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Abstract: Composite polymer electrolytes (CPEs) incorporate the advantages of solid polymer
electrolytes (SPEs) and inorganic solid electrolytes (ISEs), which have shown huge potential in
the application of safe lithium-metal batteries (LMBs). Effectively avoiding the agglomeration of
inorganic fillers in the polymer matrix during the organic–inorganic mixing process is very important
for the properties of the composite electrolyte. Herein, a partial cross-linked PEO-based CPE was
prepared by porous vinyl-functionalized silicon (p-V-SiO2) nanoparticles as fillers and poly (ethylene
glycol diacrylate) (PEGDA) as cross-linkers. By combining the mechanical rigidity of ceramic fillers
and the flexibility of PEO, the as-made electrolyte membranes had excellent mechanical properties.
The big special surface area and pore volume of nanoparticles inhibited PEO recrystallization and
promoted the dissolution of lithium salt. Chemical bonding improved the interfacial compatibility
between organic and inorganic materials and facilitated the homogenization of lithium-ion flow. As
a result, the symmetric Li|CPE|Li cells could operate stably over 450 h without a short circuit. All
solid Li|LiFePO4 batteries were constructed with this composite electrolyte and showed excellent
rate and cycling performances. The first discharge-specific capacity of the assembled battery was
155.1 mA h g−1, and the capacity retention was 91% after operating for 300 cycles at 0.5 C. These
results demonstrated that the chemical grafting of porous inorganic materials and cross-linking
polymerization can greatly improve the properties of CPEs.

Keywords: lithium batteries; composite polymer electrolytes; chemical grafting; porous nanoparti-
cles; cross-linking polymerization; silane coupling

1. Introduction

Nowadays, the urgent demands for green energy and high-energy storage systems pro-
mote the high-speed development of rechargeable energy storage devices [1–5]. Lithium-
ion batteries (LIBs) are regarded as one of the most hopeful candidates in the field of
portable electronics, electric vehicles, and energy storage stations [6–8]. However, there
are serious safety issues in traditional commercialized lithium-ion batteries, as the use of
liquid electrolyte has the shortcomings of leakage, flammability, and toxicity [9]. There-
fore, with the inevitable trend of upgrading lithium-ion batteries, solid-state electrolytes
(SSEs) show huge potential in enhancing the safety performance of LIBs and have been
researched extensively [10]. Moreover, SSEs make it possible to use the Li metal, which pos-
sesses high theoretical capacity (3680 mA h g−1) and the lowest electrochemical potential
(−3.04 V vs. standard hydrogen electrode) as an anode electrode in lithium battery [11–14].
Lithium-metal batteries (LMBs) with SSEs have higher specific capacity and more stable
electrochemical stability, and they can be used in wearable electronic devices [11,15,16].

Generally, there are three main categories according to the characteristic of SSEs:
inorganic solid electrolytes (ISEs), solid polymer electrolytes (SPEs), and composite polymer
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electrolytes (CPEs) [17–20]. ISEs (e.g., SiO2, TiO2, LLZO, and LAGP) are well known by
their mechanical rigidity and nonflammability. However, their fragile and hard properties
could lead to severe solid–solid interface problems between the electrodes and electrolytes,
which ultimately impedes their further application in LMBs [18,21]. On the contrary,
SPEs have been studied and applied for their flexibility, processability, and excellent
interface compatibility with electrodes. SPEs are usually prepared by dissolving lithium
salts in polymers (e.g., PEO, PVDF, PAN, PMMA), in which Li+ are transported across
polymer segments [22]. Unfortunately, they are suffering from low Li+ conductivity at room
temperature and are far from commercialization [23–25]. CPEs combine the advantages
of ISEs and SPEs, which are constructed by introducing ceramic materials into polymer
matrixes to obtain remarkably ionic conductivity (≈10−4 S cm−1) to enhance the flexibility
and good interfacial contact [26,27].

PEO-based CPEs have attracted a large amount of research since they were first ap-
plied in solid electrolytes by Armand et al. in 1978 [28]. PEO has excellent flexibility,
an outstanding ability to dissolve lithium salts, and high ion conductivity at elevated
temperatures [29,30]. However, pure PEO electrolyte with inferior mechanical stability is
insufficient to restrain the formation of lithium dendrites and the intrinsic high crystallinity
of PEO, which results in a poor ionic conductivity originally depending on the amorphous
region [31,32]. Incorporating inorganic fillers into the PEO matrix is an effective way to
gain flexible, nonflammable, and mechanically robust electrolytes [26,33]. The composite
electrolyte acquired from a conventional mechanical mixing generally fails to manifest
an enhanced ionic conductivity, mechanical property, and electrochemical performance.
One crucial reason is that inorganic nanomaterials are easy to aggregate by increasing the
content due to the strong specific surface energy. It is difficult to construct a well-percolated
Li+-conductive network because of severe agglomeration and the low utilization of inor-
ganic fillers [34,35].Therefore, some researchers equipped inorganic nanoparticles with
functional groups to combine fillers and polymer matrixes by chemical crossing and indi-
cated significant potential in this area. On the basis of Lewis acid–base model interaction,
chemical bonding is more favorable for increasing the ionic conductivity of CPEs because
of (1) preventing PEO reorganizing and increasing the proportion of the amorphous area;
(2) helping further dissociating of Li salt and plasticizing the system through the Lewis
acid center on fillers; (3) providing more ion transport pathways in the surface and in-
side of inorganic fillers as well as interfaces between the fillers and PEO chains [36,37].
Nan’s group prepared a PVDF-based CPE utilizing dehydrofluorination catalyzed by La of
LLZTO which was only suitable for small amounts of polymers, such as PVDF and PVDF-
HFP [38]. Yang’s group proposed a strategy for synthesizing nano-sized SiO2 particles in
situ within PEO matrix through acid–base interaction and hydrogen bonding, showing
an improved ionic conductivity (≈1.1 × 10−4 S cm−1 at 30 ◦C) [39]. Furthermore, func-
tionalized mesoporous silicon materials have been widely researched in the past decades
due to the large specific surface area and controllable microstructure, which endow them
with great potential for applications in CPEs [40]. Kim’s group introduced mesoporous
organosilica into PEO and the CPE demonstrated an ion transfer number up to 0.9 [41].
However, few people had combined chemical bonding and functionalized mesoporous
materials in a CPE. Inspired by these previous research studies, herein, we developed a par-
tial cross-linked PEO-based composite solid electrolyte with porous vinyl-functionalized
(p-V-SiO2) silicon nanoparticles as fillers and poly (ethyleneglycol diacrylate)(PEGDA) as
cross-linkers. The synthesis of p-V-SiO2 nanoparticles was based on a simple one-step
method from Stein [42,43]. In this system, the chemical bonding of inorganic/organic
materials as well as the special morphology and structure of fillers would play a synergistic
role to improve the performance of the CPEs. SiO2 nanoparticles could compensate for the
poor mechanical properties of PEO and inhibit PEO recrystallization, while its large specific
surface area and a mass of pores could provide sites for highly reactive vinyl and allow
the permeation of organic chains. Except as cross-linkers, PEGDA was compatible to PEO
and could act as a plasticizer in the system. As a result, the as-made flexible CPE exhibited
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higher ionic conductivity, a wider electrochemical stability window, and better ability to
suppress dendrite growth. Ultimately, the solid-state Li|CPE|LiFePO4 cells demonstrated
excellent cycling performance and electrochemical stability.

2. Materials and Methods
2.1. Materials

Tetraethyl orthosilicate (TEOS), sodium hydroxide (NaOH), anhydrous acetonitrile
(ACN), anhydrous ethanol, and aqueous (HCl) (37%) were purchased from Sinopharm
Chemical Reagent (China). Cetyltrimethylammonium bromide (CTAB), poly (ethylene gly-
col) diacrylate (PEGDA, Mw = 400), polyethylene oxide (PEO, Mw = 1,000,000), polyvinyli-
dene fluoride (PVDF), Super P and N-Methyl pyrrolidone (NMP) were purchased from
Aladdin Reagent (Shanghai, China). Bis (trifluoromethyl) sulfonamide lithium salt (LiTFSI)
(99.95%), LiFePO4, and vinyltriethoxysilane (VTES) were purchased from Sigma-Aldrich
(Tianjin, China).

2.2. Synthesis of Porous Silica Nanoparticles (p-SiO2)

P-SiO2 was synthesized by the hydrolytic condensation of TEOS. First, 0.5 g (1.37 mmol)
of CTAB and 0.08 g (2 mmol) of NaOH were dissolved in a mixture solution of deionized
water (240 mL) and ethanol (40 mL). The mixture was ultrasonic dispersed for 10 min. Then,
3 mL (13.4 mmol) of TEOS was dropped into the reaction mixture at a rate of 0.1 mL/min
under stirring at 80 ◦C for 3 h. Then, the product was centrifuged, washed, and freeze-dried.
The CTAB was extracted by stirring in acid/solvent extraction, using a solution of 50 mL of
ethanol and 0.5 mL of aqueous HCl (37%) per 0.5 g of sample for 24 h at 80 ◦C. The product
was centrifuged, washed, and freeze-dried for 24 h.

2.3. Synthesis of Porous Vinyl-Functionalized Silica Nanoparticles (p-V-SiO2)

In order to synthesize p-V-SiO2, 0.6 g (1.65 mmol) of CTAB and 0.1 g (2.5 mmol) of
NaOH were dissolved in a mixture of deionized water (250 mL) and ethanol (50 mL). The
mixture was ultrasonic dispersed. Then, a mixed solution of TEOS (3 mL/0.013 mol) and
VTES (0.75 mL/0.0036 mol) was dropped into the reaction mixture at a rate of 0.1 mL/min
under stirring. The resulting mixture was stirred for 1 h at room temperature, which
was followed by heating at 80 ◦C for 24 h under static state. The product separation and
template removal are consistent with the methods mentioned above.

2.4. Preparation of Composite Solid Electrolyte Membranes (CSEs)

Typically, 0.5 g of lithium LiTFSI, p-SiO2(or p-V-SiO2) powder with different weight
ratios (5%, 8%, 10% or 15% based on the total mass of PEO and PEGDA), 0.5%(based on the
total weight of monomers) initiators (AIBN), and 0.3 g of monomers (PEGDA, Mw = 400)
were mixed and dissolved in ACN, which was followed with sonication for 10 min to
obtain uniform dispersion. Then, 1.2 g of poly (ethylene oxide) (PEO, Mw = 1,000,000) was
added into the solution and then stirred at room temperature for 24 h to get homogeneous,
translucent, and viscous precursor solution. The resultant solution was cast onto a flat
Teflon mold with a scraper and then dried for 12 h at room temperature and polymerized for
24 h at 60 ◦C in a vacuum-drying oven. The PEO/LiTFSI SPE membranes were fabricated
in the similar way. The thickness of electrolyte film was controlled at about 120 µm. All the
solid electrolytes were stored in a glove box filled with argon gas for more than 24 h before
further testing.

2.5. Cathode Preparation and Cell Construction

The battery electrochemical performance was evaluated using CR2016 coin cells. For
fabricating Li|CPEs|LiFePO4 cells, LiFePO4, PVDF, and Super P were hybrided in NMP
solution with a mass ratio of 7:1.5:1.5. Then, the resultant slurry was cast on an Al foil
current collector and dried at 80 ◦C for 12 h under vacuum to remove the residue solvent.
The loading of LFP was about 1.0 mg cm−2. Li metal served as the anode, and the as-
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prepared CSEs membranes served as the electrolyte and separator. All cell fabrications
were operated in a glove box filled with argon gas.

2.6. Material Characterization

The X-ray diffraction (XRD) was performed on a D/MAX-RB diffractometer (Rigaku,
Tokyo, Japan) using a Cu Kα radiation (λ = 0.1541 nm) with 2θ from 0◦ to 10◦. N2 adsorption
measurements were performed with an ASAP2020 adsorption analyzer (Micromeritics,
Atlanta, Georgia, USA) to measure the surface areas and pore sizes. The top and cross-
section scopes of the CPE membranes were characterized by scanning electron microscopy
(SEM, Hitachi JEM-7500F, ZEISS, Jena, Germany) and transmission electron microscopy
(TEM, JEM-2100F, JEOL, Tokyo, Japan); the elemental distribution was analyzed by energy-
dispersive X-ray spectroscopy (EDS, ZEISS, Jena, Germany). The chemical structure of
the samples was demonstrated through Fourier transform infrared spectroscopy (FT-IR)
on a Nicolet6700 spectrometer (Therno Nicolet, Madison, Wisconsin, USA). TGA analysis
(NETZSCH-STA449F3 analyzer, Selb, Germany) of the samples was carried out from 30 to
800 ◦C under N2. The mechanical properties of the as-prepared membranes were obtained
from tensile tests using a stretch testing machine (CMT6202, SAAS, Shenzhen, China) at a
stretching speed of 50 mm·min−1.

2.7. Electrochemical Measurements

The ion conductivities (σ) of the as-prepared electrolytes were calculated by electro-
chemical impedance spectroscopy (EIS) with the frequency ranging from 1 MHz to 0.01 Hz
on a CHI660E electrochemical station (CHInstruments, ShangHai, China). Stainless steels
(SS) were used as blocking electrodes to construct a SS|CPEs|SS sandwiched structure.
The calculation formula is

σ =
L

RS
(1)

where L, R, and S represent the thickness of the membranes, the area of the SS plates, and
the bulk resistance, respectively. Liner sweep voltammetry (LSV) was recorded to test the
electrochemical stability of CSEs in the Li|SS cells with the CHI660E electrochemical station
at 0.5 mV·s−1 at 60 ◦C in a voltage ranging from 0 to 7 V. Galvanostatic cycling of symmetric
Li|CPEs|Li cell was detected at 60 ◦C to evaluate the compatibility between CPEs and
lithium metal electrode, and the ability to inhibit lithium dendrites information of the CPEs
on a Land battery test system. The electrochemical performance of Li|CPEs|LiFePO4 cells
were analyzed on a Land battery test system in a potential range of 2.5 to 4.2 V at 60 ◦C to
evaluate the cycling and rate capabilities. Figure 1a illustrates the entire synthetic route of
p-V-SiO2/PEO cross-linked composite polymer electrolyte. First, p-V-SiO2 was synthesized
by a hydrolytic condensation of TEOS and VTES in a basic solution with CTAB serving as
surfactant. After removing the CTAB, an ordered mesoporous structure has been formed in
the SiO2 nanoparticles where they were covered with vinyl groups. P-SiO2 nanoparticles
were produced by the similar way without using the silane coupling agent. After that, the
produced p-V-SiO2 (or p-SiO2) and PEGDA were cross-linking through thermal addition
polymerization in a PEO host with a certain amount of LiTFSI (EO/Li+ = 20) to form
inorganic/organic CPEs. Figure 1b showed the prepared white p-V-SiO2 powder. Figure 1c
demonstrated the 10% p-V-SiO2/PEO CPE precursor solution, which was opalescent and
viscous.
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Figure 1. (a) Schematic illustration for the synthetic route of p-V-SiO2/PEO cross-linked CPE. (b) The
photograph of p-V-SiO2 powder. (c) The photograph of 10% p-V-SiO2/PEO CPE precursor solution.

3. Results

The small-angle XRD patterns of p-V-SiO2 and p-SiO2 are shown in Figure 2a. The
observation of one sharp peak and two weak peaks from p-SiO2 indicate the presence of
d100, d110, and d200 reflections, which could be indexed to the hexagonally ordered pore
structure of MCM-41 [42–44]. Although the absorption peaks shifted to the left along
with a decrease of the intensity, the p-V-SiO2 still showed similar structural characteristics,
which may be ascribed to the damage of the integrity by grafted vinyl. The nitrogen
adsorption isotherms (Figure 2b) and pore diameter distribution of the two kinds of SiO2
samples demonstrated a representative type IV isotherm for obvious mesoporous structure.
Corresponding to the results of XRD, the p-V-SiO2 had a narrower hysteresis loop, smaller
specific surface area, and pore volume than p-SiO2 due to grafted vinyl similarly. The insert
image also demonstrated a narrow pore diameter distribution of p-SiO2 which might be
attribute to the fact that vinyl groups occupied part of the channel. The attachment of vinyl
groups within the channels had been proved by a bromination reaction in some previous
studies [43,45,46]. The results of the specific surface areas were determined by the BET
method, pore volumes were gained from a single point of adsorption, and pore sizes were
obtained from the BJH model, as summarized in Table 1 [42,43].
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Table 1. The data of specific surface areas, pore volumes, and pore sizes of p-V-SiO2 and p-SiO2.

Sample BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

p-SiO2 999 0.94 3.1
p-V-SiO2 947 0.61 2.4

The TGA data and FT-IR spectra (see Figures S1 and S2 in the Supporting Informa-
tion) could confirm the complete removal of CTAB, successful grafting of vinyl, and full
polymerization of monomers. The different weight loss ratios of p-V-SiO2 and p-SiO2 in
TGA thermograms indicated that vinyl groups were decorated on nano-SiO2 and started to
decompose at about 250 ◦C. This was similar to the phenomenon reported in the previous
literature [43,44]. In the FT-IR spectra, the absorption peaks at 3467 cm−1, 2900 cm−1,
1750 cm−1, and 1215 cm−1 represented the associating O-H of SiO2 nanoparticles as well
as stretching vibration of C–H, C=O, and C-O bonds, respectively. Moreover, the peak
at 1660 cm−1 was related to the C=C, and 1120 cm−1 and 880 cm−1 were assigned to the
symmetrical and asymmetrical stretching vibration of Si–O–Si [25,34,42,45].

As shown in Figure 3, the morphologies, sizes, and elemental distribution of p-V-
SiO2 (Figure 3a,b,e) and p-SiO2 (Figure 3c,d) were investigated via TEM and EDS. These
images verified the obvious porous morphology and spherical shape with average diameter
of about 200 nm. The grafted SiO2 nanoparticles were slightly deformed and had an
inhomogeneous distribution in size. Energy-filtered TEM (EFTEM) further revealed the
mesoporous structure, particle size, and average distribution of Si, O, and C (from C=C)
elements.

As shown in Figure 4, the top and cross-section views of the CPE membranes from
SEM showed a smooth and homogenous surface of the CPEs (Figure 4a,d). In the mag-
nified images (Figure 4b,e), more wrinkles and cracks appeared in the 10% p-SiO2/PEO
CPE, which proved that functionalization with the vinyl and mesoporous structure of SiO2
indeed help eliminate aggregation, promote the dissociation of Li salt, and form a tight in-
organic/polymer composite network. The thickness of the films was about 120 µm, and no
significant phase separation or aggregation was observed in the cross-section (Figure 4c,f).
The membranes were white and transparent, with excellent flexibility for being bent and
twisting randomly (Figure 4g–i). The excellent flexibility of the CPE membranes could also
be proved by Figure 5a, which depicted ultrahigh 650% maximum elongation. This value
was much higher than that reported in other studies in the literature [25,27,34,39].
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Figure 5. (a) Stress−strain curves of CPEs with different mass ratios of p-V-SiO2 (or p-SiO2). (b)
EIS profiles of CPEs with different mass ratios of p-V-SiO2 (or p-SiO2) at the range of 30−80 ◦C.
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The enlarged time–voltage profiles from 200th to 225th h. (e) The time–voltage profiles of Li|10%
p-V-SiO2/PEO CPE|Li and Li|10% p-SiO2/PEO CPE|Li symmetrical cells at 60 ◦C.

The safety and availability of LMBs operating under long-term and extreme conditions
are largely dependent on the thermal stability and mechanical strength of the electrolytes.
The thermal stability of the CPEs was examined by TGA and depicted in Figure S1 in the
supplementary material; p-SiO2/PEO CPE encountered a sharp decomposition around
220 ◦C, unlike the 10% p-V-SiO2/PEO CPE, which did not start to degrade until 300 ◦C.
This might be due to the large surface area of p-V-SiO2 and stable composite cross-linked
network, which could reduce thermal resistance and favor heat dissipation. The fact was
also been demonstrated before [39,47].

The stress-strain curves of CPEs with different mass ratios of p-V-SiO2 (or p-SiO2) are
depicted in Figure 5a. The 15% p-V-SiO2/PEO CPE manifested the largest tensile strength
up to 2.46 MPa compared to 2.27 MPa of 10% p-V-SiO2/PEO CPE and 2.24 MPa of 12%
p-V-SiO2/PEO CPE. However, the latter two CPEs possessed better flexibility with 650%
and 830% maximum elongation, respectively. Nevertheless, the 10% p-SiO2/PEO CPE
only performed a tensile strength of 1.84 MPa and maximum elongation of 230%. This
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phenomenon might stem from the chemical bonding of organic and inorganic materials,
which was favorable to this combination and avoided the agglomeration of particles. The
10% p-V-SiO2/PEO CPEs operated at 60 ◦C were selected as the most ideal samples, and
the working conditions after the ionic conductivity of all CPEs were systemically studied
by EIS in the temperature range of 30 to 80 ◦C. The results of temperature-dependent ionic
conductivity and the consistent Arrhenius plots were plotted in Figure 5b and Figure S3 in
the supplementary material. Over the entire temperature range, 10% p-V-SiO2/PEO CPE
exhibited the highest ionic conductivity (5.08× 10−4 S cm−1 at 60 ◦C), while the 10% p-
SiO2/PEO CPE had a smaller one (1.3× 10−4 S cm−1 at 60 ◦C). The high ionic conductivity
originated from the presence of vinyl grafting layers on porous SiO2, which enabled
cross-linking polymerization between fillers and PEGDA in the PEO host. Therefore, the
severe agglomeration of inorganic materials could be avoided. Lithium salt was dissolved
further and PEO recrystallization was inhibited due to the large specific surface area as
well as the large number of pores of SiO2 nanoparticles [34]. Another crucial parameter
to determine the possible application in LMBs is the electrochemical stability window.
LSV measurements were carried out at 60 ◦C and are illustrated in Figure 5c. The 10%
p-V-SiO2/PEO CPE started oxidative decomposition at 5.2 V and 5 V for 10% p-SiO2/PEO
CPE. The improved electrochemical stability of the former might be attributed to the higher
ionic conductivity to reduce interfacial overpotential and better compatibility between
ceramic and polymers because of chemical bonding. Effectively inhibiting the dendrite
growth of lithium was the most important capability of solid electrolyte used in LMBs.
Li plating (0.5 h)/stripping (0.5 h) experiments with Li metal symmetric electrodes were
made at 60 ◦C, and the time-voltage profiles are shown in Figure 5d,e. Both the 10% p-V-
SiO2/PEO CPE and 10% p-SiO2/PEO CPE could stably work in cycles under the relatively
low current density of 0.1 mA cm−2 and 0.2 mA cm−2. When the current density was
improved to 0.3 mA cm−2, the 10% p-V-SiO2/PEO CPE could remain stable over 450 h
with the overpotential of about 600 mV, whereas an obvious increased polarization was
observed in 10% p-V-SiO2/PEO CPE following a short circuit after 250 h. These results
suggested that compared to others, 10% p-V-SiO2/PEO CPE had a stronger ability to
inhibit the lithium dendrite information and to homogenize lithium deposition with the
help of rigid porous functional inorganic fillers. Benefiting from the cross-linked composite
network, the lithium ion flow was more uniform, and the interface compatibility was
improved [27,34,35].

These advantages of p-V-SiO2/PEO CPE also contributed to the performances of
Li|CPEs|LiFePO4 cells. The rate capability at different current densities (0.1–2 C) were
assessed at 60 ◦C. Figure 6a demonstrated that the discharge-specific capacities of Li|p-
V-SiO2/PEO CPE|LiFePO4 cells were 169.1, 158.6, 153.4, 135, and 109.9 mA h g−1 at
0.1, 0.2, 0.5, 1, and 2 C, respectively. Even after experiencing a current density of 2 C,
the specific capacity could nearly recover to the initial state of 165.5 mA h g−1 when it
returned to 0.1 C. However, the specific capacities of Li|10% p-SiO2/PEO CPE|LiFePO4
decayed rapidly with the increase of current density and suffered a short circuit at 1 C
(so, the specific capacities at 1 C and 2 C were zero). The specific capacity could not
recover to the initial value. Figure 6b showed a smooth discharge platform and a slow
increasing polarization of Li|10% p-V-SiO2/PEO CPE|LiFePO4 battery, indicating that
no other side reactions occurred during the charge and discharge processes. Figure 6c
further proves the excellent cyclability of Li|LiFePO4 cells with p-V-SiO2/PEO CPE at 0.5 C
under 60 ◦C. Its first discharge-specific capacity was 155.1 mA h g−1, and the coulombic
efficiency was above 99.5%. Moreover, there was only a capacity degradation of 9.1% after
300 cycles. The insert image showed the single cycle charge–discharge curves of Li|10%
p-V-SiO2/PEO CPE|LiFePO4, and Figure S4 in the supplementary material showed that
it could cycle stably at 1 C with a capacity retention of 69% after 150 cycles. In addition,
Figure 6d,e demonstrate the SEM images of Li electrodes from Li|LiFePO4 cells with 10% p-
V-SiO2/PEO CPE and 10% p-SiO2/PEO CPE after 150 cycles, respectively. Many dendrites
appeared on the tough surface of Li piece in Li|10% p-SiO2/PEO CPE|LiFePO4, while the
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surface of the Li anode adapted with 10% p-V-SiO2/PEO CPE was smooth. It could be
summarized that the P-V-SiO2-based CPEs possessed an excellent capacity to impede Li
dendrite growth, boost effective transportation lithium ion, and establish a more compatible
interface. All of the above results revealed the superior reversibility, outstanding stability,
and high discharge-specific capacity of the 10% p-V-SiO2/PEO electrolytes [10,34,35].
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Figure 6. (a) Rate capability at different current densities at 60 ◦C. (b) Charge–discharge profiles of
Li|10% p-V-SiO2/PEO CPE|LiFP cells at different current densities at 60 ◦C. (c) Cycle performance
of Li|10% p-V-SiO2/PEO CPE|LiFP cells at 0.5 C at 60 ◦C. The insert image is the charge–discharge
profiles of Li|10% p-V-SiO2/PEO CPE|LiFP cells under different cycle numbers. (d,e) The SEM
images of Li electrodes from Li|LiFePO4 cells with 10% p-V-SiO2/PEO CPE and 10% p-SiO2/PEO
CPE after 150 cycles, respectively.

4. Conclusions

In conclusion, PEO-based composite polymer electrolytes with porous vinyl-functionalized
silicon (p-V-SiO2) nanoparticles were prepared (the 10% p-V-SiO2/PEO CPE was proved
to the most ideal sample) which enabled (1) the cross-linking of inorganic filler and cross-
linking agent (PEGDA) in the PEO host, (2) a configuration of an interconnected net-
work that could successfully eliminate the agglomeration effects typically occurred in
mechanical mixing, (3) uniform distribution of porous SiO2 nanoparticles and further
dissolution of lithium salt benefiting from the formation of large specific area and chem-
ical bonding, (4) great contributions to the high mechanical robustness and flexibility
(2.27 MPa tensile strength and 650% maximum elongation), (5) improved ionic conduc-
tivity (5.08 × 10−4 S cm−1 at 60 ◦C), (6) superior ability of suppressing lithium dendrite
growth of the CPEs, (7) a wide electrochemical window (up to 5.2 V at 60 ◦C). Moreover,
the fabricated Li|CPE|LiFePO4 exhibited an excellent rate property (169 mA h g−1 at 0.1 C



Polymers 2021, 13, 2468 11 of 13

and 110 mA h g−1 at 2 C) and could recover to the initial state quickly even after 2 C. It also
demonstrated outstanding cycling performances for 300 cycles with a capacity retention
of 91% at 0.5 C, and the first discharge specific capacity was 155.1 mA h g−1. To sum up,
this strategy about chemical combining inorganic/organic materials as well as utilizing
the special morphology and structure of fillers has huge potential in the development of
improved functional CPEs membranes. Of course, there are some shortcomings in the
CPEs, the most important of which is to further improve the ionic conductivity of the CPEs
at room temperature in order to reduce the operational temperature of the electrolyte film.
In future research, some good methods need to be proposed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13152468/s1, Figure S1: TGA data of p-SiO2, p-V-SiO2, 10% p-SiO2/PEO CPE and
10% p-V-SiO2/PEO CPE. Figure S2: FT-IR spectra of PEGDA, p-V-SiO2, and 10% p-V-SiO2/PEO CPE.
Figure S3: EIS profiles of 10% p-V-SiO2/PEO CPE at the range of at the range of 30–80 ◦C. Figure S4:
Cycle performance of Li|10% p-V-SiO2/PEO CPE|LiFP cells at 1 C at 60 ◦C.
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