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Abstract: Polyacrylate emulsions were prepared by Pickering emulsion polymerization with multi-
modified hectorite as a modifier. The proper wettability of modified hectorite and the stability of
O/W emulsions prove that modified hectorite has good emulsification properties. The stability of
polyacrylate latexes and the morphology of polymer latex particles were then investigated to explain
the role of multi-modified hectorite in stabilizing polyacrylate latex. In addition, the improved
mechanical properties and water resistance of the latex make it a potentially excellent coating. Multi-
modified hectorite as an alternative modifier to conventional surfactants offers a potential application
of nanosolid particles that meet the partial wetting conditions for water and oil as stabilizers for the
production of latexes for coatings.

Keywords: polyacrylate latex films; Pickering emulsion; copolymer; coatings; surface modification

1. Introduction

Polyacrylate latex is prepared by emulsion polymerization, which provides an envi-
ronmentally friendly way to produce emulsion polymers for coatings due to its use of water
as a dispersion medium rather than traditional organic solvents [1]. However, polyacry-
late latexes usually use surfactant emulsifiers in the preparation process. Small molecule
surfactants adhere to the surface of the emulsion droplets by physical adsorption and are
easily desorbed by external interference, leading to collisions and the agglomeration of
emulsion droplets [2]. In addition, this also reduces the water resistance of the emulsion
curing film because of its migration to the surface of film [3].

To solve this issue, surfactant-free emulsion polymerization could be applied. This
new method of emulsion polymerization has been developed in previous research. For
example, Abdollahi et al. [4] utilized a one-step emulsifier-free emulsion polymerization
strategy to synthesize functionalized latex nanoparticles with different morphologies,
Cao et al. [5] used graphitic carbon nitride as an initiator and stabilizer for surfactant-
free emulsion photo-polymerization to synthesis polymer latexes, and Huang et al. [6]
employed reverse iodine transfer polymerization to prepare emulsifier-free acrylate-based
emulsion without any addition of surfactant.

Pickering emulsion polymerization is another method of surfactant-free emulsion
polymerization. For Pickering emulsions, solid particles with moderate wettability are
irreversibly adsorbed at the oil–water interface, which reduces the interfacial energy and
provides a physical barrier to prevent the coalescence of the dispersed phase [2,7]. Pickering
emulsions produce latex polymers that are as stable as classical polyacrylate emulsions
stabilized by conventional surfactants. The stability of Pickering emulsions depends on the
total stress of the particles in the liquid and the energy required to remove the particles
from the oil–water interface [8].
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There are several particles that meet the partial wetting conditions for water and
oil that can be used as Pickering emulsion emulsifiers, including calcium carbonate [6],
clays (montmorillonite and hectorite) [9–13], magnetic particles [14], carbon nanotubes [15],
and carbon black [16]. Hectorite is a montmorillonite-like nanoparticle with oppositely
charged surfaces and edges (50–55 mEq/100 g negative charge density on the surface and
4–5 mEq/100 g positive charge density on the edge). Hectorite, whose structure is shown
in Scheme 1, has a nano-disk shape (25 nm in diameter and 1 nm in thickness) that can be
modified at the edges because hydroxyl groups are present only at the edge [17]. Thus,
the hydrophilic hectorite can be modified so that its edges and surfaces have opposite
properties, which makes it a viable emulsifier for Pickering emulsions.

Scheme 1. Illustration for preparation of edge-modified amphiphilic hectorite and Pickering emulsions.

Our work is shown in Scheme 1, where hectorite nano-discs are combined with
n-octadecyltrimethoxysilane (OTES) and vinyltrimethoxysilane (VTMS), and then long
chain alkyl, vinyl, and siloxyl groups are attached to the edges of hectorite to make the
surface amphiphilic. When the hydrophilic surface is tightly attached to the water phase,
the hydrophobic molecules reach into the oil phase like tree roots. In addition, the vinyl
group can be copolymerized with acrylate monomers, which further stabilize the nano-
discs at the oil–water interface, leading to the stability of the emulsion. In addition, siloxyl
groups can play an important role in the film-formation process.

2. Materials and Methods
2.1. Materials

Methyl methacrylate (MMA, ≥98.0%), butyl acrylate (BA, ≥98.0%), and acrylic acid
(AA, 99.0%), as the acrylate monomers, were all purchased from Sigma Aldrich Chemical
Reagent Co., Ltd. (Shanghai, China). Potassium persulfate (K2S2O8), sodium bicarbonate
(NaHCO3), and sodium dodecylsulfate (SDS), used as thermal initiator, buffering agent,
and emulsifier, respectively, were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Hectorite was purchased from Zhejiang Hongfeng New Material Co.,
Ltd. (Zhejiang, China). The OTES (C21H46O3Si) and VTMS (C5H12O3Si) as modifiers
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were purchased from Macklin Chemical Reagent Co., Ltd. (Shanghai, China). Toluene as
solvent was obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Deionized water was used throughout the experiment.

2.2. Modification of Hectorite

The dosage formulations of hectorite, OTES, and VTMS are given in Table 1. The
modification process was as follows: before the reaction, hectorite was dried under vacuum
at 60 ◦C for 12 h. Subsequently, hectorite, OTES, and toluene (150 mL) were mixed in a
250 mL flask and stirred at ambient temperature for 5 days. The product was separated by
centrifugation (500× rpm for 3 min), further washed with toluene to remove excess OTES,
and dried under vacuum at 40 ◦C for 24 h. Finally, the product was washed with toluene at
least three times to remove excess VTMS and further dried under vacuum at 60 ◦C.

Table 1. Formulation for modifying hectorite.

Type of Modified Particle
Quantity of Modifier (wt%)

OTES VTMS

1 hectorite-C18 10 0
2 hectorite-C18-V 10 10
3 hectorite-2C18 20 0
4 hectorite-2C18-V 20 10
5 hectorite-2C18-2V 20 20

2.3. Preparation of O/W Emulsions and Synthesis of Polyacrylate Latexes

The hectorite product was dispersed into 80 mL of deionized water and sonicated
at 330 W for 30 min using an ultrasonic crusher to form the aqueous phase. After that,
an oil phase consisting of 5 g MMA, 5 g BA, and 0.25 g AA was prepared. The amount
of hectorite was 3% of the total mass of the monomers. The obtained aqueous and oil
phases were mixed into a beaker and pre-emulsified using FM200 high shear dispersion
emulsifier (Youyi Instrument Co., Ltd., Shanghai, China) at 15,000× rpm for 20 min to
obtain an oil–water emulsion.

Polyacrylate latex was prepared by the Pickering emulsion polymerization method. A
quantity of 30.0 g of oil/water emulsion was added to a 250 mL flask, then 2 mL of aqueous
NaHCO3 solution (0.1 g/mL) was added to the system, the temperature was raised to
80 ◦C, and 4 mL of aqueous KPS solution (0.05 g/mL) was added to initiate the reaction.
The reaction was held for a period of time and the remaining emulsion was added. Finally,
the pre-emulsion was cast half an hour after the end of the holding period of 1 h to obtain
polyacrylate latex.

2.4. Characterization

FTIR spectra were obtained by an FTIR spectrophotometer (Vertex 70, Bruker, Karl-
sruhe, Germany) from 400 to 4500 cm−1. Thermogravimetric analysis (TGA5500, Perkin
Elmer, Waltham, MA, USA) was performed by the weight change of the sample from
30 to 800 ◦C under a nitrogen atmosphere with a heating ratio of 20 ◦C/min. The contact
angle analyzer (CA, JC2000C1, Zhongchen Powereach Company, Shanghai, China) was
used to measure the water contact angle (WCA) of nanoparticles. At least five different
locations were selected on the surface of the hectorite nano-powder sheet and deionized
water was dropped. When the water drops stopped moving, static contact angle pictures
were recorded.

Images of the oil/water emulsion were taken using an optical microscope (BX63,
Olympus, Tokyo, Japan). The mean droplet diameter and size distributions of oil/water
emulsions based on optical images were analyzed by Image-Pro software. The morphology
of the polyacrylate emulsions prepared by Pickering emulsion polymerization was ob-
served with a TEM (Tecnai F20, FEI Corp, Waltham, Massachusetts, USA) at 200 kV. Prior
to observation, the samples were stained with phosphotungstic acid (1 wt%). The particle
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size and size distributions of the prepared polyacrylate latexes were measured at room
temperature using a Nano-Zetasizer instrument (Malvern Zetasizer Nano ZS90, Malvern,
Worcestershire, UK). The dispersion was diluted to approximately 1 wt% with distilled
water before starting the measurements. Three sets of experiments were conducted for
each latex sample and the average value was taken.

The coating was cast on a 25 × 75 mm2 glass sheet with a tie rod at ambient tempera-
ture to obtain a wet film thickness of 200µm. The mechanical properties of the films were
performed on a tensile testing machine (CMT41-4, Xie Qiang Instrument Manufacturing
Co., Ltd., Shanghai, China) with a stretching speed of 100 mm/min. The water contact
angles of these films were measured under the same conditions described above.

2.5. Swelling Test

The film was first weighed as m1 and then placed in a flask with trichloromethane
as a solvent until equilibrium was reached. The swollen film was wiped with filter paper
and weighed as m2. The swelling ratio was calculated by (m2/m1) × 100%. After drying in
a heating oven under vacuum at 60 ◦C for 48 h, the dried film was weighed as m3. The
crosslinking degree was calculated by (m3/m1) × 100% [18].

2.6. Water Absorption Test

A latex film was taken and cut into 10 × 10 mm2 samples and the initial film mass
weighed on an electronic balance and recorded as m0, before being completely immersed in
distilled water. After that, the sample was weighed periodically on the analytical balance
as m1. The water absorption of the film was calculated by (m1 − m0)/m0 × 100% [19].

3. Results and Discussion
3.1. Modification of Hectorite

The modification process is divided into two steps as shown in Scheme 2. Step one is
achieved by a reaction between the ethoxy group of OTES and the hydroxyl group on the
edge of the hectorite, with the release of ethanol molecules. Step two has a similar reaction
mechanism, in which the methanol molecules are stripped and then the alkyl chains and
vinyl and siloxy groups are attached to the hectorite.

Scheme 2. Schematic illustration of the grafting of OTES and VTES onto nano-disk hectorite.

The successful modification of hectorite was confirmed by Fourier transform infrared
spectroscopy (FTIR) and thermal gravimetric analysis (TGA). The FTIR spectra of un-
modified and modified hectorite shown in Figure 1 give qualitative evidence of alkane
chains chemically anchored at the hectorite edge. The characteristic absorption peaks
at 1000 and 3490 cm−1 originated from H-OH and the stretching vibration of Si–O; the
bending vibration peak of Si–OH was detected at 1633 cm−1. Compared with unmodified
hectorite, the characteristic absorption peak at 2930 and 790 cm−1 was ascribed to the
stretching vibration of CH3 and CH2, revealing that the hydroxyl group of hectorite reacted
with the siloxy groups of OTES and that the alkyl chain was grafted on the hectorite. The
stretching vibration absorption peak of the C=C which appeared at 1633 cm−1, when
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compared to unmodified hectorite and hectorite modified with OTES only, also proved the
successful graft of the vinyl group from VTMS on the hectorite.

Figure 1. FTIR spectra of unmodified and modified hectorite prepared with different
OTES/VTMS content.

The TGA curves of the modified and unmodified hectorite presented in Figure 2 give
quantitative evidence supporting the conclusion based on FTIR. The weight loss between
200 and 600 ◦C due to the thermal decomposition of the organic molecule was considered,
while the region below 200 ◦C, which could be ascribed to the removal of adsorbed water,
is excluded. Compared with the curve of unmodified hectorite, the curve of modified
hectorite has two stages of weight loss, demonstrating the hydroponic chains on the
hectorite. The number of hydroponic chains grafted to the hectorite could be estimated by
Equation (1) [10]:

Grafted amount =
103

(
Wmodi f ied hectorite − Whectorite

)
[100 − (Wmodi f ied hectorite − Whectorite)]M

(1)

where M (g/mol) is the molecular weight of the grafted molecules. The grafted amount was
estimated as 8.6, 9.1, 9.3, 10.1, and 10.7 wt% for hectorite-C18, hectorite-C18-V, hectorite-
2C18, hectorite-2C18-V, and hectorite-2C18-2V samples, respectively, which corresponds to
the amount of modifier given in Table 1. The results are consistent with the rule that the
more modifier is added, the more hydrophobic groups are grafted at the hectorite.
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Figure 2. TGA degradation profiles of unmodified and modified hectorite prepared with different
OTES/VTMS content.

Adsorption energy plays the most important role in the stability of a Pickering emul-
sion and determines whether solid particles can stably stay at the interface. It is known
that contact angle, particle size, and surface tension are the factors that affect adsorption
energy. The energy(E) required to remove a particle of radius d from an oil–water interface
of tension γow is given by Equation (2) [2]:

E = π

(
d
2

)2
γow(1 ± cosθ)2 (2)

where the sign is positive for the move into the oil phase, and negative for the move
into the water phase. According to Equation (2), the closer the contact angle θ is to
90◦, the higher the energy and the better the stability of the Pickering emulsion [2,20,21].
Figure 3 is the photographs of the contact angle and it shows that with the increase
of the amount of modifier, the water contact angle of the modified hectorite gradually
increased and became closer to 90◦ than that of the unmodified hectorite. By analogy
with surfactant molecules, particles whose contact angle is below 90◦ lead to a larger
fraction of the particle surface residing in water than in oil, and give rise to O/W emulsions.
Thus, the O/W Pickering emulsion of polyacrylate could be produced by the modified
hectorite. Contrasting the different variations of contact angles revealed that OTES is
much more efficient for improving the wettability of hectorite than VTMS, which could
be due to the excellent hydrophobic properties of long-chain alkanes. In addition, the
incremental hydrophobicity of the modified hectorite also proves that the modification
procedures work.
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Figure 3. Photographs of contact angle of (1) unmodified hectorite, (2) hectorite-C18, (3) hectorite-
C18-V, (4) hectorite-2C18, (5) hectorite-2C18-V, (6) hectorite-2C18-2V.

3.2. Pickering Emulsion Stabilized by Hectorite

O/W emulsions with 3 wt% of unmodified hectorite, hectorite-C18, hectorite-C18-V,
hectorite-C18-2V, hectorite-2C18-V, and hectorite-2C18-2V as emulsifier were prepared,
and their emulsifying properties were compared with those of traditional emulsifier SDS
(2 wt%). After 24 h of storage, it could be observed that the O/W emulsions emulsified
by unmodified hectorite, hectorite-C18, and hectorite-C18-V were stratified while other
emulsions were stable. Microscopy images of emulsions emulsified by different stabiliz-
ers are shown in Figure 4, and an average value of droplet diameter adopted from the
individual droplets is shown in Table 2. The O/W emulsions emulsified by unmodified
hectorite, hectorite-C18, and hectorite-C18-V had larger droplet sizes and much smaller
quantities, which indicates the non-ideal emulsification properties of these particles. It
could be inferred that a hectorite nano-disk with high hydrophilicity cannot play the role
of stabilizing O/W emulsions because the lower adsorption energy makes the hydrophilic
particles tend to aggregate in the aqueous phase rather than at the oil–water interface.

Table 2. Mean droplet diameters of emulsions stabilized by different emulsifiers.

Type of Modifiers Mean Droplet Diameter of Pickering Emulsions (µm)

a SDS 10 ± 4
b unmodified hectorite 54 ± 10
c hectorite-C18 50 ± 11
d hectorite-C18-V 45 ± 15
e hectorite-2C18 30 ± 6
f hectorite-2C18-V 25 ± 5
g hectorite-2C18-2V 13 ± 5
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Figure 4. Microscopy images of emulsions emulsified by (a) SDS, (b) unmodified hectorite,
(c) hectorite-C18, (d) hectorite-C18-V, (e) hectorite-2C18, (f) hectorite-2C18-V, (g) hectorite-2C18-
2V were captured after the as-obtained emulsions were stored for 24 h.

It was observed that the emulsion emulsified by hectorite-2C18-2V showed the small-
est droplet size distribution and the highest number of droplets. The droplet size distri-
bution decreased and the droplet number increased in the O/W emulsion stabilized by
hectorite-2C18-V, while these properties observed in the emulsion emulsified by hectorite-
2C18 were the worst of the three, which is consistent with the adsorption energy theory [2].
Furthermore, compared with traditional surfactant SDS, hectorite-2C18-2V also showed
similar emulsifying properties. It is worth mentioning that no stratification occurred in
emulsions emulsified by hectorite-2C18, hectorite-2C18-V, and hectorite-2C18-2V after
1 month of storage, indicating that amphiphilic solid particles could be adsorbed at the
O/W interface to form a physical barrier against coalescence, which would endow it with
excellent emulsification performance.

Polyacrylate latex stabilized by hectorite was prepared. After the polymerization
reaction, the unmodified hectorite, hectorite-C18, and hectorite-C18-V could not produce a
stable latex and a significant aggregation of polymer particles resulted in the formation of
coarse polymer clumps. As for formulations including hectorite-2C18, hectorite-2C18-V,
and hectorite-2C18-2V, they were also difficult to obtain stable latex from when the particle
content was less than 3 wt%, while a stable milky latex without coagulum was produced
when the particle content was more than 3 wt%.

The polyacrylate latex stabilized by hectorite-2C18, hectorite-2C18-V, and hectorite-
2C18-2V remained stable after a period of storage of more than 3 months, indicating that
appropriate wettability and adequate mass fraction are necessary for the preparation of
stable Pickering polyacrylate emulsion. As for stability, thermodynamically stable Pickering
emulsion systems are superior to kinetically stable polyacrylate emulsion systems stabilized
by SDS because of the irreversible adsorption capacity of modified hectorite at the oil–water
interface [2].

The morphology and size of polyacrylate latex stabilized by 1 wt% SDS and 3 wt%
modified hectorite (hectorite-2C18, hectorite-2C18-V, and hectorite-2C18-2V) were shown
by TEM (Figure 5) and DLS (Figure 6). The polyacrylate latex stabilized by hectorite-2C18
showed an irregular spherical structure with poor dispersion, while the polyacrylate latex
stabilized by SDS, hectorite-2C18-V, and hectorite-2C18-2V showed a regular spherical
structure with a significantly smaller particle size and good dispersion. Compared with
Figure 5b–d, it can be seen that the amount of modified hectorite attached to the surface of
latex particles increased significantly and an effective mechanical barrier was formed to
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against latex coalescence, especially for the polyacrylate latex stabilized by hectorite-2C18-
2V. The DLS results are consistent with the particle size shown in the TEM images. As
shown in Figure 6, the particle size distribution of polyacrylate latex stabilized by hectorite-
2C18-2V is very close to a conventional surfactant SDS stabilized emulsion, indicating that
the Pickering polyacrylate latex was comparable to the traditional polyacrylate emulsion
stabilized by small molecule surfactants. Furthermore, the polyacrylate emulsions sta-
bilized by hectorite-2C18-V had larger average sizes and wider distributions, while the
polyacrylate emulsions stabilized by hectorite-2C18 were much worse.

Figure 5. TEM images of polyacrylate latex stabilized by different stabilizers: (a) SDS, (b) hectorite-
2C18, (c) hectorite-2C18-V, (d) hectorite-2C18-2V.

Figure 6. DLS results of polyacrylate latex stabilized by different stabilizers: (a) stabilized by
hectorite-2C18, (b) stabilized by hectorite-2C18-2V, (c) stabilized by hectorite-2C18-V,(d) stabilized by
conventional surfactant SDS. The dispersion was diluted to approximately 1wt% with distilled water.

Based on the above results, the stability mechanism of a Pickering polyacrylate latex
should reflect the following pattern. The more suitable wettability of the modified hectorite
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improved the adhesion and quantity of hectorite at the O/W interface, while the vinyl
groups attached to the edge of the modified hectorite further promoted the adhesion of
hectorite to the polyacrylate through the copolymerization of vinyl groups with acrylate
monomer adhesion of the particles. As a result, the polyacrylate latex was stable under the
combined effects of the Pickering effect and covalent bonding. The vinyl played a more
important role in the mechanism of stabilizing polyacrylate, because the emulsification
performance of multi-modified hectorite (hectorite-2C18-V and hectorite-2C18-2V) was
better than that of mono-modified hectorite (hectorite-2C18).

3.3. Films Obtained from the Polyacrylate Latexes
3.3.1. Swelling Ratio and Crosslinking Degree

The film usually forms in two stages: (1) With the evaporation of water in the system,
the particles are close to each other and the deformation is stacked. (2) A cross-linking
curing reaction occurs between the modified hectorite with reactive groups and polymer
molecules to form a three-dimensional network structure. As shown in Figure 7, the
swelling ratio and cross-linking degree of the cured films was calculated to understand the
film-formation of the polyacrylate latex coatings. The swelling ratio was opposite to that of
the cross-linking degree with the use of different emulsifiers; the higher the crosslinking
degree, the smaller the swelling ratio.

Figure 7. Swelling ratio and crosslinking degree of the cured films from the polyacrylate latex coatings
prepared with SDS (1 wt%), Laponte-2C18 (3 wt%), hectorite-2C18-V (3 wt%), hectorite-2C18-2V (3 wt%).

The above results demonstrate that the crosslinking degree of polyacrylate latex
stabilized by traditional small molecule surfactant was inferior to that of polyacrylate
latex stabilized by hectorite-2C18-V and hectorite-2C18-2V, which could be ascribed to the
strong interaction between the hectorite and the polymer molecules because of the reactive
vinyl groups around the edge of modified hectorite. In addition, the Si–O–C structures
in the organosiloxane on the modified hectorite which had not grafted around the edge
went through a hydrolysis reaction, and the crosslinking reaction of the hydroxyl group
generated by hydrolysis formed a three-dimensional network structure to increase the
crosslinking degree of the emulsion film. The reaction mechanism is shown in Scheme 3.
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Scheme 3. Schematic illustration of the Pickering polyacrylate latex reaction mechanism.

A comparison of hectorite-2C18, hectorite-2C18-V, and hectorite-2C18-2V revealed
that the cross-linking degree of the Pickering polyacrylate latex was related to the size
distribution of polymer particles and the number of Si–O–C structures and vinyl groups
attached to the stabilizer-modified hectorite. It could be concluded that a smaller size led
to the more complete coalescence of polyacrylate droplets, more cross-linkable Si–O–C
structures, and vinyl groups that can be covalently linked with polymer molecules to make
the cross-linking between polymer molecules more efficient.
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3.3.2. Mechanical Strength

The mechanical properties of the material include elastic modulus, tensile strength,
and elongation, which are used to measure the elastic deformation resistance, fracture
resistance, softness, and elasticity of the film, respectively. As shown in Figure 8, the
elastic modulus and tensile strength of polyacrylate films prepared by hectorite-2C18-V
and hectorite-2C18-2V were better than those of polyacrylate films prepared by tradition
surfactants. The results were consistent with the crosslinking degree as mentioned above,
which indicates that a higher cross-linking degree gave the coating better elastic defor-
mation resistance and fracture resistance. On the other hand, it also confirms that the
multi-modified hectorite not only improved particle size distribution and the stability
of polyacrylate latex, but also played an essential role in forming the three-dimensional
crosslinking network as crosslinking points to improve the film’s mechanical properties. In
addition, the elongation-at-break presents a trend opposite to the other two mechanical
performances; the decreased ratio can be attributed to the fact that the high degree of
crosslinking restricted molecular chain motion.

Figure 8. Elastic modulus, tensile strength, and elongation-at-break of polyacrylate latex films prepared
with SDS (1 wt%), Laponte-2C18 (3 wt%), hectorite-2C18-V (3 wt%), hectorite-2C18-2V (3 wt%).

3.3.3. Water Resistance

Water absorption and water contact angles was measured to evaluate the water
resistance property of the film. As shown in Figure 9, water-absorption curves of the
films leveled off after 10 h of soaking; it can be judged that their water absorption was
saturated and the water absorption of polyacrylate latex films prepared with hectorite-
2C18-V and hectorite-2C18-2V was significantly reduced. As shown in Figure 10, the
surface of polyacrylate emulsion films prepared by Pickering emulsion polymerization is
more hydrophobic than that of polyacrylate emulsion films prepared with conventional
surfactants. Considering Figures 9 and 10, it can be demonstrated that the water resistance
of the polyacrylate emulsion films prepared with hectorite-2C18-2V was significantly higher
than the polyacrylate latex films prepared with SDS, hectorite-2C18, or hectorite-2C18-V.
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Figure 9. Water adsorption of polyacrylate latex films prepared with SDS (1 wt%), Laponte-2C18
(3 wt%), hectorite-2C18-V (3 wt%), hectorite-2C18-2V (3 wt%).

Figure 10. Photographs of contact angle on polyacrylate latex films prepared with (a) SDS (1 wt%),
(b) Laponte-2C18 (3 wt%), (c) hectorite-2C18-V (3 wt%), (d) hectorite-2C18-2V (3 wt%).

This can be explained by the following reasons: On the one hand, the higher cross-
linking density and more hydrophobic surface of the film prepared with hectorite-2C18-2V
made it difficult for water molecules to diffuse into the polymer molecular segments of the
film. On the other hand, the high water absorption of polyacrylate latex film caused by
ester group was greatly alleviated thanks to the multi-modified hectorite nano-disks that
tightly surrounded the latex particles like a raincoat. Furthermore, the avoidance of small
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molecule surfactants solves the problem of the degradation of water resistance properties
caused by the migration of small molecules.

4. Conclusions

Polyacrylate latexes were prepared by Pickering emulsion polymerization without the
addition of conventional small molecule surfactants. Long-chain alkyl, vinyl, and siloxy
groups were successfully grafted onto the edges of the hectorite by hydrolytic condensation
of silanes, so that the multi-modified hectorite was not only moderately wettable but also
reactive. The properties of contact angle, O/W emulsions, and polyacrylate latex indicate
that proper wettability is important to stabilize emulsions and that hectorite-C18-2V has
excellent emulsification properties comparable to those of conventional emulsifiers. The
role of reactive groups in stabilizing emulsions and film formation was verified by studying
the performance of polyacrylate latex and films. The whole study not only proved the
stability of the polyacrylate latex prepared by hectorite-C18-2V, but also demonstrated
the improved mechanical properties and better water resistance of Pickering polyacrylate
latex coatings.
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