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Abstract: The proper choice of a material system for bioresorbable synthetic bone graft substitutes
imposes strict requirements for mechanical properties, bioactivity, biocompatibility, and osteocon-
ductivity. This study aims to characterize the effect of in-mold annealing on the properties of
nanocomposite systems based on asymmetric poly(L-lactide) (PLLA)/Poly(D-lactide) (PDLA) blends
at 5 wt.% PDLA loading, which was incorporated with nano-hydroxyapatite (HA) at various con-
centrations (1, 5, 10, 15 wt.%). Samples were melt-blended and injection molded into “cold” mold
(50 ◦C) and hot mold (100 ◦C). The results showed that the tensile modulus, crystallinity, and
thermal-resistance were enhanced with increasing content of HA and blending with 5 wt.% of PDLA.
In-mold annealing further improved the properties mentioned above by achieving a higher degree of
crystallinity. In-mold annealed PLLA/5PDLA/15HA samples showed an increase of crystallinity by
~59%, tensile modulus by ~28%, and VST by ~44% when compared to neat hot molded PLLA. On
the other hand, the % elongation values at break as well as tensile strength of the PLLA and asym-
metric nanocomposites were lowered with increasing HA content and in-mold annealing. Moreover,
in-mold annealing of asymmetric blends and related nanocomposites caused the embrittlement of
material systems. Impact toughness, when compared to neat cold molded PLLA, was improved by
~44% with in-mold annealing of PLLA/1HA. Furthermore, fracture morphology revealed fine disper-
sion and distribution of HA at 1 wt.% concentration. On the other hand, HA at a high concentration
of 15 wt.% show agglomerates that worked as stress concentrators during impact loading.

Keywords: poly(L-lactide); poly(D-lactide); stereocomplex; nanohydroxyapatite; nanocomposites;
mechanical properties; impact resistance; heat resistance; crystallization

1. Introduction

As global society continues to grow, sustainability issues concerning our raw material
systems arise as well. Sustainability coupled with the rising environmental concerns and
fossil resources depletion present considerable challenges for the polymer industry [1]. To
alleviate these problems, governments in many countries are enacting laws that encourage
the use of recycled, renewable, and biodegradable polymers [2]. Particularly in Europe,
topics such as greenhouse gas emission, CO2 neutrality, renewability, embodied energy,
toxicity, and resource depletion are driven by regulations.

At the same time, new sustainability platforms arise as well. An example is Think
2030, which is based at the Institute for European Environmental Policy (IEEP) and will pro-
duce science-based agenda recommendations for European environmental policy beyond
2020 [3].

Biobased polymers have been attracting attention as renewable materials that can
replace conventional polymers, which are synthesized from unsustainable fossil based
resources [4]. Among these, polylactide (PLA) has exhibited vast appeal in the past decades
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due to its good mechanical properties, renewability, biodegradability, and biocompatibility.
The price of PLA is only slightly higher compared to the average commercial polymers
and is likely to decline further with increasing demand [5]. PLA belongs to the family of
compostable aliphatic polyesters which are derived from renewable biomass resources.
Lactic acid (LA), which is the simplest α-hydroxy acid, is the basic building block of PLA.
Due to a chiral carbon atom of LA, PLA has two stereoisomeric forms: poly(L-lactide)
(PLLA) and poly(D-lactide) (PDLA) [6]. Materials with variable optical and physio-chemical
properties can be produced via controlling the proportion of the L- and D-enantiomers.
This allows the production of relatively wide spectra of stereoisomeric PLA forms to
match performance requirements [7]. Despite this, the application possibilities of PLA
have been still limited notably due to slow crystallization rate, low heat, and impact
resistance. Substantial efforts to address these issues have been undertaken to improve
property deficiency. To achieve this, research is being carried out to develop modified PLA
systems by blending, plasticization, copolymerization, and the addition of different types
of fillers [8].

One of the most effective methods to enhance heat resistance, thermal stability, me-
chanical performance, and hydrolysis resistance of PLA is the formation of stereocomplex
(SC) crystallites between enantiomeric PLLA and PDLA [9–11]. This unique idea was at first
reported by Ikeda et al. [12] in 1987. Since then, numerous studies have been made on PLA
stereocomplex due to its higher thermal and mechanical properties [13–16]. Furthermore,
improved rheology and crystallization kinetics have been reported by Yamane et al. [17],
Inkinen et al. [18], and Shi et al. [19] through the investigation of asymmetric PLLA/PDLA
blends. Wei et al. [20] revealed at his research by self-nucleation experiments and polarized
light microscopy (POM) observations, that the highest nucleation density of PLLA/PDLA
blends was achieved through incorporation of PDLA with a concentration of 5 wt.%. Sub-
sequently, Wang et al. [21] observed the formation of a highly interconnected honeycomb
network of SC crystallites through selective dissolution of asymmetric PLLA/PDLA blends
with high-molecular-weight PDLA as a minor component. Pronounced crystallization of
PLLA due to enhanced nucleation was observed at 5 wt.% loading of PDLA.

Since the 1950s, PLA has been widely investigated for applications such as drug
delivery systems, surgical sutures, three-dimensional scaffolds for tissue engineering,
bone implants, and bone fixation devices [22]. Despite its good biocompatibility and
bioresorbability, insufficient mechanical strength of pure PLA limits its use in applica-
tions such as bone tissue engineering [23]. Furthermore, PLA is not osteoconductive and
lacks bone-bonding ability such as bioactive ceramics and glasses [24]. To address this
issue, nano-inorganic fillers [25–28] were introduced into biopolymers to prepare com-
posites which could mimic the structure and function of the extracellular matrix (ECM)
and support cell adhesion, proliferation, differentiation [29]. Among these nanofillers,
hydroxyapatite (HA) (Ca10(PO4)6(OH)2) has been used due to its excellent bioactivity,
biocompatibility, and osteoconductivity [30–32]. Despite their several benefits, PLA/HA
biocomposites often present some shortcomings in terms of performance [33]. HA nanopar-
ticles tend to aggregate in PLA biocomposites because the surface energy of HA is much
higher than that of PLA. Šupová [34] discussed several approaches to overcome the disper-
sion problem of hydroxyapatite particles in polymer matrices. Therefore, recent research
have focused on improving the mechanical and thermal properties of PLA/HA biocom-
posites through surface and impact modifications [35,36]. Furthermore, the interfacial
adhesion of PLA/HA has been improved by grafting PLA to HA through ring-opening
polymerization (ROP) of lactide [37–39]. Surface modification of HA has been conducted
by Akindoyo et al. [33] through incorporation of 2 wt.% dicopper hydroxide phosphate
(Fabulase 361). Shuai et al. [40] used 2-carboxyethylphosphonic acid (CEPA) coupling
agent to modify the surface of HA particles. Homogeneous dispersion of CEPA modi-
fied HA(C-HA) in PLA matrix with improved interfacial interaction was observed in the
study. On the other hand, Ferri et al. [41] reported that well performed melt extrusion
and subsequent injection molding of PLA/HA biocomposites (10–30 wt.% HA) enhanced
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thermo-mechanical properties of resulted nanocomposites. Nevertheless, increasing the
HA content also resulted in reduced ability for energy absorption at impact conditions.

The primary objective of this study was to examine the influence of nanohydrox-
yapatite (HA) at various concentrations on the properties of asymmetric PLLA/PDLA
blends. The novelty of this work is the study of the in-mold annealing effect of on the
crystallization, mechanical properties, fractured morphology, and temperature and impact
resistance of injection molded nanocomposites. The work also explores the usefulness
of prolonged melt-blending and with subsequent injection molding techniques to manu-
facture plastic parts for bioresorbable synthetic bone graft substitutes. Furthermore, the
influence of specific stereocomplex interactions on the dispersion and distribution of HA
within asymmetric blends is discussed.

2. Materials and Methods
2.1. Materials

The PLA grades used in this study were purchased in the form of granules from
Total Corbion PLA (Gorinchem, Netherlands). As a base matrix we used Luminy L130
(≥99% L-isomer), and Luminy D070 (≥99% D-isomer) was used as a nucleating agent for
stereocomplexation. Onwards from here both will be abbreviated as PLLA and PDLA,
respectively. Hydroxyapatite powder under the trade name CA-PATOH-018-NP with an
average particle size less than 100 nm and stereochemical purity of 98.5% was purchased
from American Elements (Los Angeles, California, USA). Nanohydroxyapatite will be from
here abbreviated as HA.

2.2. Samples Preparation

Neat PLLA, asymmetric PLLA/PDLA blends, PLLA/HA nanocomposites, and PLLA/
PDLA/HA nanocomposites were prepared through melt-blending using MC 15 HT (Xplore,
Sittard, Netherlands) microcompounder. Polymer granules and HA powder were dried in
a VDB3 vacuum oven (Binder, Tuttlingen, Germany) at 80 ◦C for 12 h, prior to processing.
Dispersion and distribution of HA has been controlled through stabilization of double screw
torque. Samples were melt-blended for at least 5 min (depending on HA concentration)
using built-in recirculation channel with a pair of conical screws (set to 100 rpm). Melting
chamber temperatures has been set as constant 200 ◦C for PLLA based samples and 240 ◦C
for PLLA/5PDLA based samples. After stabilizing the torque value (after at least 5 min), the
recirculation valve has been switched and the homogenized melt was forced into the portable
heated chamber of the injection molding machine IM12 (Xplore, Sittard, Netherlands). The
chamber of the injection molding machine has been set to a temperature 5 ◦C higher than
the microcompounder melting chamber. The injection process was divided into two parts;
the first was an injection into a cold mold (50 ◦C) and the second was injection into a hot
mold (100 ◦C). We are aware that term “cold mold” is not appropriate for temperatures as
high as 50 ◦C, however it is used just for simplification reasons. Injection molds without
cooling systems are regularly heated to a specific temperature after several cycles. Due to
this we chose 50 ◦C as a base temperature. So, the processes differ only in the temperature
of the mold and in the time after which the mold was removed from the machine, and the
test specimens were released. The samples from cold mold were released immediately after
injection molding, and samples from hot mold (100 ◦C) were allowed to crystallize within
the mold for a further 120 s before demolding. During the injection molds were used to
prepare standardized dumbbell tensile samples of 1B type according to the ISO 178 standard
and test samples with dimensions of 80 × 10 × 4 mm3 according to the ISO 180 standard.
The final concentrations of injection molded samples are listed in Table 1.
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Table 1. Sample compositions.

Sample Code PLLA (wt.%) PDLA (wt.%) HA (wt.%)

PLLA 100 - -
PLLA/1HA 99 - 1
PLLA/5HA 95 - 5

PLLA/10HA 90 - 10
PLLA/15HA 85 - 15

PLLA/5PDLA 95 5 -
PLLA/5PDLA/1HA 94 5 1
PLLA/5PDLA/5HA 90 5 5
PLLA/5PDLA/10HA 85 5 10
PLLA/5PDLA/15HA 80 5 15

2.3. Differential Scanning Calorimetry (DSC)

Non-isothermal crystallization of the samples was characterized using DSC 1/700
(Mettler Toledo, Greifensee, SWITZERLAND). Measurements were performed on the
middle part of tensile sample cross-sections (8 ± 0.5 mg), which were prepared by RM
2255 microtome (Leica, Nußloch, GERMANY). Samples were heated from 0 ◦C to 200 ◦C
(PLLA/PDLA based samples up to 240 ◦C) at a 10 ◦C·min−1 heating rate, then kept
isothermal for 3 min to remove previous thermal history, and then cooled back to 0 ◦C
under 10 ◦C·min−1 cooling rate to observe melt crystallization. Analysis was performed
under nitrogen flow rate of 50 ml·min−1. The following were recorded from the first
heating phase: glass transition temperature (Tg); cold crystallization temperature (Tcc)
and enthalpy (∆Hcc); pre-melting recrystallization temperature (Trc) and enthalpy (∆Hrc);
homocrystallite melting temperature (Thm) and enthalpy (∆Hhm); stereocomplex crystallite
melting temperature (Tscm) and enthalpy (∆Hscm). Parameters of the above-mentioned
temperatures and enthalpies were taken as the peak temperatures and the areas of the
melting endotherms or crystallization exotherms, respectively.

Crystallinity degrees (χc) of neat PLLA and PLLA/HA nanocomposites were calcu-
lated as follows [42]:

χc =
∆Hhm − ∆Hcc − ∆Hrc

∆H0
hm·Wm

·100[%] (1)

where ∆H0
hm is the melting enthalpy of 100% crystallized PLLA (106 J·g−1) [43] and Wm is

the weight fraction of PLLA.
Crystallinity degree (χc) of asymmetric PLLA/PDLA blends and PLLA/PDLA/HA

nanocomposites was calculated as follows [44]:

χc =
∆Hhm + ∆Hscm − ∆Hcc − ∆Hrc

∆H0
(h+sc)m·Wm

·100 [%] (2)

where ∆H0
(h+sc)m is a calculated melting enthalpy based on 100% crystallized PLLA and stere-

ocomplexed PLA (scPLA). Since the theoretical value is different for PLLA homocrystallites
(α) (106 J·g−1) and stereocomplexed crystallites (η) (142 J·g−1) [44], it can be postulated that
∆H0

(h+sc)m value varies with relative amount of both α and η crystallite forms as follows:

∆H0
(h+sc)m = ∆H0

hm·Xh + ∆H0
scm·Xsc

[
J·g−1

]
, (3)

where ∆H0
scm is melting enthalpy of 100% crystallized scPLA (142 J·g−1). Values of Xh

and Xsc are then relative amounts of α and η crystallites developed during non-isothermal
crystallizations and can be calculated based on enthalpy values from DSC scans (see
Table X) in the following manner.

Xh =
∆Hhm

∆Hhm + ∆Hscm
, (4)



Polymers 2021, 13, 2835 5 of 18

Xsc =
∆Hscm

∆Hhm + ∆Hscm
(5)

2.4. Mechanical Measurement

Tensile strength (σm), elongation at break (εtb), and Young’s modulus (Et) were mea-
sured by using a TIRA test 2300 (Tira, Schalkau, Germany) universal testing machine
equipped with a load cell of 10 kN and extensometer MFX 500-B (Mess & Feinwerktechnik,
GmbH, Velbert, Germany). Measurements have been performed according to the ISO 527
standard. Tensile strength and elongation at break measurements were performed at a
crosshead speed of 5 mm·min−1 and Young’s modulus at a crosshead speed of 1 mm·min−1.
All the samples were prior to testing conditioned in a KSP climatic chamber (Teseco, Kost-
elec nad Orlici, Czech Republic) according to ISO 291 at 23 ◦C and 50% relative humidity
for 4 days. Each batch of 1B type dumbbell specimens was subjected to 10 repetitive tests
under an ambient temperature of 23 ◦C.

2.5. Impact Resistance

Charpy impact strength (acU) was measured using a Resil 5.5 (Ceast, Pianezza, Italy)
testing machine according to ISO 179–1/1eU standard. A pendulum with the nominal en-
ergy of 5 J and 2.9 m·s−1 striking velocity was used. Unnotched samples (80 × 10 × 4 mm3)
were used, and each batch was subjected to 10 repetitive tests under an ambient tempera-
ture of 23 ◦C.

2.6. Thermo-Mechanical Analysis

Heat deflection temperature (HDT) measurements were conducted according to ISO
75–2 standard on HDT/Vicat 6–300 Allround (Zwick/Roell, Ulm, Germany). Method A
using a flexural stress of 1.8 MPa was applied, and each batch of samples (80 × 10 × 4 mm3)
was subjected to 5 repetitive tests at a heating rate of 120 ◦C·h−1.

Vicat softening temperature (VST) measurements were conducted according to ISO
306 using the above mentioned equipment. Method B120 using a force of 50 N and a
heating rate of 120 ◦C·h−1 was applied on each batch of samples (4 mm thick grip section
of dumbbell specimens). Samples were subjected to 5 repetitive tests.

2.7. Morphological Characteristic

Morphology of fractured surfaces was examined by field emission scanning electron
microscopy (FE-SEM) TESCAN MIRA 3 (Tescan, Brno, Czech Republic) with an accelerated
voltage of 2 kV. Unnotched samples were frozen overnight (−50 ◦C) and then crushed
using a Resil 5.5 (Ceast, Pianezza, Italy) impact testing machine. A pendulum with the
nominal energy of 5 J and 2.9 m·s−1 striking velocity was used. Fractured surfaces were
coated with 2 nm of platinum/palladium (Pt/Pd) alloy (80/20) using a sputter coater
LEICA EM ACE200 (Leica, Wetzlar, Germany).

3. Results and Discussion
3.1. Non-Isothermal Crystallization (DSC Measurements)

The prepared samples were studied by non-isothermal DSC analysis. During the first
heating, the influence of the injection molding technological conditions and the promoting
effect of nucleating agents (PDLA, HA) on the thermal properties and crystallization was
investigated. The subtracted data obtained from the DSC measurements, including the
calculated degree of crystallinity, are presented in Table 2 (SF) and Table 3 (TF). DSC
thermograms of the samples injected into the cold (50 ◦C) and hot (100 ◦C) molds are
shown in Figures 1 and 2. Figure 1 shows the DSC curves of samples with PLLA and
HA (1, 5, 10, and 15 wt.%) which were injected into cold (50 ◦C) and hot molds (100 ◦C).
PLLA exhibits a characteristic glass transition temperature (Tg), two exothermic peaks,
which can be attributed to cold crystallization (Tcc) and recrystallization before melting
(Trc) and melting of homocrystalites (Thm). This observation indicates the capability of
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PLLA chains to undergo further rearranging and recrystallization before melting. Both
of these resulted from a slow crystallization process as PLLA was unable to crystallize
properly during cooling. Samples from cold and hot molds exhibit nearly the same trends,
which signify that chosen conditions for neat PLLA from hot mold were insufficient for
the significant increase in crystallinity degree (see Tables 1 and 2). On the other hand,
PLLA samples incorporated with HA showed enhancement of the crystallization rate at
both injection molding conditions. Enhanced crystallization after the introduction of HA
was also observed by Akindoyo et al. [36]. Nanocomposites from cold molds exhibited
with increasing content of HA a shift of Tcc to lower temperatures as well as a decrease
of ∆Hcc. This clearly indicates the nucleation efficiency of HA. The degree of crystallinity
of PLLA/15HA samples increased from 12.0 to 17.9% when compared to neat PLLA.
Furthermore, in-mold annealing at 100 ◦C mold worked synergistically with increasing
content of HA on the crystallization of PLLA. Hydrogen bonding interactions between
PDLLA and HA has been reported by Zhou et al. [45]. Moreover, synergistic effects of chain
dynamics and enantiomeric interaction on the crystallization in PDLA/PLLA mixtures has
been observed by Lv et al. [46]. Therefore, the formation of multiple hydrogen bonding
between the enantiomers of polylactide (CH3· · ·O interactions) and their C=O group with
the P–OH group of HA could be behind this phenomenon. However, further study to
explore this phenomenon should be conducted. Samples containing 15 wt.% of HA resulted
in crystallization of PLLA to the extent that no cold crystallization has been observed during
heating. The degree of crystallinity of in-mold annealed PLLA/15HA samples increased
from 16.2 to 44.4% when compared to neat PLLA. As shown in Figure 2, cold crystallization
peaks of asymmetric PLLA/5PDLA blend and related nanocomposite samples from cold
mold exhibited the same trend. When compared to neat PLLA, Tcc shifted from 100 ◦C to
89 ◦C and remained unchanged with increasing content of the HA. Asymmetric blend and
PLLA/5PDLA/1HA nanocomposites showed approximately the same cold crystallization
enthalpy. However, with a further increase of the HA concentration, the cold crystallization
peak became slightly weaker. This observation indicates that the nucleation effect of HA
was inhibited due to the formation of stereocomplex (SC) crystallites, which hindered the
mobility of PLLA macromolecular chains. A decrease in macromolecular chain the mobility
due to low PDLA concertation in PLLA was observed by Shi et al. [19]. Based on these
results, Shi postulated that formed SC crystallites worked as the physical crosslinking sites
where segments of a number of the core of PLLA chains are formed. Due to this, only a part
of the PLLA chains participated in the SC crystallites, which resulted in limited mobility
of those PLLA chains. Furthermore, Yamane et al. [17] observed that in the presence of
SC crystallites can be melted PLLA polymer significantly reinforced, showing a strong
strain hardening feature. This indicates that the reserved SC crystallites can also serve as
a rheological modifier to improve the low melt strength of PLLA. Furthermore, samples
from cold mold exhibited small exothermic recrystallization peaks due to previous cold
crystallization. Besides, endothermic homocrystallite melting peaks (Thm) at around 175 ◦C
were also observed, with small endothermic melting peaks of stereocomplexed crystallites
(Tscm) at around 220 ◦C. Enthalpy values (∆Hscm) of stereocomplexed crystallites varied
only slightly and did not increase with a higher HA content. Therefore, the HA has no
positive effect of promoting selective stereocomplexation. All of the in-mold annealed
asymmetric PLLA/5PDLA blend and related nanocomposite samples fully crystallized
during processing, and no cold crystallizations or recrystallizations has been observed.
Enthalpy values of the in-mold annealed stereocomplexed crystallites remained unchanged
with the incorporation of HA.
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Table 2. Non-isothermal crystallization data of samples from cold mold (50 ◦C).

Samples Tcc (◦C) ∆Hcc
(J·g−1) Trc (◦C) ∆Hrc

(J·g−1) Thm (◦C) ∆Hhm
(J·g−1) Tscm (◦C) ∆Hscm

(J·g−1) χc (%)

PLLA 100.2 33.7 159.1 5.7 174.9 52.2 - - 12.0
PLLA/1HA 95.4 29.5 158.0 7.0 176.0 49.3 - - 13.7
PLLA/5HA 93.3 25.8 158.1 6.0 177.9 47.5 - - 15.6

PLLA/10HA 91.4 24.9 158.1 5.6 177.3 46.1 - - 16.4
PLLA/15HA 89.7 22.4 158.0 4.5 175.1 43.1 - - 17.9

PLLA/5PDLA 88.4 23.1 157.0 4.4 174.4 44.5 221.7 8.6 16.1
PLLA/5PDLA/1HA 89.4 23.8 157.0 4.6 174.5 43.9 221.2 7.6 14.8
PLLA/5PDLA/5HA 89.2 20.1 157.3 3.4 173.9 38.0 222.1 11.5 14.5
PLLA/5PDLA/10HA 88.5 20.6 157.1 3.2 174.1 38.2 222.0 12.8 15.1
PLLA/5PDLA/15HA 88.4 19.1 157.4 2.5 173.7 35.9 221.8 9.5 15.8

Table 3. Non-isothermal crystallization data of samples from hot mold (100 ◦C).

Samples Tcc (◦C) ∆Hcc
(J·g−1) Trc (◦C) ∆Hrc

(J·g−1) Thm (◦C) ∆Hhm
(J·g−1) Tscm (◦C) ∆Hscm

(J·g−1) χc (%)

PLLA 101.0 26.5 160.1 6.0 176.7 49.7 - - 16.2
PLLA/1HA 94.9 20.4 158.1 5.7 175.3 49.1 - - 22.0
PLLA/5HA 92.4 17.1 158.0 4.7 175.6 47.4 - - 25.4

PLLA/10HA 88.5 11.0 158.1 2.9 175.3 45.2 - - 32.8
PLLA/15HA - - 162.1 0.5 174.8 40.5 - - 44.4

PLLA/5PDLA - - - - 175.7 42.5 223.6 9.8 40.1
PLLA/5PDLA/1HA - - - - 175.9 39.9 221.0 9.6 38.1
PLLA/5PDLA/5HA - - - - 177.1 38.6 221.1 9.8 38.3
PLLA/5PDLA/10HA - - - - 175.6 37.1 222.0 9.6 38.9
PLLA/5PDLA/15HA - - - - 175.2 35.5 222.8 9.3 39.4
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3.2. Mechanical Properties (Static Tensile and Charphy Impact Tests)

The graph in Figure 3 shows that the value of the tensile modulus (Et) increases
with increasing hydroxyapatite content. For pure PLLA, the value of the tensile modulus
after in-mold annealing is comparable to the samples originating from the cold mold.
In-mold annealed samples based on PLLA matrix shows a slight increase in Et when
compared to samples from cold mold. Such an increase is related to a higher degree of
crystallinity (see Tables 2 and 3). Furthermore, Ko et al. [39] observed the same trend using
unmodified nano HA (up to 15 wt.%) in PLA samples. In the case of asymmetric samples
with 5 wt.% PDLA, the difference was more pronounced than for materials where the
matrix contained only PLLA. The synergistic action of specific stereocomplex interactions
and increased nucleation rate due to HA caused during the processing and development of
the morphology an increase in the modulus of elasticity when compared to samples from
cold mold. In-mold annealed PLLA/5PDLA/15HA samples show a ~28% increase of Et
when compared to neat PLLA.
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The resulting values of the tensile strength (σm) are shown in Figure 4, which shows
that in the case of samples originating from the cold mold, the value of the tensile strength
hardly changes depending on the content of the HA. For the samples containing PLLA
and 1% HA that were injected into the hot mold, it can be seen that there was a slight
increase in the value of the tensile strength compared to pure PLLA. In the case of the
PLLA/5PDLA/1HA samples from the hot mold, the difference in strength is 17% higher
compared to PLLA/5PDLA. The strength values of the materials gradually decrease with
contents from 5% HA onwards. This is most likely due to the higher HA content, which
agglomerated into larger clusters (see SEM fracture analysis). These agglomerates acted
as structural defects and caused the anticipated failure of the samples under tensile stress.
Furthermore, Vadori et al. [47] have shown that increasing the mold temperature of PLA
decreases the impact toughness and ductility of PLA.
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Elongation at break (εtb) plots (see Figure 5) showed the same trend; all in-mold annealed
samples showed a sharp decrease in ductility. Furthermore, PLLA based samples from cold
molds show an obvious decrease of εtb with increasing content of HA. Lower ductility of cold
mold samples has also been observed after blending PLLA with 5% of PDLA.
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From the plots in Figure 6 it can be seen that the in-mold annealed specimens with
PLLA matrix have higher impact toughness (acU) compared to the specimens from the cold
mold. The highest values were observed for in-mold annealed PLLA/1HA nanocompos-
ites. The same trend has been observed by Kawamoto et al. [48] using different nucleation
agents. High-temperature molding (110 ◦C) of PLLA and nucleating agents based on a mix
of ethylenebis-(12-hydroxystearylamide) (EBHS)/talc (1 wt.% each) and octamethylenedi-
carboxylicdibenzoylhydrazide (OMBH) at 1 wt.% loading. Furthermore, the value of
impact toughness decreased with an increasing percentage of HA in PLLA. A similar trend
of the impact toughness was observed for the samples originating from the hot mould with
a base matrix containing 5 wt.% PDLA.
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Figure 6. Impact toughness plots of samples from cold and hot molds.

An exception is the trend of values for samples from the cold mould containing PDLA.
The highest impact toughness value has been observed for the pure biopolymer without adding
HA component and onward decreases with increasing content. Enhanced impact toughness
of annealed PLA with 1 wt.% of ethylenebishydroxystearamide (EBH) has been observed
by Tang et al. [49]. An increased number of spherulites with smaller size were believed to
consume more energy and thus increase the impact strength of nucleated PLA samples.

3.3. Thermo-Mechanical Properties (HDT and VST Measurements)

The heat deflection temperature (HDT) and Vicat softening temperature (VST) of cold
and hot molded samples are shown in Figures 7 and 8, respectively. VST is the temperature
at which a material loses its stability form, and HDT is the temperature at which the
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material loses its load-bearing capacity. Both HDT and VST results of cold mold samples
proved that a degree of crystallinity below 20% (see Tables 2 and 3) is insufficient to enhance
thermal stability. The same results were reported by Ferri et al. [41]. Tang et al. [49] noticed
enhanced HDT of PLA with 1% EBH molded at room temperature and then annealed for 1,
2, 4, 10, and 20 min at 105 ◦C. A threshold for crystallinity content was noticed when the
crystallinity reached 25%. Our in-mold annealed samples show the same trend. However,
this phenomenon is more obvious from VST results where an in-mold annealed PLLA/5HA
sample at 25.4% crystallinity reached VST of 75.6 ◦C and a cold mold sample at 15.6%
crystallinity reached only 61.4 ◦C. The highest HDT increase of in-mold annealed samples
without PDLA was noticed by 13% for PLLA/15HA and by 24% for PLLA/5PDLA/15HA
samples when compared to hot mold neat PLLA.
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The same trend was noticed for VST, where PLLA/15HA increased by 37% and
PLLA/5PDLA/15HA by 44%. These results prove that the developed morphology during
in-mold annealing at 100 ◦C for 2 min worked synergistically, and enhanced temperature
resistance was reached due to specific stereocomplex interactions at a low loading of PDLA
(5 wt.%) and relatively high HA loading (15 wt.%).

3.4. Fracture Surface Morphology (SEM Analysis)

SEM analysis was used to evaluate the morphology of individual fracture surfaces
of PLLA, asymmetric PLLA/5PDLA blends and their nanocomposites with different HA
content. In particular, the influence of the preparation technology on the dispersion and
distribution of the nanofiller and the fracture mechanism of the prepared samples were
investigated. The following images show the PLLA samples that were prepared by injection
moulding in the cold (Figure 9a) and hot (Figure 9b) molds. It is well known that in many
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applications, the fracture properties of amorphous polymers render them unsatisfactory.
These fracture properties are linked to the stress-induced growth and breakdown of crazes,
which are planar, crack-like defects [50]. In the case of amorphous PLLA, the primary
deformation mechanism propagation comes from multiple craze formations with low
initiation energy. On the other hand, in crystalline PLLA, deformation under impact
loading takes place through the deformation of the crystallites with the contribution of
cavitation and fibrillation mechanisms [51]. Figure 9 shows that cold mold PLLA sample
with 12% crystallinity exhibits smoother surface fracture when compared to in-molded
annealed PLLA with higher roughness and 16.2% crystallinity. Both details of fractured
surfaces show few fibrils. Since the higher impact toughness was observed for in-mold
annealed PLLA (see Figure 6), an increase of spherulites with smaller size most likely
consumed more energy during fracture. An increase in surface roughness was assigned
by Park et al. [52] to the increase of crystallinity. The fracture surface morphology of
asymmetric PLLA/5PDLA blends, which were prepared by injection moulding in cold
and hot molds is shown in Figure 10a,b, respectively. Both cold and hot mold samples
similarly show brittle fracture failure without any indication of plastic deformation. The
coarser failure structure with deep concavities of the in-mold annealed samples reflects
a higher degree of crystallinity (see Tables 2 and 3). However, the impact toughness of
these samples is much lower compared to the cold mold samples. Related to the spherulite
structure of crystalline polymers, two possible crack paths should be considered: one is the
inter-spherulitic crack growth, and the other the crack growth through spherulites. The
polymer crystal structure related crack paths strongly depend on the formation process of
the microstructure [53,54]. A more detailed study is required to clarify the effect of PDLA
on homocrystallization and the formation of stereocomplexed structure, which resulted in
subsequent failure and different crack propagation of cold and hot molded asymmetric
PLLA/5PDLA blends.
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The morphology of sample fractures with 1 wt.% HA (PLLA/1HA) is shown in
Figure 11a (cold mold) and Figure 11b (hot mold). Similar to the previous samples, a
coarser failure with deep concavities can be observed for in-mold annealed samples,
reflecting a higher degree of crystallinity and torturous path progression of fracture fronts.
Furthermore, both images show relatively good dispersion and distribution of HA (white
dots) with just a few agglomerates in the PLLA matrix. In-mold annealed samples show a
higher degree of cavitation in the nanofiller region and ductile fibrillation of PLLA. The
existence of drawing fibrils and cavitation on the impact fracture surface confirms enhanced
impact toughness (see Figure 6). An increase of the temperature in the crack-tip region
above the glass transition temperature due to high strain-rate could be behind this kind of
fibril formation [55]. Fine dispersion and distribution of HA resulted due to heterogeneous
nucleation effect and in-mold annealing in the enhanced microstructure of PLLA/1HA
nanocomposite. Furthermore, a possible explanation behind cavitation in HA region could
be the hydrogen bonding, which was observed by Zhou et al. [45]. In their study, the IR
and XPS analysis showed the formation of hydrogen bonding between the C=O group of
PDLLA and the surface P–OH group of HA in the PDLLA/HA nanocomposites.

Asymmetric PLLA/5PDLA mixtures with 1 wt.% HA are shown in Figure 12a (cold
mold) and Figure 12b (hot mold). The details of nanocomposite figures show relatively good
dispersion of the nanofiller for both samples. The fracture surface of PLLA/5PDLA/1HA
from cold mold has a similar fractured morphology to that of cold molded PLLA/5PDLA.
In contrast, when comparing in-mold annealed PLLA/5PDLA/1HA and PLLA/5PDLA
samples, the nanocomposite shows very different fracture morphology after the addition
of 1 wt.% HA. Fracture curves of nanocomposite sample indicate a one-plane fracture,
which is perpendicular to the applied load. Furthermore, PLLA/5PDLA/1HA has a less
uneven progression of fracture fronts when compared to PLLA/5PDLA. In-mold annealed
PLLA/5PDLA/1HA show an increase in impact resistance when compared to the samples
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without HA. On the other hand, the cold mold nanocomposite specimens show a decrease in
impact toughness with the addition of 1 wt.% of HA, when compared to asymmetric blends.
When comparing crystallinity degrees of nanocomposites (1 wt.% HA) and blends from both
cold and hot molds they are nearly identical. Loose of tight entanglements of macromolecular
chains at amorphous fractions due to stereocomplexation and homocrystallization could
cause this phenomenon.
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The failure morphology of cold and hot molded samples with 15 wt.% HA (PLLA/15HA)
is shown in Figure 13a,b, respectively. The fracture surface of PLLA/15HA from the cold
mold shows typical brittle fracture failure of PLLA. The detail of the structure then shows
the agglomeration of HA into higher structural units and a large number of cavities where
agglomerates were tearing apart by the progression of fracture fronts. Agglomeration of
unmodified HA within PLA matrix due to their higher surface energy of nanoparticles has
been observed by Ko et al. [39]. In contrast, detail of in-mold annealed sample shows a
more compact structure of the fractured surface. The different degrees of crystallinity (see
Tables 2 and 3) of the cold (~26%) and hot (~51%) molds do not reflect the previous trend of
increasing impact toughness, which remains identical. Thus, the primary mechanism that led
to the failure of the samples was the agglomeration of nanofiller into higher structural units
that acted as local stress concentrators.
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Fractured surfaces of cold (Figure 14a) and hot (Figure 14b) molded nanocomposites
with 5 wt.% of PDLA, and 15 wt.% of HA showed similar failure mode as PLLA/15HA
nanocomposites. The higher concentrations of nanoparticles of HA, while imparting good
thermal resistance (see Figures 7 and 8) to the biocomposite, induced lower mechanical
properties (except tensile elastic modulus) at higher concentrations.
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4. Conclusions

In this work, the effect of in-mold annealing on the properties of nanocomposite systems
based on asymmetric poly(L-lactide) (PLLA)/Poly(D-lactide) (PDLA) blends at 5 wt.% PDLA
loading, which were incorporated with nano-hydroxyapatite (HA) at various concentrations (1,
5, 10, 15 wt.%) was presented and discussed. In-mold annealing at 100 ◦C mold for 2 min after
injection molding was compared to relatively “cold” molded samples at a temperature of 50 ◦C.
From the results, it was noticed that the tensile modulus, crystallinity, and thermal resistance
were enhanced with increasing content of HA and blending with 5 wt.% of PDLA. In-mold
annealing further enhanced the above-mentioned properties due to the synergistic action
of specific stereocomplex interactions and increased nucleation rate due to the introduction
of HA. In-mold annealed PLLA/5PDLA/15HA samples show an increase of the tensile
modulus by ~28%; VST by ~44%; and crystallinity by ~59%, when compared to neat hot
molded PLLA. On the other hand, the % elongation values at the break as well as the tensile
strength of the PLLA and asymmetric nanocomposites were lowered with increasing HA
content and in-mold annealing. In the case of asymmetric blends and related nanocomposites
an embrittlement of material systems has been linked to in-mold annealing. Loose of tight
entanglements of macromolecular chains at amorphous fractions due to stereocomplexation
and homocrystallization could cause this phenomenon. On the other hand, impact toughness,
when compared to neat cold-molded PLLA was improved by ~44% with in-mold annealing of
PLLA/1HA. Furthermore, fracture morphology revealed fine dispersion and distribution of
HA at 1 wt.% concentration. On the other hand, fractured surfaces with a high concentration
of HA (15 wt.%) show agglomerates that worked as stress concentrators during impact
loading. This is a clear sign that at higher concentrations of HA, prolonged melt-blending
is insufficient to achieve good dispersion and distribution of HA within both PLLA and
PLLA/5PDLA blends.
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