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Abstract: Zinc oxide (ZnO) nanostructures are widely used in optical sensors and biosensors. Func-
tionalization of these nanostructures with polymers enables optical properties of ZnO to be tai-
lored. Polydopamine (PDA) is a highly biocompatible polymer, which can be used as a versatile
coating suitable for application in sensor and biosensor design. In this research, we have grown
ZnO-based nanorods on the surface of ITO-modified glass-plated optically transparent electrodes
(glass/ITO). Then the deposition of the PDA polymer layer on the surface of ZnO nanorods was
performed from an aqueous PDA solution in such a way glass/ITO/ZnO-PDA structure was formed.
The ZnO-PDA composite was characterized by SEM, TEM, and FTIR spectroscopy. Then glucose
oxidase (GOx) was immobilized using crosslinking by glutaraldehyde on the surface of the ZnO-
PDA composite, and glass/ITO/ZnO-PDA/GOx-based biosensing structure was designed. This
structure was applied for the photo-electrochemical determination of glucose (Glc) in aqueous
solutions. Photo-electrochemical determination of glucose by cyclic voltammetry and amperome-
try has been performed by glass/ITO/ZnO-PDA/GOx-based biosensor. Here reported modifica-
tion/functionalization of ZnO nanorods with PDA enhances the photo-electrochemical performance
of ZnO nanorods, which is well suited for the design of photo-electrochemical sensors and biosensors.

Keywords: polydopamine (PDA); ZnO-PDA nanocomposite; photo-electrochemical glucose biosen-
sor; ITO modified glass electrode

1. Introduction

Photoelectrochemical (PEC) detection is a fast-developing technology [1,2]. Increasing
interest in this method is due to its relative simplicity in operation and low cost [3–5]. One
of the main advantages of photo-electrochemical biosensors compared to conventional
electrochemical techniques is lower background noise and higher sensitivity due to the
separation of excitation source (light) and analytical signal (photocurrent) [6].

In recent years, considerable attention has been dedicated to the determination of glu-
cose due to its important applications in various fields, such as clinical detection, biological
analysis, environmental monitoring, etc. [7,8]. In most glucose sensors, glucose oxidase
(GOx) is the crucial component because GOx-catalysed enzymatic reaction is still mostly
applied in glucose sensors and is used for the oxidation of glucose into gluconolactone [9].
Recently, GOx-based enzymatic sensors show a rather good selectivity and high sensitivity
in glucose determination [10]. However, these sensors still need some improvements [11].
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Therefore, investigations related to the development of alternative glucose determination
methods photo-electrochemical [12–14] are required. Photo-electrochemical biosensor for
the determination of glucose and lactose based on TiO2 modified with gold nanoparticles
and a layer of MnO2/g—C3N4, which was applied for the co-immobilization of glucose
oxidase and β-galactosidase has been developed, by this biosensor glucose determination
was performed at 0 V potential with a sensitivity of 1.54 µA × mM−1 × cm−2 within
the linear range of 0.004–1.75 mM [15]. An alternative way for glucose determination
by realizing photo-electrochemical oxidation of glucose on BiVO4-based electrode was
proposed. The authors determined a sensitivity of 17.38 µA × mM−1 × cm−2 towards
glucose in the concentration range of 5–35 mM. [16]. Delun Chen et al. proposed a method
based on the competitive reaction of ascorbic acid (AA) to enhance the performance of
the photo-electrochemical glucose enzyme sensor. It was shown that compared to the
detection without AA, the stability of the response current, detection ranges of 1–19 mM,
a detection limit of 80 µM, and sensitivity of 2.88 µA × mM−1 × cm−2 were optimized
prominently [17].

Polydopamine (PDA) is a well-known mussel-inspired biocompatible polymer [18].
PDA can be deposited on almost any type of solid substrate, including ceramics, metals,
metal oxides, and polymers [19,20]. Recently, there has been much discussion regard-
ing the physical structure of PDA-based layers. Although its physical structure is still
a point of discussion, it has proven to be very useful in a large variety of applications,
including in electrochemical sensors and biosensors. In sensors, polydopamine is very
often used as a binding agent, which improves the characteristics of designed sensors.
Polydopamine/graphene/MnO2 composite-based electrochemical sensor for the determi-
nation of tryptophan in tomato fruit and juice was reported [21]. Another sensor based on
a screen-printed carbon electrode, which was covalently modified with self-assembled Au-
decorated-PDA nanospheres, was designed. Such a sensor was suitable for a simultaneous
determination of ascorbic acid, dopamine, uric acid, and tryptophan [22]. Self-supported
nanoporous gold film electrodes, after the functionalization by PDA, demonstrated advan-
tages based on the increased surface area, which were well exploited in the development
of sensors suitable for H2O2 and dopamine determination [23]. In our recent works, we
have reported UV light photoinduced processes occurring at the ZnO-PDA interface and
evaluated the influence of PDA on some optical properties of formed ZnO-PDA composite.
A comprehensive modeling of the processes on the ZnO-PDA interface was shown. The
role of the PDA layer on photoluminescence (PL) emission intensity, defect concentrations,
and the quantum efficiency in ZnO-PDA-based nanostructures has been represented [24].
Interaction between ZnO-PDA-based structures and poly-L-lysine (PLL) molecules have
been studied by photoluminescence spectroscopy [25]. It was determined that changes
of ZnO-PDA photoluminescence signal such as the variation of PL-spectral features and
increase/decreased of PL-maxima by quenching of PL-emission are observed after PLL
adsorption and affected by formed PDA layers, which were formed using different PDA
concentrations [25]. Our research illustrates the applicability of PDA coatings for control-
ling and tailoring some semiconductor surface (e.g., ZnO) properties [24,25]. Thus, due
to the specific surface properties of PDA and optical properties of ZnO, the ZnO-PDA
nanocomposites have great potential for application in the design of optical sensors.

In this research, we report the application of polydopamine functionalized ZnO
nanorods in the design of photo-electrochemical glucose biosensors. For this, we have
grown ZnO-based nanorods on the surface of ITO modified glass plated electrode and
then formed ZnO-based nanorods were coated by PDA. Then glucose oxidase (GOx) was
immobilized on the surface of the ZnO-PDA composite. Photo-electrochemical determina-
tion of glucose has been performed by glass/ITO/ZnO-PDA/GOx-based electrode using
potentiodynamic and potentiostatic methods.
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2. Experimental
2.1. Materials and Instruments

Zinc acetate dehydrate, hexamethylenetetramine, 2-propanol (IPA), ethanolamine,
sodium sulfate, zinc nitrate hexahydrate, and phosphate-buffered saline (tablet) were
purchased from Sigma Aldrich (Darmstadt, Germany), dopamine hydrochloride 99%,
and tris(hydroxymethyl)aminomethane 99% (A18494) were purchased from Alfa Aesar
(Poland), and were used without any further purification. Glucose oxidase was purified
from Aspergillus niger, ~360 U/mg protein (approx. 280 U/mg material), and purchased
from CarlRoth (Germany). Glucose anhydrous pure p.a. (C6H12O6–180.16 g/mol) was
purchased from Chempur (Poland).

The ITO glass substrates were cleaned by successive sonication with deionized water
and isopropyl alcohol for 10 min, with proper drying prior to final use. Oxygen plasma
treatment for 15 min was performed in order to eliminate organic traces.

Structural properties of the ZnO-PDA nanostructures were investigated by scanning
electron microscope (SEM) (Zeiss Evo HD15 SEM from Zeiss Ltd. (Jena, Germany)), and
high-resolution transmission electron microscope (HR-TEM) (JEOL ARM 200F, Tokyo,
Japan) (200 kV) with energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss
spectroscopy (EELS) detector and FTIR spectroscopy was performed using an FTIR-ATR
spectrophotometer ‘Frontier’ from Perkin Elmer (Waltham, MA, USA). The HI98129 Combo
tester from Hanna Instruments was used to measure the pH of Tris and PBS buffers.

2.2. Synthesis of ZnO Nanorods and the Deposition of Polydopamine

ZnO nanorods (ZnO-NRs) were formed by the hydrothermal method (Scheme 1A).
Briefly: ZnO seed-based layer was prepared on ITO glass by drop-casting of 20 µL zinc
acetate Zn(CH3COO)2 of 5 mM in methanol solution and annealed at 350 ◦C for 1 h.
Then, the substrates with ZnO seed layers were incubated for 4 h in 50 mM of zinc nitrate
and 50 mM of hexamethylenetetramine-containing solution in water at 95 ◦C. Finally,
the samples were washed with deionized water and dried at room temperature. As
prepared, ITO glass substrates modified by ZnO-NRs were immersed into a Tris buffer
(10 mM, pH 8.5, 50 mL) containing a dopamine concentration of 0.5 mg mL−1 at room
temperature for 1 h. After that, the samples were removed and rinsed with water, which
was purified using the Milli-Q system and then dried at room temperature. Then, glucose
oxidase (GOx) was deposited on the surface of ZnO-PDA nanostructures from 50 mM
phosphate buffer (PBS) solution, pH 7.2, containing 10 mg/mL of GOx. It was incubated
at room temperature for 40 min and then cross-linked using a 0.1% aqueous solution of
glutaraldehyde. Samples exposed to the chamber after 3 cycles of washing in Milli-Q
water glass/ITO/ZnO-PDA/GOx-based electrodes were used for photo-electrochemical
measurements by using potentiodynamic and potentiostatic methods.
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Scheme 1. (A) Schematic diagram with all steps selective layer preparation: (a)–seed layer formation by drop-casting
(b)–hydrothermal growth (c)–PDA deposition (d)–immobilization of glucose oxidase. (B) Setup for electrochemical
measurements: 1—working electrode, 2—Pt counter electrode, 3—reference Ag/AgCl electrode, 4—electrochemical cell
with three electrodes, 5—potentiostat, 6—PC with set up for photo-electrochemical measurements, 7—light source (LED).
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2.3. Photoelectrochemical Detection of Glucose

A homemade plastic cuvette, equipped with front quartz glass, was used for elec-
trochemical measurements (Scheme 1B). Three electrode configuration was used for all
electrochemical measurements (working electrode, Pt counter electrode, and reference
Ag/AgCl electrode).

The glass/ITO/ZnO-PDA/GOx-based electrodes were excited by UV LED (365 nm,
4 mW, 15 nm full width at half maximum (FWHM)). Potential cycling was performed in
potential range of −500–800 mV at potential sweep rate of 50 mV, and cyclic voltammo-
grams (CVs) were registered. Chronoamperometry-based evaluation at constant potential
also was performed ‘at dark’ and at illumination by UV light. The hexacyanoferrate-based
electrochemical redox probe was used for all photo-electrochemical experiments. All
measurements were performed at room temperature.

The determination of glucose was performed according to the following scheme:
glucose was added into an electrochemical cell, which was continuously stirred for 60 s
to distribute glucose homogeneously in the cell; after homogeneous distribution of glu-
cose, cyclic voltammetry and chronoamperometry based measurements were performed.
Glucose concentration in electrochemical cells varied from 0 to 20 mM.

3. Results and Discussion

SEM and TEM images of ZnO-PDA nanorods deposited on glass/ITO surfaces are
presented in Figure 1. The average dimensions of nanorods were 60 nm in diameter and
800 nm in length (Figure 1A); this observation is in line with previously reported data [26].
PDA formed a layer over ZnO nanorods and in between them (grey patterns in Figure 1B).
TEM measurements (Figure 1C) illustrate the formation of a 7 nm thick PDA layer over ZnO.
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Fourier transform infrared spectroscopy (FTIR) was used to characterize the immobi-
lization of glucose oxidase on the ZnO-PDA surface (Figure 1D). As prepared, ZnO-PDA
nanocomposite structures were characterized by peaks, located at 1288 cm−1, 1492 cm−1,
1607 cm−1, and 3362 cm−1 that corresponded to C–O, C=N or/and C=C, C=O and –OH
or/and N–H vibrational modes, respectively (Figure 1D). These modes are in agreement
with previous data for PDA observed by Hongyong Luo et al. [27]. In the mentioned
research, FTIR spectra were chosen to investigate the binding interactions between poly-
dopamine sphere (PDS) and silver nanoparticles (AgNPs). The PDS characteristic peaks
(1292 cm−1, 1512 cm−1, 1627 cm−1, and 3379 cm−1) are correlated to peaks observed for
ZnO/PDA in our study. The difference of peak position (4–20 cm−1), observed in noted and
our study, could be due to different protocols of polydopamine synthesis. The ZnO/PDA
contains active quinone groups that can react with the amino groups of the GOx through
Michael addition and/or Schiff base reaction and then resulted in immobilization of GOx
onto the surfaces of the ZnO/PDA. A new peak located at 1063 cm−1 appeared after the
immobilization of glucose oxidase (Figure 1D). The registered new peak corresponds to
C–O bending vibrational mode [28,29]. The immobilization of glucose oxidase resulted in
the decrease of peak intensity at 1607 cm−1. It is important to note that the immobilization
of glucose oxidase on the ZnO-PDA surface leads to shifting the FTIR peak positions
(1492 cm−1, 1607 cm−1, and 3362 cm−1) of 12–20 cm−1 to higher values of wavenumbers.
The peak shifting could be observed due to the reaction between active quinone groups of
ZnO/PDA and amino groups of GOx. Thus, the peak shifting could prove the successful
GOx immobilization on ZnO/PDA.

The characterization of the samples before and after forming of GOx layer was per-
formed by using cyclic voltammetry (Figure 2A,B). It was found that GOx deposition
resulted in significant decrease of the current. Adding of the glucose probe resulted in
enhancement of the current through the system.
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and glass/ITO/ZnO-PDA/GOx in the presence of 0.08 mM of glucose: (A) C–V measurements in ‘dark’ conditions;
(B) C–V measurements in under UV excitation.

Chronoamperometry was applied for the determination of glass/ITO/ZnO-PDA/GOx
electrode-based sensor response towards glucose. The response of the sensor was calcu-
lated as a difference between current registered under illumination by UV light and the
current value measured at ‘dark’ conditions (Equation (1)).

IS = IUV − Idark (1)

where Iuv and Idark are current values, measured at UV excitation and at ‘dark’ conditions.
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The sensor response S was calculated as relative change of the sensor signal according
to the following equation:

S = 1 − IS(C)
IS(0)

(2)

The response of the sensor towards different glucose concentrations is represented in
Figure 3.
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The response of glass/ITO/ZnO-PDA/GOx electrode-based sensor increased in a
glucose concentration range of 0.015–0.12 mM, and the saturation of analytical signal was
determined at glucose concentrations exceeding 0.120 mM. The limit of detection (LOD) of
this glucose biosensor was determined as 0.0062 mM.

The photoinduced processes in metal oxide nanocomposites are still under discus-
sion [13,30–32]. Therefore, the interaction mechanisms and principles of detection in such
systems still require additional analysis. In metal oxide photo-electrochemical glucose sen-
sors, the excitation light results in a significant increase of the photocurrent [13,30–32]. At
ZnO, photogenerated charge participates in redox reactions catalyzed by glucose oxidase.
The interaction between the sensor surface and target molecules involves conductivity
electrons; therefore, the photocurrent after the treatment of glass/ITO/ZnO-PDA/GOx
electrode-based sensor with glucose has lower values [13,30–32]. PL quenching in ZnO-
PDA nanostructures points to that the formation of organic layer over the ZnO induces ad-
ditional charge separation and, therefore, enhancement of surface catalytic activity [24,26].
Therefore, the photocurrent changes could be more pronounced when compared to the
‘dark’ current changes [26]. Similar to the methodology, which is reported in [26], changes
between photocurrent and ‘dark’ current were determined. Due to the catalytic action
of glucose oxidase in the presence of glucose, the ‘dark’ current has slightly increased.
Therefore, the correlation between ‘dark’ and photocurrent provides the possibility to
measure glucose concentration more accurately.

Recent results related to the development of glucose photo-electrochemical sensors
based on composite nanomaterials show sensitivity towards glucose in the range of
0.01–2 mM [13,30–32]. The developed sensor showed good sensitivity towards glucose in
the range of 0.015–0.12 mM. It is known that physiological glucose concentration levels are
in the range of 1.5–20 mM [13,30–32]. Therefore, the sensitivity of here reported glucose
biosensor over 50 times exceeds analytical requirements for such sensors, which enables to
apply of these sensors for the determination of glucose in very diluted samples and/or
the modification of here proposed structure by diffusional membranes, that can change
the sensitivity of developed biosensors. Hence, the developed biosensor shows sensitivity
and response time are suitable for the application of glass/ITO/ZnO-PDA/GOx based
electrodes in the determination of glucose in biological samples.
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4. Conclusions

In summary, we have observed a significant decrease of current due to the GOx layer
formed on the ZnO-PDA structure. Catalytic oxidation of glucose by glucose oxidase
resulted in a concentration-dependent photo-electrochemical response of glass/ITO/ZnO-
PDA/GOx-based electrode towards glucose. Chronoamperometric signals were measured
at UV-illumination and in the ‘dark’, and the difference of measured amperometric signals
was interpreted as an analytical signal suitable for the determination of glucose concen-
tration in the sample. Using this method, fast response and reliable sensor response were
registered in the glucose concentration range of 0.0062–0.120 mM.

Potential application of glass/ITO/ZnO-PDA structures modified by some other
oxidases and/or other redox enzymes can be predicted in photo-electrochemical sensors
for the determination of compounds oxidized by these enzymes.
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struktūras, elektroniskajām un optiskajām ı̄pašı̄bām’, within the Latvian Council of Science fund
(Reg. N. LZP 2018/1-0394). I.I. acknowledges the partial financial support from OPUS 14 project
2017/27/B/ST8/01506 financed by the National Science Center of Poland. E.C. acknowledges the
financial support of the financial of the National Science Centre (NCN) under the OPUS program
(UMO-2019/35/B/ST5/00248). S.R. acknowledges the Latvian State Scholarship grant (2019/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, R.; Tang, R.; Chen, C. Photoelectrochemical Detection of Chromium (VI) Using Layered MoS2 Modified BiOI. J. Chem. Sci.

2020, 132, 1–9. [CrossRef]
2. Luo, J.; Liang, D.; Zhao, D.; Yang, M. Photoelectrochemical Detection of Circulating Tumor Cells Based on Aptamer Conjugated

Cu2O as Signal Probe. Biosens. Bioelectron. 2020, 151, 111976. [CrossRef] [PubMed]
3. del Barrio, M.; Luna-López, G.; Pita, M. Enhancement of Biosensors by Implementing Photoelectrochemical Processes. Sensors

2020, 20, 3281. [CrossRef]
4. He, X.; Ying, Y.; Zhao, X.; Deng, W.; Tan, Y.; Xie, Q. Cobalt-Doped Tungsten Trioxide Nanorods Decorated with Au Nanoparticles

for Ultrasensitive Photoelectrochemical Detection of Aflatoxin B1 Based on Aptamer Structure Switch. Sens. Actuators B Chem.
2021, 332, 129528. [CrossRef]

5. Zhang, L.; Li, P.; Feng, L.; Chen, X.; Jiang, J.; Zhang, S.; Zhang, C.; Zhang, A.; Chen, G.; Wang, H. Synergetic Ag2S and ZnS
Quantum Dots as the Sensitizer and Recognition Probe: A Visible Light-Driven Photoelectrochemical Sensor for the “Signal-on”
Analysis of Mercury (II). J. Hazard. Mater. 2020, 387, 121715. [CrossRef]

6. Ahmadi, N.; Bagherzadeh, M.; Nemati, A. Comparison between Electrochemical and Photoelectrochemical Detection of Dopamine
Based on Titania-Ceria-Graphene Quantum Dots Nanocomposite. Biosens. Bioelectron. 2020, 151, 111977. [CrossRef]

7. Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical Enzymatic Biosensors. Biosens. Bioelectron. 2017, 92, 294–304. [CrossRef]
[PubMed]

8. Cao, L.; Wang, P.; Chen, L.; Wu, Y.; Di, J. A Photoelectrochemical Glucose Sensor Based on Gold Nanoparticles as a Mimic Enzyme
of Glucose Oxidase. RSC Adv. 2019, 9, 15307–15313. [CrossRef]

http://doi.org/10.1007/s12039-020-1758-7
http://doi.org/10.1016/j.bios.2019.111976
http://www.ncbi.nlm.nih.gov/pubmed/31999584
http://doi.org/10.3390/s20113281
http://doi.org/10.1016/j.snb.2021.129528
http://doi.org/10.1016/j.jhazmat.2019.121715
http://doi.org/10.1016/j.bios.2019.111977
http://doi.org/10.1016/j.bios.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/27836594
http://doi.org/10.1039/C9RA02088H


Polymers 2021, 13, 2918 8 of 8

9. German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Semashko, T.; Mikhailova, R.; Ramanaviciene, A. The Use of Different
Glucose Oxidases for the Development of an Amperometric Reagentless Glucose Biosensor Based on Gold Nanoparticles Covered
by Polypyrrole. Electrochim. Acta 2015, 169, 326–333. [CrossRef]

10. German, N.; Ramanavicius, A.; Ramanaviciene, A. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold
Nanoparticles Covered by Polypyrrole. Electroanalysis 2017, 29, 1267–1277. [CrossRef]

11. Vashist, S.K. Non-Invasive Glucose Monitoring Technology in Diabetes Management: A Review. Anal. Chim. Acta 2012, 750,
16–27. [CrossRef] [PubMed]

12. Atchudan, R.; Muthuchamy, N.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Park, K.H.; Lee, Y.R. An Ultrasensitive Photoelectro-
chemical Biosensor for Glucose Based on Bio-Derived Nitrogen-Doped Carbon Sheets Wrapped Titanium Dioxide Nanoparticles.
Biosens. Bioelectron. 2019, 126, 160–169. [CrossRef]

13. Yang, W.; Wang, X.; Hao, W.; Wu, Q.; Peng, J.; Tu, J.; Cao, Y. 3D Hollow-out TiO2 Nanowire Cluster/GOx as an Ultrasensitive
Photoelectrochemical Glucose Biosensor. J. Mater. Chem. B 2020, 8, 2363–2370. [CrossRef] [PubMed]
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