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Abstract: Interfacial localization of carbon fillers in cocontinuous-structured polymer blends is well-
known as a high-efficiency strategy for conductive network formation. However, a comparison with
interfacial localization of carbon fillers in sea-island-structured polymer blends is lacking. Here, three
types of highly efficient conductive networks formed on the basis of interfacial localization of carbon
black (CB) in polyamide 6 (PA6)/poly(butylene terephthalate) (PBT) blends with different blend
compositions (80/20, 50/50 and 20/80 vol/vol) were investigated and compared in terms of electrical
resistivity, morphology as well as rheological and mechanical properties. The order of the electrical
percolation threshold of CB in the three blends is 50/50 < 20/80 < 80/20, which can be attributed
to different network structures. The rheological percolation thresholds are close to the electrical
ones, confirming the formation of CB networks. The formation mechanisms for the three types of
CB network structures are analyzed. All the three types of PA6/PBT-6 vol% CB composites showed
improved tensile strength compared with PA6/PBT blends, being in favor for practical applications.

Keywords: electrical properties; interface; mechanical properties; network

1. Introduction

Efficient formation of conductive filler networks in polymer matrices is key in the
preparation of high-performance and low-cost conductive polymer composites [1–5], al-
though other factors such as crystallization and assembly of polymers also need to be
considered [6,7]. It has been known that the distribution of conductive particles, typically
carbon fillers such as CB and carbon nanotubes (CNTs), in polymer matrices greatly affects
the formation efficiency of conductive networks [1,4,5,8–11]. Heterogeneous particle dis-
tribution (the so-called preferential distribution) or even appropriate particle assembly is
more favorable for the formation of conductive networks than homogenous particle distri-
bution for two reasons. Firstly, only the nearest particles, not all the conductive particles,
contribute to the formation of conductive networks according to the tunneling percolation
model [3], and thus heterogeneous particle distribution can increase the contribution rate
of conductive particles. Secondly, from the geometrical point of view, the average distance
among the neighboring particles is shorter in heterogeneous particle distribution than in
homogenous particle distribution [4].

The use of immiscible binary polymer blends as the matrices has been proven to be a
good method for tuning the distribution of conductive particles ever since the pioneering
work of Sumita et al. in 1991 [1,12–19]. It is generally recognized that the formation
efficiency of the conductive networks increases to a great extent, compared with single
polymer as the matrix, when carbon fillers are selectively localized in one continuous
polymer phase or at the interface of a cocontinuous-structured polymer blend, according
to the double percolation mechanism [12]. The interfacial localization of carbon fillers
in cocontinuous-structured binary blends is considered the most ideal strategy with the
highest formation efficiency of conductive networks because the interface area is small
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yet continuous and thus easily percolated. Although a number of successful examples
have been published through kinetic control or changing the mixing thermodynamics
(by grafting polymer chains on carbon fillers, for example) [19–23], only in a few types
of blends carbon fillers can thermodynamically achieve interfacial localization [12,24–28].
Moreover, we noticed that in this ideal strategy, the phase continuity of the two components
was considered crucial in order to ensure continuity of the interface, which is essential for
achieving the second percolation [29].

Apart from cocontinuous-structure, sea-island structure is another typical phase
morphology of polymer blends. However, there are considerably less investigations in-
volving the formation of conductive networks via interfacial localization of carbon fillers
in sea-island-structured polymer blends [18,24,25,28] probably because the interface is not
continuous throughout the entire blend and the inter-domain distance is usually far larger
than the minimum inter-particle distance (10 nm) required in the average inter-particle
distance model [30]. In the previous work by our research group [26,27], we found that
CB can form highly-efficient conductive networks in sea-island-structured thermoplastic
polyurethane (TPU)/polyamide copolymer (COPA) and nylon-poly(m-xylene adipamide)
(MXD6)/poly(ethylene terephthalate) (PET) blends through thermodynamically-driven
interfacial localization. The decrease in the electrical percolation threshold can be up to
83% in the case of MXD6/PET/CB, although the average inter-domain distance deduced
from the two-dimensional FESEM photos remains in the submicron level [27]. The high for-
mation efficiency of conductive networks in MXD6/PET/CB was attributed to CB-covered
PET domains serving as big conductive particles and the assistance of CB aggregates in
the MXD6 phase acting as bridges. Yang et al. reported a reduction of 23% in electrical
percolation threshold through interfacial distribution of CNTs in polyvinylidene difluoride
(PVDF)/ethylene-octene block copolymer (OBC), and proposed that CNT-covered OBC
domains assisted CNTs in the formation of the conductive networks [28].

Realizing that the interfacial strategy could be highly efficient in both cocontinuous
and sea-island-structured polymer blends for the formation of conductive networks, in this
work, we chose PA6/PBT/CB as a model system to investigate the effect of phase morphol-
ogy on the formation of conductive networks by changing blend composition. Because
the phase morphology of blends has significant effect not only on electrical conductivity,
but also on other properties of the final composites (such as mechanical properties), such
a study can provide a good guidance for the design of conductive composites with good
overall performance by balancing various properties and cost. Scientifically, a comparison
on the formation mechanisms of different types of conductive networks is of great interest.
The reasons for choosing PA6/PBT/CB system are as follows: (1) The majority of CB parti-
cles are thermodynamically localized at the interface of PA6/PBT blend regardless of blend
composition because CB has counterbalanced interaction with PA6 and PBT according
to our preliminary research. (2) It is easy to obtain commercial PA6 and PBT resins with
similar melt viscosity to avoid the effect of viscosity on phase morphology and localization
of CB (Figure S1). (3) PA6 and PBT have similar melting temperature and thus similar pro-
cessing window [31]. (4) PA6/PBT blends are of industrial relevance, widely used in textile
industries, automotive and electronics [32]. Three blend compositions, two asymmetric
(80/20 and 20/80 vol/vol) and one symmetric (50/50 vol/vol), were designed to allow a
comparison between two conductive networks formed in two similar sea-island structured
blends as well as a comparison between conductive networks formed in cocontinuous
and sea-island-structured blends. Rheological percolation behavior of the composites was
investigated to confirm the difference found in electrical percolation behavior among the
three types of network structures. The three types of PA6/PBT-6 vol% CB composites
showed enhanced and dramatically different dynamic modulus in the molten state and
improved tensile strength compared with PA6/PBT blends.
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2. Materials and Methods
2.1. Materials

Nylon 6 (PA6, 1013B), with a density of 1.14 g/cm3, was produced by Ube Industries,
Japan. Polybutylene terephthalate (PBT, XW321a), with a density of 1.3 g/cm3, was
produced by Sinopec Yizheng, (Yangzhou, China). Both PA6 and PBT were dried in a
vacuum oven at 100 ◦C for 12 h before use. Carbon black (CB, VXC500), with a density of
1.84 g/cm3 and oil absorption value of 148 cc/100 g, was produced by Cabot Corporation
(Boston, Massachusetts, USA).

2.2. Preparation of the Composites

A one-step melt mixing procedure was used to prepare all the composites in a torque
rheometer (RH-200A, Harbin Hapro Electric Co., Ltd., Harbin, China). The compounding
temperature, rotating speed and mixing time were 250 ◦C, 60 rpm and 5 min, respectively.
The composites were denoted as PA6/PBT (x/y)-zCB, where x/y was the volume ratio of
PA6 to PBT and z was the volume percentage of CB in the composite. In the expressions
“zCB-filled PA6/PBT x/y” and ”PA6/PBT-zCB”, x, y and z are the same meanings.

After compounding, the composites were cut into pieces and processed into discs as
test samples for electrical resistivity measurements using a hot press (LP20-B, lab Tech
Engineering, Samutprakarn, Thailand). The hot pressing pressure was 50 bar, and the hot
pressing temperature was 250 ◦C. Two types of discs were prepared: one was 0.38 mm in
thickness and 75 mm in diameter for high resistivity measurements, and the other was
2.5 mm in thickness and 25 mm in diameter for other resistivity measurements.

2.3. Characterization

Volume resistivity measurements were carried out on the above-mentioned discs.
A KDY-1 resistivity tester manufactured by Guangzhou Kunde Technology Company
was used to measure samples with resistivity lower than 104 Ω·cm, a ZC36 resistivity
tester manufactured by Shanghai Instrument Factory was used to measure samples with
volume resistivity higher than 1010 Ω·cm, and an ACL 800 Digital Megohmmeter (ACL,
Inc., Chicago, Illinois, USA) was used to measure samples with resistivity between 104 and
1010 Ω·cm.

For morphological investigation, the test samples were cryo-fractured in liquid ni-
trogen, and the cross-sectional morphology of the samples was observed with a field
emission scanning electron microscope (FESEM, JEOL JSM model 7401, Tokyo, Japan) at an
acceleration voltage of 5 kV. For samples that need to be etched, the PA6 phase was etched
with formic acid, and the PBT phase was etched with a 15 wt% alcoholic solution of KOH.
The average domain size and inter-domain distance were obtained by counting at least
6 FESEM micrographs with image analysis software of Smile View.

The distribution of CB in the blends was investigated using a transmission electron
microscope (H-7650, Hitachi, Tokyo, Japan) at an acceleration voltage of 80 kV. For TEM
observation, the test samples were cut into ultrathin slices (less than 100 nm in thickness)
with a cryomicrotome.

Rheological measurements were carried out on a dynamic rheometer (MCR301, Anton
Paar, Graz, Austria) in oscillatory shear with a sandwich fixture. Disc-shaped samples
(25 mm in diameter and 1.1 mm in thickness), molded by hot-pressing at 250 ◦C under a
pressure of 50 bar, were tested at 250 ◦C. The frequency is scanned from 0.01 Hz to 100 Hz
with a fixed strain of 1%.

Static mechanical properties were measured using a uniaxial tensile tester (Jinjian
UTM, Chengde, China) in accordance with GB/T 16421-1996 for plastics of small specimens.
The dumbbell-shaped tensile bars were molded by hot-pressing at 250 ◦C under a pressure
of 50 bar, then dried in a vacuum oven at 100 ◦C for 12 h and finally cooled in a desiccator
containing P2O5. The stretching speed was 2 mm/min.
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3. Results and Discussion
3.1. Electrical Percolation Behavior of CB in Three Different Blends

The electrical percolation behavior of CB in three PA6/PBT blends with different
compositions (80/20, 50/50 and 20/80 in vol/vol) is displayed in Figure 1a, showing
the formation of conductive networks at different CB loadings. As shown in Figure 1b,
the electrical percolation thresholds deduced from the curves fitting to the power law
(i.e., σ = σ0(ϕ − ϕc)

t) are 6.92, 0.91 and 4.56 vol% for PA6/PBT blend compositions of
80/20, 50/50 and 20/80, respectively. They are all dramatically lower than that of CB in
neat PA6 (>15 vol%, Figure S2), and that in PA6/PBT 20/80 blend is lower than that in
neat PBT (5.96 vol%). The electrical percolation threshold of CB in the symmetric blend
(50/50) is the lowest (only 0.91 vol%), emphasizing the importance of the small interface
area and interface continuity in the formation of conductive networks. Although in the two
asymmetric blends (80/20 and 20/80), the blend composition is only inverse, the electrical
percolation threshold of CB in 20/80 blend is significantly lower than in 80/20 blend. This
is rather surprising but can be reasonably understood by the difference in the CB network
structures after morphological investigation.

Figure 1. Electrical resistivity as a function of CB content (a), a log–log plot of electrical resistivity versus (ϕ − ϕc) (b).

The critical exponent t values are 5.12, 1.80 and 2.29 for composites having PA6/PBT
blend compositions of 80/20, 50/50 and 20/80, respectively. This is understandable.
According to the classical percolation theory, t value depends on the connectivity of the
system [3] and universal values of 1.3 and 2 were predicted for two and three-dimensional
networks [1,3]. In reality, a wide range of t values (1–12) have been reported [1]. A
comparison of the three t values in this work reveals that t is the smallest for CB-filled
PA6/PBT 50/50 blend because of homogeneous distribution of CB aggregates at the
continuous PA6/PBT interface, and a much higher t value found for CB-filled 80/20 blend
suggests a much broader tunneling distance distribution [1] caused by the formation of
co-supporting networks with two types of conductive fillers: CB-covered PBT domains
and CB aggregates in the matrix phase.

3.2. Comparison of the Composite Morphologies

The CB network structure is directly related to phase morphology of PA6/PBT blends
and localization of CB. The phase morphology of the three types of PA6/PBT blends
(50/50, 80/20 and 20/80) without CB were verified by FESEM after itching PBT or PA6
phase with appropriate solvent. As shown in Figure S3, the 50/50 blend is cocontinuous
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whereas 80/20 and 20/80 blends exhibit a typical sea-island structure, as predicted from
the blend composition.

The localization of CB in the three types of PA6/PBT blends was investigated by
TEM, and the micrographs are presented in Figures 2 and 3. It is clear that, at low CB
loadings, the majority of CB particles are selectively localized at PA6/PBT interface. At
high CB loadings, excess CB particles are observed in the PA6 phase, regardless of blend
composition. Even at high CB loadings, CB particles are hardly observed in the PBT phase
no matter if it is the matrix or dispersed phase. These observations reveal that CB has
almost counterbalanced interaction with PA6 and PBT, with very slightly higher affinity
to PA6. This was also confirmed by FESEM micrographs of 3CB-filled PA6/PBT 80/20
and 20/80 blends (Figure S4), where CB particles were observed on the PA6 side of the
dispersed phase, i.e., at the bottoms of the holes in 80/20 blend and on the surfaces of
PA6 spheres in 20/80 blend. It is not surprising that, at high CB loadings, the interface is
CB-saturated, and excess CB particles are found in the phase with which CB has slightly
higher affinity (in this case, PA6 phase). A similar phenomenon was also observed in
CB-filled TPU/COPA, where excess CB aggregates were found in the COPA phase at high
CB loadings [26]. In combination with our previous work [8,26,27], it is believed that
absolute counterbalanced interaction does not exist, and among the commonly known
polymers, nylons have the highest interaction level with CB, although CB particles, at low
loadings, can achieve interfacial localization in nylon/TPU or nylon/aromatic polyester
(PET or PBT) blends. The preference of CB for nylons may be related to the abundant
amide bonds in the molecular chains of nylons. Because there are numerous polar groups
(such as hydroxyl, carboxyl and carbonyl groups) on the surface of CB [27], nylons can
form hydrogen bonds with CB via both C=O and N-H sites of amide bonds, and thus
strong hydrogen bonding is formed between nylon and CB. This was confirmed by a shift
of both amide I and II bands in the FTIR spectra of MXD6/PET/CB [27] and PA6/PBT/CB
composite (Figure S5). Aromatic polyesters (PET and PBT) have slightly weaker interaction
with CB than nylons (MXD6 and PA6) because they can form hydrogen bonds with CB via
ester linkage and π-π interaction with CB via aromatic rings.

Figure 2. Cont.
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It is noted that, for CB-filled 50/50 blend, the interface is almost fully covered by CB
particles with as low as 1.5 vol% of CB, being in agreement with the ultralow electrical
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percolation of CB; whereas, for CB-filled 80/20 blend, the interface is far from complete
coverage by CB even with 3 vol% CB, and the coverage rate of the interface increases with
increasing CB loading. For CB-filled 20/80 blend, a strong impression is the heterogeneous
distribution of the CB-covered PA6 domains acting as big conductive particles, being
in favor for the formation of conductive networks by shortening inter-particle distance.
This can be interpreted by the dramatic increase in the viscosity of the PA6 phase with a
large amount (much larger in term of CB concentration than in 80/20 blend) of excess CB
particles inside, which inhibits the mobility of the dispersed PA6 phases.

In CB-filled asymmetric blends (80/20 and 20/80), the domain size and inter-domain
distance are two crucial parameters affecting the formation of conductive networks because
the CB-covered domains act as micron-sized conductive particles, much bigger than CB
aggregates. Thus, they were measured by carrying out FESEM observation after itching
domains with appropriate solvent. The FESEM micrographs are shown in Figure 4, and the
quantitative data are presented in Figure 5. For both 80/20 and 20/80 series, both domain
size and inter-domain distance decrease with increasing CB loading, implying that CB has
compatibilization effect on the blends because of its interfacial localization. At high CB
loadings (6 and 10 vol%), the domain size is similar for both series, but the inter-domain
distance is smaller for 20/80 blend, being in agreement with the heterogeneous distribution of
PA6 domains observed by TEM. According to the values of electrical percolation thresholds
of CB in the two types of blends (6.92 vol% and 4.56 vol%), at 6 vol% CB, the conductive
networks are about to form in 80/20 blend, and they have already formed in 20/80 blend.
The average domain size is around 1 µm, and the average inter-domain distance is around
0.5 µm for both types of blends. The latter is at a similar level to those found in our previous
work on MXD6/PET/CB and TPU/COPA/CB composites [26,27], i.e., it is much larger than
10 nm, the inter-particle distance used in the average inter-particle distance model [30].

Figure 4. FESEM photos of PA6/PBT(80/20)-CB composites with different CB contents: (a) 3 vol%, (b) 6 vol%, (c) 10 vol%;
and PA6/PBT(20/80)-CB composites with different CB contents: (d) 3 vol%, (e) 6 vol% and (f) 10 vol%. The PBT phase
in PA6/PBT(80/20)-CB composites was etched by alcoholic solution of KOH, and the PA6 phase in PA6/PBT(20/80)-CB
composites was etched by formic acid.
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Figure 5. Average domain size (a) and average inter-domain distance (b) as a function of CB content in PA6/PBT(80/20)-CB
and PA6/PBT(20/80)-CB composites.

3.3. Rheological Percolation Behavior of CB in Three Different Blends

Rheology is an effective mean to investigate the construction of filler networks in a
polymer matrix because the rheological properties of the composite melt change dramati-
cally upon percolation of the filler [33–36]. Therefore, frequency-weep testing was carried
out on all of the three series of composites with different CB contents, and the results
are given in Figures S6–S8. Clearly, for almost all of the samples, all three rheological
parameters, i.e., the storage modulus (G’), loss modulus (G”) and complex viscosity (|η*|),
show frequency-dependence over the whole frequency range. G’ and G” increase when
the frequency increases; whereas |η*| shows obvious shear thinning behavior.

It has been reported that the power law relation predicted by the statistical percolation
theory holds for rheological data [33,37]. G’ values at low frequencies are often used to
deduce the rheological percolation values of fillers because elastic load transfer is more
sensitive to the formation of filler networks than viscous dissipation, although G” and |η*|
values at low frequencies could also fit to the scaling law of the percolation theory [33,37].
Thus, the G’ values at 0.01 Hz as a function of CB content are plotted in Figure 6a, and the
curves fitting to the power law are shown in Figure 6b. Because of the reinforcement effect of
rigid CB particles, G’ increases slightly at low CB loadings for all three types of composites.
A huge increase occurs when CB percolates at a higher CB loading. It is noted that the
adjusted correlation coefficients (R2) in Figure 6b are all high enough to guarantee the linear
relationship of log G’-log(ϕ-ϕc). The rheological percolation thresholds of CB in PA6/PBT
80/20, 50/50 and 20/80 blends are 7.31, 1.24 and 4.90 vol%, respectively, being close to
the values of the electrical percolation thresholds. In the literature, some authors reported
lower rheological percolation thresholds than electrical percolation thresholds [34,37,38]
and attributed the difference to different percolation mechanism that require different
inter-particle distance (i.e., different network density), although both rheological and
electrical networks are formed through a non-contact mode [37]. In most cases, the electrical
resistivities were measured in the solid state, whereas the rheological measurements were
carried out in the molten state, and thus the comparison may not be strict [37]. Santamaria’s
group investigated the electrical and rheological percolations of MWCNTs and graphene in
molten thermoplastic polyurethane and found that the electrical percolation threshold of
MWCNTs at a frequency of 20 Hz was lower than rheological percolation threshold whereas
practically the same values were obtained in the case of graphene [39,40]. Therefore, it
seems difficult to draw a general trend.
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Figure 6. Storage modulus G’as a function of CB content (a), a log–log plot of storage modulus versus (ϕ − ϕc) (b).

It is noted that the G’ values at 8 and 10 vol% CB for 50/50 blend-based composites are
much smaller than those for 20/80 blend-based composites, although the CB percolates at
very low content (1.24 vol%) in 50/50 blend, indicating that the CB networks are much less
elastic in 50/50 blend than in 20/80 blend at high level of CB contents. This phenomenon
is related to their different network structures and different contribution level of the excess
CB, which will be discussed in the following section.

3.4. Comparison of the Formation Mechanisms of Different Network Structures

As discussed above, the electrical and rheological investigations consistently show
formation of percolated CB networks at different CB levels in the three different PA6/PBT
blends. This can be attributed to the formation of different network structures. On the basis
of morphological observation as well as electrical and rheological data, the mechanisms for
the formation of different percolated CB networks are proposed and illustrated in Figure 7.

At a low CB loading of 1 vol% (Figure 7(a1,b1,c1)), almost all the CB particles are
selectively localized at PA6/PBT interface in all the three types of blends regardless of
blend morphology, because they adsorb both types (PA6 and PBT) of molecules during melt
compounding and behave similar to Janus particles as a result of strong interaction with
both PA6 and PBT molecules via hydrogen bonding and π-π stacking [27,41]. However, the
difference among the three cases is obvious. The interface of 50/50 blend is fully covered
with CB particles, whereas those of 80/20 and 20/80 blends are only partly covered and far
from full coverage. This was caused by the size effect of the second phase. The interface
area of a co-continuous blend is much smaller than the total interface area of dispersed
domains. Thus, in 1 CB-filled 50/50 blend, CB forms a percolated network, whereas in the
other two systems, there is not any network formation. As a consequence, the electrical
resistivity of PA6/PBT(50/50)-1CB composite drops down to 105 Ω·cm, whereas those of
PA6/PBT(80/20)-1CB and PA6/PBT(20/80)-1CB remain very high (around 1015 Ω·cm).

At 5 vol% CB (Figure 7(a2,b2,c2)), in the cases of 80/20 and 20/80 blends, the majority
of CB particles are localized on the surface of the dispersed phase and percolation of CB in
the surface area of the domains (i.e., the primary percolation) is achieved. The CB-covered
domains must be highly conductive and play the role of micron-sized conductive fillers.
Percolated CB networks are formed in 20/80 blend but not in 80/20 blend because the
inter-domain distance is smaller in 20/80 blend than in 80/20 blend and can allow electron
transfer through tunneling, and thus double percolation occurs. As to 50/50 blend, a
significant number of CB particles are localized in the PA6 phase because the small interface
area cannot allow localization of such “large amount” of CB particles and also because PA6
has slightly higher affinity to CB than PBT, as discussed above. The electrical resistivity
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order is: PA6/PBT(50/50)-5CB < PA6/PBT(20/80)-5CB < PA6/PBT(80/20)-5CB, and the G’
order is inverse, revealing that the electrical and rheological data are in accordance.

Figure 7. Illustration of the proposed mechanisms for the formation of different percolated CB networks in three different
PA6/PBT blends: 80/20 (a1,a2,a3,a4), 50/50 (b1,b2,b3,b4) and 20/80 (c1,c2,c3,c4).
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When CB loading increases to 7 vol% (Figure 7(a3,b3,c3)), in the case of 80/20 blend,
a significant number of CB particles are localized in the PA6 phase because the interface
is fully impregnated by CB, and those between two neighboring domains can play a role
of “electrical bridges” for the micron-sized conductive particles (CB-covered domains).
Thus, the secondary percolation occurs, involving two types of conductive particles: CB-
covered PBT domains as micron-sized conducive particles and CB aggregates in the matrix
phase. PA6/PBT(80/20)-7CB composite is percolated through the two-level percolation
mechanism [27,42]. As to 20/80 blend, the excess CB particles are localized in the PA6
domains; most of them are observed alongside the interface, increasing the thickness of
the interface.

At a high CB loading of 10 vol% (Figure 7(a4,b4,c4)), the electrical resistivity of
PA6/PBT(50/50)-10CB and PA6/PBT(20/80)-10CB is similar, whereas G’ of PA6/PBT(20/80)-
10CB is greater than that of PA6/PBT(50/50)-10CB, although CB in the 50/50 blend has
a much lower percolation threshold than in 20/80 blend. This can be attributed to the
different localization and thus different level of contribution of excess CB particles. In the
50/50 blend, a significant number of additional CB particles localize in the nylon phase, and
they do not contribute to the formation of network structure; whereas the additional CB
particles alongside the PA6/PBT(20/80) interface has a strong contribution to the network
structure. Therefore, the CB network in PA6/PBT(20/80)-10CB melt is more elastic than in
PA6/PBT(50/50)-10CB melt, although the CB networks are well established in both com-
posites. Similar electrical and different G’ values are understandable because electrical and
rheological behaviors involve different mechanisms: electron hopping through tunneling
and stress transfer through polymer chains as bridges, respectively. Both the electrical
conductivity and G’ values of PA6/PBT(80/20)-10CB are considerably lower than those of
PA6/PBT(20/80)-10CB and PA6/PBT(50/50)-10CB, suggesting that the CB networks in
80/20 blend are much less perfect than those in 20/80 and 50/50 blends because 10 vol%
CB is just above the percolation threshold (around 7 vol%) of 80/20 system, whereas it is
well beyond the percolation thresholds of 20/80 and 50/50 systems (around 5 and 1 vol%).

3.5. Mechanical Properties of the Composites

The static mechanical properties of the three types of composites with a constant CB
content of 6 vol% were investigated by uniaxial tensile testing and compared with those
of the corresponding PA6/PBT blends. As shown in Figure 8 and Figure S9, blending of
PA6 and PBT leads to significant decrease in both tensile strength and elongation at break
because of the immiscibility of the two components. Upon incorporation of 6 vol% CB,
the tensile strength of all of the blends increases, whereas all of the blends still exhibit
brittle behavior. This reveals that CB has a strengthening effect on the blends for all three
compositions, although CB network structure is different in the three blends.

Figure 8. Tensile strengths (a) and elongations at break (b) of PA6/PBT-CB composites with CB
contents of 0 and 6 vol%.
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Being a commercially available cheap filler, CB is widely used as a conductive filler to
improve electrical or thermal conductivity or antistatic property of non-conductive poly-
mers, or as a reinforcing filler to improve dimensional stability and wear characteristics,
or as a colorant, antioxidant and light stabilizer [43]. However, the incorporation of CB
to a polymer (or polymer blend) may not necessarily increase tensile strength, depend-
ing on various factors such as the type of the polymer, polymer/CB interaction and CB
loading [43–45]. The increase in tensile strength of PA6/PBT/CB composites discovered
in this work may be attributed to good and almost counterbalanced PA6-CB and PBT-CB
interactions as well as the interfacial CB networks. A potential application area of the
strategies investigated in this work is recycling. It means that PA6 and PBT can be recycled
into conductive or antistatic materials in any proportion by melt-mixing with a small
amount of CB.

4. Conclusions

CB particles can form different interfacial network structures in PA6/PBT blends,
depending on the blend composition. All the three typical phase morphologies investigated
in this work, i.e., sea-island, cocontinuous and inverse sea-island structures, corresponding
to blend compositions of 80/20, 50/50 and 20/80, can allow formation of high-efficiency
interfacial CB networks, as revealed by the much lower electrical percolation thresholds
of CB compared to that in neat PA6. In the symmetric 50/50 blend with cocontinuous
phase morphology, the electrical percolation threshold of CB is the lowest (0.94 vol%)
because the PA6/PBT interface area is small yet continuous. An interesting phenomenon
is that CB has a much lower electrical percolation threshold in asymmetric 20/80 blend
than in 80/20 blend (4.56 vs. 6.92 vol%), which can be attributed to the shorter inter-
domain distance caused by inhomogeneous distribution of PA6 domains. The rheological
percolation thresholds of CB in PA6/PBT 80/20, 50/50 and 20/80 blend melts are close
to the corresponding electrical percolation thresholds, confirming the formation of CB
networks. The difference among the three CB network structures can be reflected not only
by their different electrical and rheological percolation threshold values but also by their
difference in electrical or rheological data at high CB loadings. All of the three types of
interfacial CB network structures show strengthening effect on the blends.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13172926/s1, Figure S1: Complex viscosity of virgin PA6 and PBT resins at 250 ◦C
as a function of frequency; Figure S2: Electrical resistivity as a function of CB content for PA6/CB
and PBT/CB composites. Figure S3: FESEM micrographs of different PA6/PBT blends: 80/20 (a),
50/50 (b) and 20/80 (c). In a and b, PBT was etched with alcoholic solution of KOH; while in
c, PA6 domains were etched with formic acid. Figure S4: FESEM photos of PA6/PBT(80/20)-3CB
(a) and PA6/PBT(20/80)-3CB (b) composites, showing selective localization of CB particles at the
interface. Figure S5: FTIR spectra of PA6/PBT(80/20)-0CB and PA6/PBT(80/20)-10CB composites.
The amide I and II bands shifted from 1638.1 to 1635.1 cm−1 and from 1543.4 to 1539.1 cm−1, and
the carbonyl peak shifted from 1713.4 to 1710.1 cm−1 after adding 10 vol% CB. Figure S6: Storage
modulus G’ as a function of frequency for PA6/PBT(80/20)-CB (a), PA6/PBT(50/50)-CB (b), and
PA6/PBT(20/80)-CB (c) composites with different CB contents. Figure S7: Loss modulus G” as a
function of frequency for PA6/PBT(80/20)-CB (a), PA6/PBT(50/50)-CB (b), and PA6/PBT(20/80)-CB
(c) composites with different CB contents. Figure S8: Complex viscosity |η*| as a function of fre-
quency for PA6/PBT(80/20)-CB (a), PA6/PBT(50/50)-CB (b), and PA6/PBT(20/80)-CB (c) composites
with different CB contents. Figure S9: Tensile strengths (a) and elongations at break (b) of PA6 and
PBT with CB contents of 0 and 6 vol%.
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