Existing standards and design guides for FRP concrete reinforcement do not include
BFRP and nearly all referenced data come from brittle thermoset matrix composites, so we
reference the guidelines made for GFRP as it is the most similar to BFRP. The American
Concrete Institute (ACI) published the ACI 440.1R-15 “Guide for the Design and Con-
struction of Structure Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars”,
which is currently the most comprehensive document on the topic [55]. Section 7.4 of ACI
440.1R-15 addresses creep rupture and fatigue limits, where a maximum long-term stress
of σmax = 0.2σu is recommended for GFRP. Referring to the endurance limits for each R in
Table 2, BFPP exhibits similar values ranging from 0.15σu to 0.40σu (for R = 0.1 and 0.9,
respectively) and 0.71 for creep (R = 1). Although ACI 440.1R-15 does not mention stress
ratios, in-service structures experience variable loading scenarios that make life prediction
complex, which is why conservative stress limits are needed for safe designs. More ex-
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perimental data and theoretical analysis are needed to better understand the fatigue and
creep behavior of basalt fiber/thermoplastic composites and to develop accurate service
life prediction models.
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4. Conclusions

This paper reports the static and fatigue tensile behavior of a novel basalt fiber/
polypropylene composite rod for concrete reinforcement. In particular, the elucidation of
the effect of stress ratio on fatigue life of BFPP, and the proposal of a failure criterion and
the relationship between endurance limit and residual strength are major contributions of
this study. To summarize, the static tensile properties at elevated temperatures (T < Tm)
decreased slightly but the fiber-dominant nature of unidirectional composites resulted in a
smaller decrease than expected based on the neat resin’s thermal properties. Rather, the
most notable change was an increase in the variability in strength as temperature increased,
as indicated by a decrease in the Weibull shape parameter. Fatigue behavior was similar to
other FRP (particularly GFRP) in terms of the general relationship between stress level and
fatigue life; however, the endurance limit deviated from standard failure criteria such as
the Goodman equation, instead being better described by a strain energy density-based
quadratic (convex) function. Additionally, we found that a higher stress ratio R (i.e., lower
stress amplitude) resulted in a higher residual static strength after run-out, with no change
for creep loading (2000 h run-out). A lower stress amplitude corresponds to less damage
accumulation in the m-PP matrix, although the damage mechanism for creep (R = 1) is
yet unclear. Several equations were introduced to describe the fatigue endurance limit
and residual strength, showing good agreement with experimental data. The strength and
stiffness of this prototype cable are insufficient for prestressed concrete applications, but it
is a promising candidate material for passive concrete reinforcement due to its durability
and low cost. Although further investigation is needed to thoroughly characterize fatigue
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damage mechanisms and to accurately predict fatigue life, these results suggest that the
BFPP material in this study is comparable with other FRP and seems conforms to ACI
440.R-15.
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