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Abstract: Meso-scale simulations have been widely used to probe aggregation caused by structural
formation in macromolecular systems. However, the limitations of the long-length scale, resulting
from its simulation box, cause difficulties in terms of morphological identification and insufficient
classification. In this study, structural knowledge derived from meso-scale simulations based on pa-
rameters from atomistic simulations were analyzed in dissipative particle dynamic (DPD) simulations
of PS-b-PI diblock copolymers. The radial distribution function and its Fourier-space counterpart
or structure factor were proposed using principal component analysis (PCA) as key characteris-
tics for morphological identification and classification. Disorder, discrete clusters, hexagonally
packed cylinders, connected clusters, defected lamellae, lamellae and connected cylinders were
effectively grouped.

Keywords: polystyrene; polyisoprene; morphology; copolymer; structure factor; PCA

1. Introduction

Self-assembly of block copolymers resulting in an order-structural formation in poly-
meric materials has been extensively studied due to the wide range of potential applica-
tions [1,2]. Diblock copolymers comprised of chemically incompatible blocks that consist
of only two dissimilar blocks bound together have attracted much attention due to the
fact that, despite their simple chemical structures, they can give rise to rich morphological
behavior [3–5]. Sphere-liked micelles, cylinders, gyroids and lamellae are the characteristi-
cally observed morphologies [3–6].

A target morphology and its potential applications were investigated from an ex-
perimental point of view and confirmed using various characterization techniques [7–9],
including vibrational spectroscopy (IR/Raman), differential scanning calorimetry (DSC),
scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide-angle
X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), small-angle neutron scat-
tering (SANS), etc. Complementary results were also utilized to achieve the goal. Weiyu
et al. reported that typical morphologies of polyethylene-block-polyethylene oxide (PE-b-
PEO) were successfully identified using the previously mentioned scientific instruments
and that the temperature was responsible for their morphological transitions [9]. Mor-
phological changes from lamellae structures to gyroid, hexagonally packed, cylindrical
and spherical structures due to temperature were revealed and discussed in detail for the
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case of PE17-b-PEO40. The authors also reported that the changes in these components
during morphological transformations could be varied because of their different intrinsic
properties, such as temperature responsiveness and so forth. Khandpur and co-workers
used a combination of dynamic mechanical spectroscopy (DMS), TEM, SEM and SANS to
indicate and classify morphologies of polystyrene-block-polyisoprene (PS-b-PI) copolymers
with PI volume fractions ranging from 0.24 to 0.82 [3,4]. The study showed that ordinary
morphologies can be detected and observed. The phase diagram was constructed to show
a possible region in which a particular morphology could be observed. The experimental
result was in line with the theoretical study undertaken by Cochran and co-workers [10].

Modeling tools can be used to successfully visualize a morphology obtained from
simulations. Nevertheless, it can be problematic to distinguish irregular morphologies with
intricate structures in the complex arrangements. Typically, an order parameter is utilized
to distinguish the appearance of the simulated morphologies. This function is often imple-
mented in computational routines in order to be useful in material modeling. In dynamic
mean-field density functional (DDF) [11,12] theory, a transformation of morphology from
the beginning to the end of simulation can be investigated using order parameters defined
in terms of the mean squared deviation from homogeneity in volume V [6,13]. The order
parameter is given by

order parameter =
1
V

∫
V

[
η2

i (r)− η2
i

]
dr, (1)

where ηi is the dimensionless density for species i. The tendency of the order parameters
can be used to indicate the transformation of morphologies from one to another as well as
to confirm the stable morphology. A high value of the order parameter refers to possible
phase segregation, whereas components are more miscible when the value is close to
zero [13]. Another coarse-grained simulation is the dissipative particle dynamic (DPD)
approach implemented in the DL_MESO software package [14]. An output gives three
different eigenvalues over a simulation time. The isosurface normal distribution p(n) can
be constructed using the obtained densities and the average value of the overall density,
which is used as the isosurfaces’ threshold. The second moment or symmetric tensor M is
written as

M =
∫

nnp(n)dn, (2)

in which M describes an ideal of how the particles are distributed and arranged in the

system. The solution of this equation provides three eigenvalues µi, where
3
∑

i=1
µi = 1

can be used as the order parameter for morphological identification and classification
similarly as described above [15,16]. This order parameter can distinguish a type of
morphology into three main mesophases, including isotropic (µ1 ≈ µ2 ≈ µ3), cylindrical
(µ1 � µ2, µ3) and lamellar (µ1, µ2 � µ3) mesophases [5]. The criteria used to judge here
were proposed by Preinsen et al. [15] and Warren et al. [16] However, the arrangements of
some morphologies are too sophisticated to distinguish solely using a visualizer or order
parameter, as described in our previous paper [5].

To overcome this limitation, principal component analysis (PCA) is introduced and
utilized in this study. PCA is a suitable method because it can reduce dimensionality in
the datasets into a few principal components that are explainable and understandable [17].
Each data point can be plotted and can display the cluster of the calculated datasets. The
contribution of each classification along with the squared cosine (cos2), or the quality of
representations, can provide a visual explanation of how important the data are in each
classification and how much data are compressed in each component [18]. It can generate
a set of new variables, namely principal components (PCs), to represent datasets of interest.
This algorithm aims to reduce the dimensionality of a dataset to emphasize the main and
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important variations in the data. With the PCA algorithm, an original matrix (X) of the
dataset can be transformed into two new matrices, which is given by

X = TP + E, (3)

where T is a score matrix, P is a loading matrix and E is a residual containing the varia-
tion. The score plot provides the location of the samples and the loading plot indicates
correlations among variables. PCA has successfully been used to project a mean squared
displacement (MSD) in datasets analyzed from simulation trajectories to explain the mech-
anistic insights of biological molecules [19]. Fernandez and coworkers revealed that the
projection of the datasets of the atomic property-weighted radial distribution functions
(RDFs) to the first and second principal components can successfully distinguish geometri-
cal properties and gas uptake capacities of metal-organic frameworks [20].

In light of this information, we realized that an improvement to the method for classi-
fication of a simulated morphology type was necessary and challenging. The developed
method could be a valuable and useful tool for other researchers to identify and classify an
observed morphology easily, precisely, and accurately by using PCA. In this study, mor-
phologies of PS-b-PI diblock copolymer were explored using DPD simulations. A suitable
condition that gives a variety of morphologies was selected from our previous paper [5] as
a demonstration. PCA was applied to distinguish the significance of morphologies that
are difficult to identify using only physical appearance and order parameters. The sets of
structural properties were used as crucial variables in the PCA. The observed quantitative
data are useful for the classification of morphologies correctly.

2. Methods
2.1. Dissipative Particle Dynamics (DPD) Simulation and the Analysis of an Apparent
Morphology at an Equilibrium and Its Related Order Parameters

Chain assembly of polystyrene-block-polyisoprene (PS-b-PI) diblock copolymer was
explored by means of dissipative particle dynamics simulations. The elementary unit in
DPD is a spherical particle representing a fluid element, which in turn represents linearly
connected chains composed of S- and I-type DPD particles for styrene and isoprene,
respectively. The molecular structures and their corresponding coarse-grained models for
both types of DPD particles are illustrated in Figure 1. All boxes contained 24,000 coarse-
grained particles with a density σ of 3.0. Each particle was connected by a spring with a
constant Cij of 4. The additional parameters are provided in Table S1. The primitive coarse-
grained structures reported in reference [5] were used and created using the molecule-
generation tool (molecule.exe) in the DL_MESO software (2.7 rev 08, Daresbury Laboratory,
Daresbury, UK) package [14]. We selected the coarse-grained models S1I19, S2I18, S3I17,
S4I16, S5I15, S6I14, S7I13, S8I12, S9I11, S10I10, S11I9, S12I8, S13I7, S14I6, S15I5, S16I4, S17I3, S18I2
and S19I1 with a volume fraction range from 0.05 to 0.95. This condition was chosen because
of the variety of simulated morphologies observed in a symmetric phase diagram [5] carried
out at 393 K, which corresponded well with the experimental observations by Khandpur
and co-workers [3,4]. In this DPD simulation, each system was firstly equilibrated for
1,000,000 steps with a step size of 0.01. Subsequently, a production run was carried out
until a morphology reached an equilibrium state. All DPD simulations were carried out
using the DL_MESO software package.
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Figure 1. Chemical structures of styrene and isoprene units and their corresponding coarse-grained
beads in the simulation system.

For data manipulations, we used export_image_vtf.exe to extract the final structure
of coarse-grained structures and subsequently used VMD software (1.9.3, Theoretical and
Computational Biophysics Group, Urbana, IL, USA) [21] to convert a structure into a
pdb format file for visualization. ParaView [22] was used to visualize the structure of
the coarse-grained beads, the isodensity of each component with a color gradient and an
isosurface showing a surface between the different species in a simulation. The program
isosurfaces.exe was utilized to extract a file in the VTK format for visualization of the
isodensity and isosurface, which were calculated to the order parameter. The radial
distribution function (RDF) and its Fourier-space counterpart, S(k), were computed using
the embedded rdfmol.exe tool in DL_MESO software. In this study, the last 1,000,000
simulation steps from each model were used for the analysis. The proposed methodology
employed entirely free-to-use software available to academic and non-commercial sectors.

2.2. Principal Component Analysis (PCA)

In this study, PCA analysis was performed and visualized using R programming
language [23]. All calculations were performed using available built-in packages. The RDF
and S(k) datasets of 19 different coarse-grained models providing 7 distinct morphologies
were coded as variables. In this work, a range of radius in DPD units from 0.085 to 9.995
was selected for the set of RDF data while a range of k from 0.30 to 315.00 was chosen for
the set of S(k) data. In the calculation of the PCA, a selected range of RDF and S(k) values
were separately designated as individual data points for each variable. Before performing
the PCA, we checked the distribution of the data points to ensure that there was a major
contribution into the first two principal components (PC1 and PC2). Then, we carried out
full PCA calculations.

The Factoextra [24] and Corrplot [25] packages were additionally used for visualizing
the PCA results. The Factoextra package was used to generate the loading plots and to
show a classification of variables of interest. The Corrplot package was used to generate a
correlation plot of their contributions and quality values in order to observe the compres-
sion of each variable. The size of the circle and the color shade in this plot represent the
contribution and quality in each PC, respectively. The eigenvalues of the quality were used
to indicate the quality of representations. Using this package, such values are typically
normalized to a value of −1 to 1 and represented by a color gradient. The PCA script for
structural knowledge analysis and data visualization was provided in Script S1.

3. Results
3.1. Radial Distribution Function (RDF) and Structure Factor (S(k)) Analysis of Coarse-Grained
Structures

In order to investigate the equilibrium morphologies of the PS-b-PI copolymer, the
copolymeric chains were mapped onto coarse-grained beads by comparing the specific
volume of isoprene or styrene to that of water molecules. In our previous study we reported
that the isoprene or styrene monomer is approximately equivalent to a single coarse-grained
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bead [5]. This finding is also consistent with the results reported by Li and coworkers [26].
In this study, 19 coarse-grained models were constructed based on our previous study [5],
specifically S1I19, S2I18, S3I17, S4I16, S5I15, S6I14, S7I13, S8I12, S9I11, S10I10, S11I9, S12I8, S13I7,
S14I6, S15I5, S16I4, S17I3, S18I2 and S19I1. After that, their equilibrium morphologies were
explored through DPD simulations. From the DPD simulations, the coarse-grained models
aggregated into a variety of characteristic morphologies at a simulation temperature of
393 K.

Using an interchain RDF analysis, the morphologies both with similar or different
physical arrangements were obviously noticed, as shown in Figure 2. The overlapping
graphs indicated that the arrangements of coarse-grained beads were very similar and,
vice versa, that the morphologies were different. The criteria to distinguish the similarity
of the morphologies were a magnitude of g(r) and a graph shape.
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The structure factor is an experimentally observable parameter detected via a scien-
tific instrument, such as the X-ray diffraction technique. This parameter depends on an
arrangement of molecular structures in a material of interest and it is a useful method to
distinguish the similarity or dissimilarity of materials, as has been reported in various
papers [7,9,27,28]. S(k) can be understood in a similar way as the explanation of the RDF
graph above. It was successfully used to classify the types of simulated morphologies, as
illustrated in Figure 3. However, by solely using RDFs and S(k), one cannot group each
morphology into the three main categories (isotropic, hexagonal and lamellar mesophases),
as suggested by the order parameter. Therefore, a PCA analysis was carried out in this
study and is discussed in the last section.
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In this study, the S(k) of a simulated gyroidal morphology corresponded well to the
experimentally reported data of the results detected by the X-ray diffraction technique.
The peak position ratio of the experimentally observable refractions contained

√
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shown in Figure 4 and consisted of
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16. The first
peak slightly shifted to

√
2 and the peaks at

√
11 and

√
13 were missing from the simulated

S(k); these observations could be a distortion of the gyroid. For example, two gyroidal
morphologies obtained from S6I14 and S14I6 gave slight differences in the simulated S(k)
due to the different structures, as shown in Figure 4 and Figure S1, respectively.

3.2. Principal Component Analysis (PCA) for Classification of Morphologies

Using the built-in packages, all classifications in the RDF and S(k) datasets were
compressed into the first two components with a cumulative variance of 98.17% and
94.59%, respectively, as shown in Table 1. The correlation plots of each dataset (Figure 5)
show that most of the data was compressed into the first two components, which matches
with the corresponding cumulative variance percentages. In the RDF dataset (Figure 5a),
S4I16 contributed to the two components equally. S16I4 mostly contributed to PC2 while the
rest of the classifications were mostly compressed into PC1. In the S(k) dataset (Figure 5b),
the datasets of S4I16 to S16I4 were mostly compressed into PC1, while the rest contributed
to PC2.
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versa for the blue region. (d) The simulated S(k).

Table 1. Eigenvalue and accumulated contribution ratio for the principal components (PCs) using RDF and S(k) data.

PC No.

RDFs S(k)

Eigenvalue Variance
Percent(%)

Accumulated
Variance Percent (%) Eigenvalue Variance

Percent (%)
Accumulated

Variance Percent (%)

1 1.67 × 101 87.94 87.94 1.13 × 101 59.69 59.69
2 1.94 10.23 98.17 6.63 34.89 94.59
3 2.15 × 10−1 1.13 99.30 6.27 × 10−1 3.30 97.88
4 6.93 × 10−2 0.36 99.67 2.14 × 10−1 1.13 99.01
5 3.05 × 10−2 0.16 99.83 1.61 × 10−1 0.85 99.86
6 1.52 × 10−2 0.08 99.91 2.36 × 10−2 0.12 99.99
7 6.31 × 10−3 0.03 99.94 1.90 × 10−3 0.01 100.00
8 2.71 × 10−3 0.01 99.95 5.77 × 10−4 0.00 100.00
9 2.33 × 10−3 0.01 99.97 2.66 × 10−4 0.00 100.00

10 2.15 × 10−3 0.01 99.98 2.55 × 10−5 0.00 100.00
11 1.13 × 10−3 0.01 99.98 6.06 × 10−6 0.00 100.00
12 8.03 × 10−4 0.00 99.99 4.77 × 10−6 0.00 100.00
13 6.66 × 10−4 0.00 99.99 1.28 × 10−6 0.00 100.00
14 4.80 × 10−4 0.00 99.99 8.82 × 10−7 0.00 100.00
15 3.11 × 10−4 0.00 100.00 5.52 × 10−7 0.00 100.00
16 2.92 × 10−4 0.00 100.00 4.21 × 10−7 0.00 100.00
17 2.39 × 10−4 0.00 100.00 2.44 × 10−7 0.00 100.00
18 1.90 × 10−4 0.00 100.00 2.05 × 10−7 0.00 100.00
19 1.26 × 10−4 0.00 100.00 2.64 × 10−8 0.00 100.00
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each principal component (PC). The diameter of each circle indicates the contribution of each variable in each PC. The color
shades indicate the quality of each variable in each PC and the range of the quality is represented as a color gradient at the
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According to the DPD simulations, aggregations were only affected by their different
ratios with the monomeric units of each block. To classify the obtained morphologies,
we investigated them using three routes: (1) the apparent aggregation of coarse-grained
beads, which is illustrated on the left-hand side of each sub-figure in Figure 6; (2) an
isosurface investigation, which is shown in the middle of the sub-figure in Figure 6; and
(3) a consideration of order parameters calculated using an embedded tool in the DL_MESO
package, which is illustrated on the right-hand side of each sub-figure in Figure 6. Route
1 is a typical way to visualize and classify an obtained morphology due to its simplicity,
with no need for post-processing. The structure can also be directly visualized using the
trajectory from a simulation. However, the drawbacks of the long-length scale, resulting
from its simulation box, may cause difficulties in morphological identification.

For isosurface and order parameter assessments, further calculations had to be carried
out using the program isosurfaces.exe. With this tool, the volume of particle was smeared
using a Gaussian function with a standard deviation σ:

f (r) =
1

(2πσ 2
) 3

2
exp

(
−|r− ri|2

2σ2

)′
(4)

where ri is the position of particle i. All sampling points on a regular orthogonal grid
within a distance of 3σ can be obtained with this smearing function. The formations related
to the densities of the system are written as a readable file for visualizing an isosurface in
different species, which is considered as route 2 in the above visualization process.

According to Equation (4), the visualization of isosurfaces between different coarse-
grained beads is very useful. We can see the real structure of each aggregation deep
inside the structure, as shown in the middle of each sub-figure in Figure 6. The distinct
morphologies are disorder, discrete clusters, hexagonally packed cylinders, connected
clusters, defected lamellae, lamellae and connected cylinders, which were obtained from
S1I19, S2I18, S3I17, S4I16, S5I15, S6I14, S7I13, S8I12, S9I11 and S10I10, respectively. The rich
styrene models, S11I9, S12I8, S13I7, S14I6, S15I5, S16I4, S17I3, S18I2 and S19I1, exhibited a
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similar morphology as the rich isoprene models, as shown in Figure S2. All the structures
observed using a combination of the three routes for classification are listed in Table 2.
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Figure 6. Panels in the composite figures illustrate apparent bead arrangements, isosurfaces between distinct bead types
and the order-parameter sorting, from left to right, of (a) S1I19, (b) S2I18, (c) S3I17, (d) S4I16, (e) S5I15, (f) S6I14, (g) S7I13, (h)
S8I12, (i) S9I11 and (j) S10I10, respectively. The order parameters were calculated using an executable, namely isosuefaces.exe,
an implemented tool in the DL_MESO software. Yellow and violet beads represent coarse-grained beads of styrene and
isoprene, respectively.

The loading plots the morphologies (Figure 7) showed that each variable was grouped
according to its morphology. Both lamellae (L1 and L2) classifications were almost identical
to each other on both plots; hence, the eigenvector of the two morphologies was overlap-
ping. The identical classification could also be observed for discrete clusters (DC1–DC2)
and disorder (D1–D4, and D2–D3). The hexagonal packet cylinders (HPC1–4) cluster
was also clustered in a distinct group in both plots. However, connected cylinders (CC)
were presented differently in each plot. While CC was more similar to L1 and L2 in the
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RDF dataset (Figure 7a), the similarity of CC shifted to defected lamellae (DL) 4 in the
S(k) dataset (Figure 7b). Furthermore, DL1–4 could be distinctively grouped in the RDFs
dataset, but DL was clustered with connected clusters (CC1 and CC2).

Table 2. Coarse-grained models and their morphological classification.

Volume Fraction of Styrene Coarse-Grained Model Morphology (Its Abbreviation)

0.05 S1I19 Disorder (D1)
0.10 S2I18 Disorder (D2)
0.15 S3I17 Discrete clusters (DC1)
0.20 S4I16 Hexagonally packed cylinders (HPC1)
0.25 S5I15 Hexagonally packed cylinders (HPC2)
0.30 S6I14 Connected clusters (CC1)
0.35 S7I13 Defected lamellae (DL1)
0.40 S8I12 Defected lamellae (DL2)
0.45 S9I11 Lamellae (L1)
0.50 S10I10 Connected cylinders (CC)
0.55 S11I9 Lamellae (L2)
0.60 S12I8 Defected lamellae (DL3)
0.65 S13I7 Defected lamellae (DL4)
0.70 S14I6 Connected clusters (CC2)
0.75 S15I5 Hexagonally packed cylinders (HPC3)
0.80 S16I4 Hexagonally packed cylinders (HPC4)
0.85 S17I3 Discrete clusters (DC2)
0.90 S18I2 Disorder (D3)
0.95 S19I1 Disorder (D4)
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4. Conclusions

Spatial intermolecular arrangement information derived from meso-scale simulations
based on parameters from atomistic simulations were analyzed in dissipative particle
dynamic (DPD) simulations of PS-b-PI diblock copolymers. In total, 19 coarse-grained
models with different compositions were explored. The radial distribution function (RDF)
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and its Fourier-space counterpart, or structure factor (S(k)), were proposed using PCA as
key characteristics for morphological identification and classification. The RDF and S(k)
datasets were compressed into the first two components with a cumulative variance of
98.17% and 94.59%, respectively. The eigenvalues of the second moment of the tensor built
up from the normal vectors on the isosurface of the density function for each particle in
the DPD simulation were used as a guideline in the phase determination. To complete this
analysis when the classification of some morphologies was limited, i.e., connected clusters
and connected cylinders, an add-on analysis using PCA was effectively applied in this
system. By employing PCA to reduce the dimensionality of the RDF and its Fourier-space
counterpart from DPD simulations, a complicated arrangement of morphologies found in
PS-b-PI copolymers could be successfully differentiated. Disorder, discrete clusters, hexag-
onally packed cylinders, connected clusters, defected lamellae, lamellae and connected
cylinders were effectively grouped.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13162581/s1, Figure S1: Structure factors S(k) between chain–chain types of the gyroidal
morphologies of S6I14 and S14I6; Figure S2: Panels in the composite figures illustrate apparent bead
arrangements, isosurfaces between distinct bead types and order-parameter sorting, from left to
right, of (a) S11I9, (b) S12I8, (c) S13I7, (d) S14I6, (e) S15I5, (f) S16I4, (g) S17I3, (h) S18I2 and (i) S19I1,
respectively. The order parameters were calculated using an executable, namely isosueface.exe, that is
an implemented tool in DL_MESO software. Yellow and violet beads represent coarse-grained beads
of styrene and isoprene, respectively, Table S1: Parameters used in DPD simulation in dimensionless
unit, Script S1: Structural knowledge analysis and PCA visualization.
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