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Abstract: We examine the nonequilibrium production of topological defects—braids—in semiflexible
filament bundles under cycles of compression and tension. During these cycles, the period of
compression facilitates the thermally activated pair production of braid/anti-braid pairs, which then
may separate when the bundle is under tension. As a result, appropriately tuned alternating periods
of compression and extension should lead to the proliferation of braid defects in a bundle so that
the linear density of these pairs far exceeds that expected in the thermal equilibrium. Secondly, we
examine the slow extension of braided bundles under tension, showing that their end-to-end length
creeps nonmonotonically under a fixed force due to braid deformation and the motion of the braid
pair along the bundle. We conclude with a few speculations regarding experiments on semiflexible
filament bundles and their networks.

Keywords: semiflexible filaments; filament bundles; topological defects

1. Introduction

The mechanics of semiflexible filaments has been a subject of broad interest both for
its role in the mechanics of the cytoskeleton and as a testing ground for various principles
of polymer and soft condensed matter physics. One feature of biological filaments, such as
F-actin and collagen (a key constituent of the extracellular matrix) is their ability to form
densely cross-linked bundles. These bundles are composed of a number of nearly parallel
filaments cross linked by one of a variety of specialized proteins.

Previous research has focused on the collective mechanical response of permanently
cross-linked filament bundles [1,2], showing that the bundle inherits a complex, scale-
dependent bending modulus due to cross linking, even though the bending mechanics
of the constituent filaments is comparatively simple. In most circumstances of biological
interest, cross linkers detach and attach to filament bundles and their networks. As a result,
such structures acquire a viscoelastic response—their stress relaxation has a complex time
dependence and these systems dissipate work not only through viscous dissipation in the
surrounding fluid, but also by linker unbinding. As a result, the collective mechanical
response of networks of filament bundles has a nontrivial low-frequency viscoelastic
response at frequencies below a characteristic linker unbinding rate [3,4].

We explore here a particular type of stress relaxation through the production and
movement of defects in cross-linked bundles. Previously, we showed that bundles support
a set of topological defects—loop, braids, and dislocations [5]. The lifetime of these defects
is quite long, growing with the length of the bundle, since they cannot be removed by local
rearrangements of the cross linking on the bundle. Defects, however, can be produced in
defect/anti-defect pairs by local rearrangements, and defect pair production is predicted
to be enhanced by applied compressive loads [6]. In this article, we report on theoretical
studies of defect pair production under reciprocal mechanical deformations and consider
how the proliferation and motion of defects affects the force–extension relation of a bundle
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in constant applied force experiments. We point out that there is a range of bundle
mechanical parameters that allows for a nonmonotonic extension versus time curve at a
constant force.

The motion of topological defects plays a critical role in the long-time plastic deforma-
tion of crystalline solids under mechanical loading. We suggest here that the defect motion
plays a similar role in the slow relaxation of bundles under load. Mechanical loading
can also generate defect pair production. We first consider pair production in cycles of
compression and extension of one bundle. We then examine the force–extension relation
of defected bundles by examining the extension of the bundle as a function of time for
fixed force.

2. Materials and Methods

To study the conformation of the bundle under the external load, we look at the
minimal energy configuration of the N-filament bundle under force F. The energy has
three contributions:

E = −F∆L + µ`+
N

∑
i=1

∫
ds

κi
2
(
∂s t̂i
)2. (1)

The first term is work of the force F, extending the bundle by distance ∆L. Note
that, unlike in Ref. [6], we pick a positive sign for the extensive force; a compressive force
takes a negative sign. The second term is the missing binding energy of the cross links.
Namely, if cross links are absent on the interval of the bundle of length `, we assume that
the energy of the bundle is larger by µ` where µ is the binding energy per unit length. Here,
and throughout this work, we assume that the cross linkers are highly inextensible, so
where the filaments have inappropriate spacing within the braid, the cross linkers must be
missing. We do not consider more elastically compliant cross linkers here. The third term
is the bending energy of all the filaments in the bundle, where t̂i(s) and κi are the tangent
vector and the bending modulus of the ith filament. The integral is over the whole bundle;
however, in the minimal energy state, the part of the bundle without defects is perfectly
straight, so the expression under the integral is zero at this part—only the defected part of
the bundle contributes to the bending energy.

In this paper, we study a three-filament bundle, and a particular type of defect: braids.
Each braid can be envisioned as a permutation of the filaments within the bundle with the
understanding that the product of two such permutations does not restore the bundle to its
undefected state, as the filaments remain wound about each other. For a more complete
description of the group of braid operations, please see Ref. [5] and the references therein.
The case of a single braid, or a braid/anti-braid pair is particularly simple to analyze
because, in these configurations, two filaments within the three-filament bundle remain
cross-linked everywhere, while the third filament passes back and forth in between them
as shown in Figure 1A,B. As a result, the equilateral triangle formed by the filaments in the
plane perpendicular to their local tangent flips by π as one moves through a single braid.
The anti-braid simply flips this triangle back to its original orientation. The simplicity of
this structure allows one to treat the two everywhere-cross-linked filaments as a single
effective filament, having twice the bending rigidity of the single filaments. Then, the
problem effectively maps onto two filaments in two dimensions, one of which has a bending
modulus twice as big as the other. We write the boundary conditions for this problem in
terms of the tangent vector t̂. First, we have a condition that at the ends of the braid the
filament should be parallel to each other.

t̂1(±L1) = t̂2(±L2) =

(
cos(φ/2)
sin(φ/2)

)
. (2)

where φ is the angle that the braid forms (see Figure 1B). Notice that here, we have also
specified the direction of the coordinate axis. The second boundary condition fixes the
position of the ends of the filaments:
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∫ L1/2

−L1/2
dst̂1(s) =

∫ L2/2

−L2/2
dst̂2(s) + 2a cos(φ/2)ŷ, (3)

where L1,2 is the length of the filament in the braid, and a is the size of the cross-link plus
two of the radii of the filament (the distance between the center lines of the cross-linked
filaments). In these boundary conditions, φ, L1 and L2 are the subjects of variation. Since
the braid/anti-braid pair is produced from an undeformed state, we should have a length
conservation condition:

Lbraid
1 + Lanti−braid

2 = Lbraid
2 + Lanti−braid

1 . (4)

We minimize the energy Equation (1) subject to the conditions of Equations (2)–(4). The
results shown here were obtained using the SciPy package in Python [7] (we performed the
energy minimization with constraints (boundary conditions) using the function minimize
with the method trust-constr.) . We discretize each filament into 50 elements. The code is
published at [8]. The numerical results coming from this discretization were previously
validated by their comparison to the analytic results as shown previously in Ref. [6].

Figure 1. Schematic illustration: (A) A pair of braids produced under compression force F on a
semiflexible filament bundle of length 2L (and comprised of three filaments), but not separated. 2x is
the size of the defected region. The filaments are shown in blue, while the cross links are shown in
red. (B) A pair of braids is now separated under applied tension. The braids produce a kink with
angle φ and 2x is the distance between the braids (including their own size—the total excess length
stored within the braid). In the lower figures, we show the piece-wise linear potential U(x) under
compression (C) and under extension (D) . The left part of the potential x < l corresponds to the
production of defects, while the right x > l controls the separation of the defects.

3. Results
3.1. Braid Configuration under External Force

Minimizing the energy Equation (1), we obtain a phase diagram, which is shown in
Figure 2 spanned by the applied torque F(L− x)a/κ and the dimensionless parameter

ζ = µa2

κ that quantifies the propensity of the braided bundle to form a kink. The kink
angle is given by φ. Depending on ζ and the applied torque, the braid may or may not
cause a localized bend of the filament or kink, as can be seen in the figure where, at large
applied torques, we predict straight, braided bundles, as is intuitively reasonable. If the
braids move outward along the bundle, or if we decrease the applied force, the torque
acting on the kinks is reduced. In the first case, this is due to the decreasing moment arm
produced by the kinked bundle, while in the second case, it is simply due to the reduced
applied force.
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Figure 2. The phase boundary in the parameter space of dimensionless torque (vertical axis) and the

dimensionless material parameter ζ =
µa2

κ (horizontal axis). The positive values of the torque (above
the dashed line) correspond to extension, the negative (below the dashed line) to compression. Above
the curve, the angle formed by the braid is zero, and below it is non-zero. The pictures represent a
straight, or unkinked, braid pair (upper) and a bent, kinked braid pair (lower).

The nonmonotonic behavior of the phase boundary is perhaps the most striking
feature of the phase diagram, which was also discussed in Ref. [6]. If ζ is small, the binding
energy of the linkers is also small, allowing the braid to extend along the bundle, thereby
reducing its effective bending modulus. As ζ is increased, the braids become shorter and
stiffer. When ζ is sufficiently large, however, the braid kinks even in the absence of an
applied force in order to minimize the energy of the bundle. Because of this effect, the large-
ζ limit also exhibits kinks. We note that this large-ζ limit occurs around ζ ∼ 3, which
we believe is obtainable in some biopolymer systems, including condensed DNA [9,10],
cross-linked intermediate filaments [11,12] and perhaps for collagen [5,13–15]. We should
note that we introduced the torque with the opposite sign from that used here in Ref. [6],
i.e., extension is positive, and compression is negative.

When we consider the case of sufficiently large values of the ζ parameter, so that
kinks exist even under non-zero tensile force, we may then investigate how the kink angle
changes in response to that loading by determining the energy-minimized configuration
of each kinked braid. As expected, the kink is straightened—the kink angle φ decreases—
under tension. The dependence of the kink angle φ versus applied tension is shown in
Figure 3 for a fixed ζ = 4. We observe that the angle versus torque of the kinked bundle is
nonlinear; the torque response of the bundle is non-Hookean. We understand this effect
to occur because the structure of the energy-minimizing braid itself changes with applied
torque so the braided bundle does not bend simply like an effectively thicker filament.

Figure 3. Angle produced by braid under extension as a function of the value of the torque. Dimen-
sionless parameter ζ = 4. The angle versus torque curve shows that the bending response of the
braid is nonlinear, unlike the linear or Hookean response of the individual filaments.
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We will later see that the force-induced straightening of the kinks allows for the
nonmonotonic behavior of the bundle’s extension versus time under a constant tensile
loading. This is discussed in more detail in Section 3.4, but first, in the following section, we
assume the torque to change weakly, so we can assume the kink angle to be constant, which
sufficiently simplifies the study of the braid/anti-braid pair production for our analysis.

3.2. The Piece-Wise Linear Defect Potential and the Defect Distribution

We showed that the production of braid/anti-braid pairs in a compressed bundle can
be mapped onto the Kramers escape problem in one dimension, using a single reaction
coordinate [6,16]. The two defects must be first produced together in the form of defect/anti-
defect pairs, which requires energy Edefect. The formation of one defect introduces a length
mismatch between the filaments involved that is then compensated by the second anti-
defect. As a result, defect pair production entails only local rearrangements of cross linkers.
During this point in the thermally-activated production of the defect pair, we may take
the single reaction coordinate to represent the total length “exchanged” between defects.
Once the defects separate so that a region of cross-linked bundle appears between them,
the defects can no longer exchange length but they may separate along the bundle by
repetitive motion. Most importantly, since the defects generate localized bends or kinks
under external loading, the motion of the defects changes the end-to-end distance of the
bundle under load. By separating the braids, the energy of the system decreases in response
to the applied tension and increases in response to the applied compression. During this
separation (under external loading) the distance between the defects plays the role of the
reaction coordinate.

Taking these two aspects of the problem together, we may consider the stochastic
pair production process as the thermal escape of a single fictitious particle, representing
the reaction coordinate x in an approximately piece-wise linear potential. Before defect
pair separation, x < l, where l is the size of the defect at the moment of the separation,
the potential increases linearly as more length is exchanged between the defect pair and thus
more cross links are removed. Understanding the exact form of this potential would require
taking into account all different pathways leading from the properly cross-linked bundle
to the bundle with braids. We make the simplest approximation, i.e., a linear potential,
motivated by the fact that we need to remove the number of cross links proportional
to the size of the uncross-linked region. Then, the effective potential is U(x) = Ax,
with A = Edefect/l. The energy of the defect incorporates the bending energy of the
filaments, the missing binding energy of the cross links absent in the defected region,
and the work of the applied force:

Edefect = Ebending(φ) + Ebinding(φ)− 2F(L− x) cos(φ)− 2Fx, (5)

where φ is the angle formed by a single braid (see Figure 1), F is a force acting on the
ends of the bundle (positive sign is chosen for the extension), and 2L is a length of the
bundle. The angle φ is determined by energy minimization with respect to it. As the
defects separate, x grows. The angle also changes but as soon as x � L, this change
contributes to the energy at the next order in the small parameter x/L. We address the
explicit dependence of the angle on interbraid separation in Section 3.4. Omitting this effect,
we can again write an effective potential U(x) = Al + B(x − l) with B = 2F(cos φ− 1).
Thus, we may explore the pair production process using the following potential:

U(x) =


Ax, x < l
Al + B(x− l), l < x < L
∞, x > L

(6)

Before considering dynamics, we use this potential to consider the equilibrium dis-
tribution of defects on a bundle of length L. Specifically, we consider the equilibrium
separation of two defects. Using Equation (6), it is trivial to write the probability dis-
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tribution in this potential: p(x) = 1
Z e−βU(x) where the partition function Z is given by

the following:

Z =
∫ L

0
e−βU(x)dx, (7)

and β = 1/kBT is the inverse temperature. A straightforward calculation arrives at the
partition function written as the sum of two parts corresponding to the two pieces of
the potential as follows:

Z = Z1 + Z2. (8)

with
Z1 =

1
βA

(1− e−βAl) (9)

and
Z2 =

1
βB

e−β(A−B)l(e−βBl − e−βBL). (10)

Taking the ratio of these partition sums, we obtain the ratio of observable separated
braid pairs to strongly interacting and co-localized braids:

Z2/Z1 =
Ae−β(A−B)l(e−βBl − e−βBL)

B(1− e−βAl)
. (11)

From the above, we see that in the thermal equilibrium, we expect there to be a
low density of separated braids, at least at low temperatures (T ≈ 300 K). In particular,
if the thermal energy is much lower than the cross-linker binding energy (which is typi-
cally true in biopolymer filament systems) we expect an exponentially small density of
braids (∝ e−Ebraidβ, where for known filaments βEbraid � 1. In fact, it appears that the
smallest value of βEbraid is found for DNA bundles condensed by polyvalent ions where
βEbraid ≈ 50 [6,9,10]. Braid pairs, however, can be generated either during bundle forma-
tion or via cycles of compression and expansion, as would be expected in a bundle network
under reciprocal shear.

3.3. The Nonequilibrium Braid Distribution in a Time-Dependent Potential

When one applies a time-varying force, the effective potential controlling the pro-
duction and motion of the braids also changes in time. As a result, we cannot rely on the
equilibrium distribution discussed in the previous section. Instead, we have to solve the
Smoluchowski diffusion equation for defect density ρ(t, x):

∂tρ(t, x) = D∂x[(∂x − βF(t, x))ρ(t, x)], (12)

where the force now takes the following form:

F(t, x) =

{
A(t), x < l
B(t), l < x < L.

(13)

During compression A(t) = Ac and B(t) = Bc. During expansion A(t) = As,
B(t) = Bs (note that Bs is negative). In the above, D is the defect diffusion constant.
We cannot solve this equation analytically; however, we can provide a qualitative analysis.
To simplify, we assume that A and B are fixed during each period of compression and
expansion. We explore how the defect production rate depends on the lengths of these
periods of compression and extension. We also estimate the maximal defect production rate.

The transport time from 0 to l in the potential is controlled by the constant A. This is
the braid pair production rate when the braids have a stored length of l. This problem is
simply the first passage time [16] to reach l in the linearly increasing potential, which we
may estimate to be as follows:
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T0l =
1
D

eβAl

β2 A2 . (14)

Similarly, we estimate the transport time from L to l. This gives an approximate value
of the lifetime of the braid pair since when their separation returns to l, they will likely
annihilate. Here, we must distinguish between two limiting cases. In the first case, we
consider purely diffusive braid motion and in the second, we look at the deterministic
transport of the braids under an applied force, using a mobility set by the diffusion constant
and the Einstein relation. We find the following:

TLl =

{
L2/D, Bβ > 1/L
L/(BβD), Bβ < 1/L.

(15)

In general, where we expect there to be both diffusive and advective defect motion,
we find that the time for defects to recombine is the following:

TLl =
L2

D(1 + βBL)
. (16)

In the limit of large L, TLl � T0l so that the time for distant defect pairs to come
together and potentially annihilate is much greater than their production time. If braids
are able to separate sufficiently, we expect this ordering of time scales to be valid and thus
predict braid proliferation on the bundle.

Because the production time T0l has an exponential dependence on A,

Tcompression
0l � Tstretching

0l , (17)

since the A parameter is much larger under stretching than it is under compression,
Ac < As. If we choose the time dependence of the applied force so that the stretching time
τs and compression τc satisfy the inequalities

Tcompression
0l � τc � τs � Tstretching

0l � TLl , (18)

we may analyze the dynamics of the system using a few approximations.
Since the braid production time during compression is small compared to the com-

pression time: Tcompression
0l � τc, then, during the compression period, the density on

the left 0 < x < l equilibrates. Since τs � Tcompression
0l � TLl , during the stretching

period, the probability density ρ(x) decreases near the potential maximum at x = l, but
it is highly unlikely that thermally excited hopping over the barrier at l occurs. Since
τc � τs � Tcompression

0l � TLl , the applied force is changing sufficiently fast that the
density of the right of the potential x > l may be replaced by its time-averaged value.
Moreover, since τc � τs, density on the right of the potential is effectively determined
by the dynamics during the stretching period. Because the compression period is shorter,
the already produced braids are unlikely to be driven together and annihilate. As a
result, we conclude that the density distribution on the left is effectively determined by the
compression period and the density on the right by the stretching period. Finally, we note
that the Smoluchowski diffusion equation requires the continuity of both the probability
density and its current at the boundary x = l. From these conditions, we obtain a value of
the averaged density on the right as a function of the equilibrium density on the left. This
implies that with this sequence of inequalities, the braid production and separation may
be considered to take place in a time-averaged, effective potential where the production
part is set by the compression forces and braids separate under a force related to extension.
Specifically, we consider the following:
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U(x) =


Acx, x < l
Acl + Bs(x− l), l < x < L
∞, x > L.

(19)

In this potential, the probability of braids on the left x < l will be proportional to
the following:

Z1 =
1

βAc
(1− e−βAc l), (20)

while on the right,

Z2 =
1

βBs
e−β(Ac−Bs)l(e−βBs l − e−βBs L). (21)

The ratio is as follows:

Z2/Z1 ≈ −
Ac

Bs
e−β(Ac−Bs)le−βBs L � 1, (22)

which exceeds the case of only compression by a factor of eβ|Bs |L, and the case of only
expansion by a factor of eβ(As−Ac)l—see Equation (11).

3.4. Constant Force Stretching Dynamics of a Braided Bundle

We now consider an experiment in which one stretches a previously compressed
bundle (by laser tweezers or other means) at a fixed force and determines the time rate of
change of the bundle’s length. This is akin to a step force rheological measurement, and is
closely related to determining the force-extension curve of a filament or filament bundle.
Typically, in such force extension measurements, one considers the limit of slow extension
so that the observed length corresponds the thermal equilibrium prediction under a fixed
force [17]. In this case, however, the extension of the bundle will be time dependent, even
though the force is constant.

To study this problem, we minimize the energy of the bundle under a fixed stretching
force. By doing so, we assume that the bending of the kink angles at the braids is fast
compared to the time scale of measurement of the end-to-end distance. We do not, however,
assume that the advection and diffusion of the braids is similarly fast. Doing this energy
minimization numerically, we obtain the energy of the bundle as a function of the distance
between two defects. Then, the average displacement will be controlled by a drift velocity
dx
dt = −βD dE

dx . Solving this equation numerically, we find time dependence shown in
Figure 4. The time dependence of the bundle’s extension is nonmonotonic: as defects
diffuse from each other, the bundle initially becomes shorter. This happens due to the fact
that as x grows, the L− x becomes smaller; hence, the moment of the force decreases as
well. Since the stretching torque decreases, the kinks become less stretched and their angles
increase (see Figure 3), decreasing the end-to-end distance ∆L = 2(x + (L− x) cos φ).

Figure 4. The time evolution of the distance between two defects (red) and the end-to-end distance
of the bundle (blue) under a constant applied tensile force F = 0.9 κ

aL plotted as a function of
non-dimensionalized time. The cross linker binding energy is µ = 4 κ

a2 .
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4. Discussion

Semiflexible filament bundles admit three classes of topological defects: loops, braids,
and dislocations. These defects are all likely to be produced in the formation of bundles
from solutions of semiflexible filaments by the introduction of cross-linking agents. They
are, however, unlikely to form spontaneously in thermal equilibrium when the filament
bundles are also chemically equilibrated with a reservoir of cross linkers. Here, we have
pointed out that the reciprocal compression and extension of filament bundles, however, is
capable of producing a higher nonequilibrium density of braid defects within a bundle.
The key insight is that bundles under compression can locally buckle, producing braid,
anti-braid pairs. Upon subsequent extension, these braid pairs will be driven to separate,
as long as they do not immediately annihilate. In order to ensure that the braid pairs
produced in the previous compression cycle (and separated during the previous extension
part of that cycle) do not annihilate during the subsequent compressive cycle, one needs
to introduce an asymmetry between the period of compression (short) and the period of
extension (long). Other cycles of compression and extension will also produce braid, anti-
braid pairs, but at lower density. We predict that the short compression period following
the long extension one will result in the maximum possible defect density.

We also examined the extensional dynamics under a fixed tensile load of semiflexible
bundles containing a braid defect pair. Here, one does not observe the standard worm-like
chain force extension relation at very low frequencies. The extension of the bundle is not
controlled by the depletion of the length reservoir associated with the thermally-generated
undulations of the bundle, but rather by the motion of the braid defects and the bending
of the kinks associated with those defects. In essence, our predictions refer to the analog
of plastic deformation in solids associated with defect motion rather than the (entropic)
elastic response of the bundle, which, due to cross linking, is suppressed. We note that the
end-to-end distance of the bundle varies nonmonotonically with time under a constant
tensile load. This somewhat counter-intuitive result occurs due to the combination of two
effects: braid separation, which lengthens the bundle, and kink angle relaxation, which
shortens it.

For experimental verification of these predictions, there is no more direct measure-
ment than compression/extension experiments on individual semiflexible filament bundles
using laser or magnetic tweezers to manipulate the bundle’s stress state [18]. In addition,
one expects that the imagining experiments on compressed semiflexible filament bundles
should produce observable kinks (localized bending defects) rather than the uniform cur-
vature of the entire bundle, as would be expected from classical Euler buckling. Although
less direct in testing the predictions made here, standard shear measurements and studies
of stress relaxation in networks of filament bundles with transient cross linkers at long
times or low frequencies are particularly relevant to the present work. We imagine that,
at sufficiently long times, stress relaxation will be dominated by plastic deformation of
the network, comprised of both tearing and reattachment of bundles from each other,
and the plastic deformation of the individual bundles themselves, presumably following
the mechanisms discussed here. We do not, as yet, understand how to distinguish these
dynamics in rheological data, and this remains one of the principal open questions related
to this work.

Other open questions involve the mechanical compliance of the cross linkers and their
binding kinetics. In this work, we considered the cross linkers to be essentially inextensible
so that they must fall off the defected regions where the inter-filament spacing is no longer
equal to the cross linkers’ length. We imagine that cross linker redistribution and defect
energies will be affected by the elastic compliance of the cross linkers. Previous studies of
the peeling of bead-spring models of filaments [19,20] and of semiflexible filaments [21]
bonded to substrates by cross linkers have demonstrated the importance of the cross linkers’
compliance on the unbinding dynamics. Based on these studies, we anticipate that the
inclusion of cross linker compliance may affect both the kinetics of defect motion and their
creation/annihilation rates. For example, sufficiently elastic cross linkers may remain in
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the core of the defects incurring a certain energy of deformation. This will clearly change
the defect energies. In fact, sufficiently compliant cross linkers may even allow for Euler
buckling of the bundle under compression. Lastly, we point out that we have assumed that
cross linkers are able to bind and unbind on short time scales, compared to the observation
time for both defect pair production and motion along the bundle. When investigating
bundle mechanics at sufficiently short time scales, one must consider the possibility that
the cross linker distribution is no longer in equilibrium with the bundle in its current stress
state. We leave these open questions to future work.
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