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Abstract: The paper discusses the possibility of using in situ generated hybrid polymer-polymer
nanocomposites as polymeric materials with triple shape memory, which, unlike conventional
polymer blends with triple shape memory, are characterized by fully separated phase transition
temperatures and strongest bonding between the polymer blends phase interfaces which are crit-
ical to the shape fixing and recovery. This was demonstrated using the three-component system
polylactide/polybutylene adipateterephthalate/cellulose nanofibers (PLA/PBAT/CNFs). The role
of in situ generated PBAT nanofibers and CNFs in the formation of efficient physical crosslinks at
PLA-PBAT, PLA-CNF and PBAT-CNF interfaces and the effect of CNFs on the PBAT fibrillation
and crystallization processes were elucidated. The in situ generated composites showed drastically
higher values of strain recovery ratios, strain fixity ratios, faster recovery rate and better mechanical
properties compared to the blend.

Keywords: biocomposites; smart material; interface/interphase; extrusion

1. Introduction

The use of biodegradable polymers in recent years has been increasing in a number
of industrial applications to prevent the accumulation of plastic waste. Biodegradable
polymers also show a wide range of relevant properties such as processability, versatility
and biocompatibility, among others, characteristics that are responsible for the increased
interest in the shape memory field [1–4]. Shape memory polymers (SMPs) could display
dual [5] or multi shape-changing behavior [6–8] from a “dormant” temporary shape to
permanent shape upon the application of an external stimulus like a change in temperature,
exposure to light, moisture, solvent and so on. In general, SMPs combine chemical or
physical crosslinks (net-points), which define the permanent domain, and the switching
(reversible) domains with right proportion, which are responsible for shape transitions.
The SMPs articles can be easily processed into complex forms by conventional methods,
such as injection molding, film casting, fiber spinning, profile extrusion, and foaming.
However, one main drawback of pure SMPs is their low strength and stiffness compared to
shape memory metal alloys. Moreover, they exhibit relatively low recovery stress which
is a limiting factor in many applications especially in cases where SMP articles should
overcome a large resisting stress during shape recovery.

Overcoming this problem can be achieved by mixing SMPs with various high strength
fillers (e.g., carbon nanotubes [9,10], nanoparticles [11,12] and discontinuous or continu-
ous fibers [13–15]). However, it has been observed that there is a compromise between
strength enhancement and recovery degree (strain recovery ratio) due to the effects of filler
size, much higher stiffness of fillers or potential infringement of the chemical or physical
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crosslinks especially at high filler loadings as well as poor interactions between the fillers
and the matrix and improper morphology of the fillers. To minimize these negative effects,
nanosized fillers with low loading content are commonly used.

An alternative way is the use of in situ generated microfibrillar or nanofibrillar
polymer-polymer composites (MFCs or NFCs, respectively) created by fibrillizing the
dispersed component of an immiscible polymer blend. The MFC process has been shown
to be successful for biodegradable polymer pairs, including PLA/PBS [16], TPU/PLA [17],
thermoplastic starch/PLA [18], PLA/PGA [19], PLA/PA [20,21], PLA/PHA [22] and
PCL/PHA [23], with properties such as modulus and strength increasing manifold when
compared with the neat matrix polymer. Compared to solid particle fillers or ready-made
polymer fibers, in situ generated polymer fibers demonstrate an excellent level of disper-
sion. The in situ fibrillated polymer is also characterized by higher specific interfacial
area than particle dispersed fillers. More interestingly, the formation of MFCs or NFCs
naturally leads to a cascade of three or more elastic modulus plateaus (depending on the
number of dispersed phases) of decreasing magnitude with increasing temperature, i.e.,
the ability to create thermally activated multi-SMPs. The resulting multi-SMPs display
at least two well-separated transitions, the glass/melting transition of the matrix and the
melting of the fibers, which are subsequently used for the fixing/recovery of temporary
shapes. Moreover, the large interfacial area intrinsic with in situ generated fiber/matrix
morphology greatly enhances interfacial interactions and may lead to better shape fixing
and recovery. It should be noted that at present, most of the created multi-SMPs based
on polymer blends or multiphase polymers [24–28] are characterized by a broad interval
of phase transitions, which adversely affects the degree of fixation of temporary shapes,
or have fully separated phase transition temperatures, but suffer from insufficient strong
bonding between the polymer blends phase interfaces which affects their low strain recov-
ery ratios. Moreover, the preparation of multiphase polymers often involves completely
different polymerization technologies and tedious chemical processes.

The in situ fibrillation method is cost-effective and potentially suitable for large-scale
production; it offers a much greater degree of design flexibility, since the two functional
components (matrix and fibers) can be separately tuned to achieve optimal control of prop-
erties. Despite this enormous potential, however, there is only one notable article on shape
memory elastomers reinforced by in situ PGA fibrillation, published by Wang et al. [29].
The efficiency of in situ fibrillation of the dispersed polymer phase depends on viscosity
and elasticity ratios [20] and can also be significantly increased due to the implementation
of shear-induced crystallization [30]. In this work, the effect of in situ poly(butylene adipate-
co-terephthalate) (PBAT) fibrillation on the shape-memory properties of PBAT/PLA blends
in a 90:10 ratio was investigated in terms of morphology, thermal and mechanical properties
in order to correlate it with the shape memory performance of the nanocomposites. Further-
more, the influence of the addition of cellulose nanofillers (CNFs) on the in situ fibrillation
and crystallization processes of the dispersed polymer phase as well as on the shape
memory properties (strain recovery ratio and strain fixity ratio) of the in situ generated
nanocomposites was investigated. The versatility of this new strategy lies in the possibility
to vary the number and combination of immiscible polymer components, thereby opening
the way for the development of triple or multiple (with more than two dispersed polymer
phases) SMPs.

2. Experimental
2.1. Materials

Commercial grade of PLA 4060D, supplied by NatureWorks LLC (Minnetonka, MN,
USA), with a density of 1.24 g cm−3, Mw of 120,000 g mol−1, and 18 mol.% of D-Lactide
content was used as the matrix. PBAT with the trade name Ecoflex type F Blend C1200
by BASF AG (Ludwigshafen am Rhein, Germany) was purchased and used in order to
reinforce the PLA. Cellulose nanofibers (CNFs) with diameters between 10 and 20 nm
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and lengths of 2 to 3 µm, obtained from Nanografi (Ankara, Turkey), were employed to
enhance the morphological evolution of PBAT droplets into fibers.

2.2. Sample Preparation

Blends and in situ generated nanocomposites of PLA/PBAT were prepared following
the procedure described earlier [31]. In situ generated nanocomposites were prepared by
shearing of blends to allow formation of nanofibers and their shear induced crystallization.
To avoid the degradation due to hydrolysis, PLA and PBAT were dried at 65 ◦C under
vacuum before extrusion. Melt blending was carried out in a co-rotating twin screw
extruder (2 × 20/40D EHP Zamak Mercator, Skawina Poland, with a ratio of screw length
to its diameter (L/D) of 40). Further blending was followed by extrusion of tapes using
single screw extruder (PlastiCorder PLV 151, Brabender, L/D = 25, Duisberg Germany)
equipped with the 12 mm wide, 0.8 mm thick and 100 mm long slit die. The extrudates
were cast on a transport belt at 25 ◦C. The extrudates in the form of tapes approximately
0.5 mm thick and 10 mm wide were obtained. The PBAT concentration was 10 wt.%. For
the preparation of reinforced composites, 3 and 7 wt.% of CNFs were mixed with PLA
and PBAT in the course of the twin-screw extruder where the temperature zones were set
increasingly from 135 ◦C to 160 ◦C. In situ conversion of blends was performed within a
single-screw extruder with a temperature gradient descended from 180 ◦C (feed section) to
115 ◦C (slit die). In the whole text, C and B stand for the composite and blend, respectively.
The numbers in parentheses indicate the concentration of CNFs.

2.3. Mechanical and Thermal Properties

Tensile properties of samples were measured in Instron-5582 (Universal Testing Ma-
chine, High Wycombe, UK) at a strain rate of 5% min−1. Specimens of the gauge length
of 25 mm and the width of 5 mm (ISO 527-2, type 1BA) were cut out from extruded tapes
using a steel template. At least seven specimens were tested for each sample at room tem-
perature (Td = 22 ◦C). The thermomechanical properties of rectangular films (dimensions
of 24 × 10 × 0.75 mm3) were characterized using a Q800 DMA (TA Instruments, New
Castle, DE, USA) at a heating rate of 2 ◦C min−1. The DMA studies were performed in a
multi-frequency-strain mode using single cantilever fixture with a clamp size of 17.5 mm,
strain set to 0.02 %. Thermal behavior of samples was probed with DSC Q20 differential
scanning calorimeter (TA Instruments) during heating from 0 to 150 ◦C with the rate of
10 ◦C min−1. Samples of the 7–8 mg mass were cut out from blends and composites and
crimped in standard Al pans. The DSC cell was purged with dry nitrogen during the
measurements (20 mL/min).

2.4. Scanning Electronic Microscopy (SEM)

The morphology of blends and in situ generated composites, cryogenically fractured
along the extrusion direction and coated with gold, was investigated with JEOL JSM-5500
LV scanning electron microscope (Tokyo, Japan).

2.5. Rheological Measurements

Rheological behavior of the materials was examined using a strain-controlled rota-
tional rheometer (ARES LS2, TA Instruments). Uniaxial extension tests of molten samples
were performed using extensional viscosity fixture (EVF, TA Instruments) attached to the
ARES rheometer. The 18 × 10 × 0.7 mm3 rectangular specimens were uniaxially extended
at 70 and 120 ◦C with a constant Hencky strain rate. The tensile stress growth coefficient as
a function of time at a given Hencky strain rate was measured. The tests for each material
were repeated at least eight times, and the results were averaged.

2.6. Shape Memory Properties

Thermally activated shape memory characterization of samples was conducted using
the same Q800 DMA instrument with the film tension clamp under controlled strain and
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controlled force modes. For dual memory shape studies, a strain deformation of 10% was
applied at 120 ◦C. The strain was held constant till the sample was cooled down to the
room temperature, then released. The sample was then heated back up to 65 or 120 ◦C
again, while the length recovery was monitored. In the case of triple memory shape studies,
a primary strain deformation of 10% was applied at 120 ◦C. The strain was then held
constant while the sample was cooled down to 65 ◦C, where second shape deformation was
applied to increase the strain from 10 to 25%. The strain was held constant until the sample
was cooled down to room temperature, and was then released. The sample was heated
back up to 65 ◦C to recover the shape in first step for 30 min. Later, the temperature was
increased to 120 ◦C. Table S1 (in the Supplementary Materials) represents the method Log
for dual-SME and triple-SME, containing the whole program set for shape memory studies.

To get a quantitative estimation of the thermally activated shape memory properties
of the materials, the strain fixity ratio Rf and the strain recovery ratio Rr were calculated. In
particular, Rf, the ability to fix the temporary shape, is the ratio of the fixed strain to the

total strain, as presented by the following equation: R f =
(

eun
emax

)
× 100%. Rr, the ability to

recover the initial shape, was taken as the ratio of the recovered strain to the total strain,
as given by the following equation: Rr =

( eun−e f in
emax

)
× 100%, where eun is the strain after

cooling and unloading, emax is the strain obtained before the constant loading was released,
and efin is the strain obtained after heating in the step of recovery.

3. Results and Discussion
3.1. Morphology

The morphology of PLA/PBAT blends and in situ generated composites reinforced
with CNFs was investigated by SEM analysis. The SEM images of the cryo-fractured
surface of PLA/PBAT blends and composites reinforced with 3 and 7 wt.% CNFs are
shown in Figure 1. It can be seen that the blends are characterized by a matrix-droplet
morphology (Figure 1a,b), while in situ generated composites have a fibril-matrix mor-
phology (Figure 1c,d). As the concentration of CNFs increases, the average size of PBAT
droplet inclusions decreases. In particular, the average particle size is 870 and 400 nm
for the blends containing 3 and 7 wt.% CNFs, respectively. It can be assumed that the
presence of CNFs prevents the aggregation of PBAT particles in the case of blends, thereby
increasing the interfacial interaction between PBAT and PLA. Most PBAT nanofibers are
in the range of 50–200 and 40–120 nm at 3 and 7 wt.% CNFs, respectively. The PBAT
nanofibrils also appear to exhibit very high aspect ratios. However, due to the high entan-
glement of the PBAT nanofibrils, it was not possible to measure their aspect ratios. In our
previous work [31], it was shown that the in situ formation of the PBAT nanofibrils takes
place in the region between the extruder screw and the extruder walls followed by their
immediate solidification by shear induced crystallization. The sizes of in situ generated
PBAT nanofibrils were 50–300 nm [31]. Comparative analysis of PBAT nanofibrils sizes
shows that the elongated shape of the CNFs improves the efficiency of the droplet to
fiber transition by further contributing to fiber elongation, thus causing the formation of
thinner PBAT nanofibers. It should be noted that the absence of visible aggregates of CNFs
indicates their relatively good dispersion.

In the case of immiscible polymers, the formation of a physically entangled network
can occur at the interfaces. To verify this assumption, the viscoelastic behavior of the
PLA/PBAT/CNFs blend and the in situ generated composites was investigated. Figure 2a

shows a time-dependence of the tensile stress growth coefficient η+E (t,
˙
ε) for PLA/PBAT and

PLA/PBAT/CNFs blend and composite at T = 70 ◦C recorded during uniaxial tension at

Hencky strain rate
˙
ε = 1 s−1. For PLA/PBAT blend, the monotonic stress growth coefficient,

η+E (t,
˙
ε), shows a typical poor performance during the elongation flow, i.e., predominantly

plastic flow. The tensile stress growth coefficient reaches the end of the plateau when the
chains are strongly stretched. At this plateau and beyond, the chains could start to slide
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past each other at the entanglement points, which leads to a yielding of the entanglement
network and the occurrence of a strain softening effect. The addition of 3 and 7 wt.%

of CNF to the blend increases the tensile stress growth coefficient η+E (t,
˙
ε) as shown in

Figure 2a.
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Figure 2. Time-dependence of tensile stress growth coefficient η+E (t,
˙
ε) for molten PLA/PBAT as well as PLA/PBAT/CNFs

blends and in situ generated composites. The shear tests were performed at temperatures 70 ◦C (a) and 120 ◦C (b). Curves
were shifted vertically for better visualization. C and B stand for the composite and blend, respectively. The numbers in
parentheses indicate the concentration of CNFs.

This is attributed to the increased elasticity and new load-bearing entanglements,
resulted from the presence of CNFs. In contrast to the blends, in situ generated PLA/PBAT
composite containing PBAT nanofibers and the same CNFs content shows more improved



Polymers 2021, 13, 1900 6 of 12

performance during uniaxial extensional deformation. The PBAT nanofibers form an
effective network of physical entanglements at the PLA-PBAT interface that deforms

during uniaxial extension and cause a stronger tendency for upward deviation of η+E (t,
˙
ε),

known as strain hardening. Strong strain hardening effects and increase in the elongational
viscosity is observed in the case of the composite with 7 wt.% of CNFs, which suggested the
greatest number of physical entanglements. Figure 2b depicts the time-dependence of η+E
(t,

˙
ε) for PLA/PBAT and PLA/PBAT/CNFs blend and composite at T = 120 ◦C and Hencky

strain rate
˙
ε = 1 s−1. CNFs also form a network of physical entanglements with PBAT

and PLA chains which is indicated by the hinderance of strain softening at the melting

point of PBAT for the composite with 3 wt.% of CNFs and a high growth rate of η+E (t,
˙
ε)

in the case of composite with 7 wt.% of CNFs. The formation of a more effective network
of physical entanglements at PLA/PBAT, PBAT/CNFs and PLA/CNFs interfaces in the
in situ generated composite compared to the blend is also confirmed by the DMA data
shown below.

3.2. Thermal and Dynamic Mechanical Analysis

The DMA curves of PLA/PBAT as well as PLA/PBAT/CNFs blend and composite
are presented in Figure 3. It is seen that the addition of CNFs leads to an increase in the
storage modulus E/ values for both blends and composites both in the range below Tg,PBAT
and above this temperature up to Tg,PLA (Figure 3a). However, the main contribution to
the change in the E/ values is made by the transition of the PBAT phase morphology from
droplets to fibrils. Besides, the absolute values of E/ for the composite with 7 wt.% CNFs in
the Tg,PLA region remain higher than those for the blend with 7 wt.% CNFs at temperatures
below Tg,PBAT.

Since it is known that even in the case of immiscible polymers, an interaction is
possible at the phase interface; the tan δ curves were analyzed. As shown in Figure 3b,c,
both blends and composites showed only one tan δ peak in the temperature range of
50–80 ◦C and the values at tan δ, and thus, the internal friction changed with changes
in the PBAT phase morphology. This may be attributed to the physical crosslinking
of PLA and PBAT molecular chains at two-phase interfaces. The PBAT phase in the
form of nanofibrils, compared to nanodroplets, forms a network with a larger number
of physical entanglements with PLA. This can limit the viscous flow of PLA molecular
chains more effectively. The values of the maximum tan δ also decrease with increasing
CNFs concentration, indicating the formation of physical entanglements at the PLA—
CNFs interfaces.

Similar behavior with variation of CNFs concentration and PBAT morphology was
observed for tan δ in the temperature range of −40–0 ◦C, which characterizes the PBAT
phase (Figure 3d). This indicated that the physical crosslinking at the PLA-PBAT and
PBAT-CNFs interfaces was also stable and can effectively limit the viscous flow of the PBAT
molecular chains. A comparative analysis of the DMA curves shows that more effective
physical crosslinking networks are formed at the interphases of a composite than at a blend,
which suggests higher SME parameters, such as strain recovery and strain-fixation ratio. A
critical role of physical crosslinking at the phase interfaces in shape recovery has also been
reported in other studies [32,33].

The introduction of CNFs leads to an increase in the glass transition temperatures
of PLA and PBAT. The greatest effect is achieved at 7 wt.% CNFs and is 2–4 and 8–10 ◦C
for Tg,PLA and Tg,PBAT, respectively. Since PLA is a reversible phase, knowledge of its
exact glass transition temperature in the formed blends and composites is required when
programming the SME. In addition, information on the melting and crystallization tem-
peratures of PBAT and information on the amount of crystalline PBAT phase, which plays
the role of both reversible and fixed domains, is required for programming the SME.
Figure 4 shows DSC curves for the PLA/PBAT/CNFs blends and composites after heating
and subsequent cooling cycles. It can be seen that the addition of CNFs does not lead
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to a significant change in the melting temperature and degree of crystallinity of PBAT
(Figure 4a). At the same time, the presence of CNFs contributes to a significant increase in
the crystallization temperature of PBAT from 53 ◦C to 85–87 ◦C, depending on the content
of CNFs (Figure 4b).
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Since the glass transition of PLA takes place at 62–65 ◦C, it was very important for
the programming of triple shape memory effect (triple-SME) that the PBAT crystallization
process is completed prior to the glass-to-rubber transition of PLA. Thus, the second
temporal shape (deformed PLA network) will be programmed at temperatures where the
crystalline phase of PBAT, which is responsible for the formation of the temporary PBAT
network, is fully crystallized. Otherwise, the programming of the second temporal shape
was accompanied by a partial recovering of the first temporal shape. It should also be
noted that maintaining the amount of PBAT crystalline phase in blends and composites
while adding CNFs helped to maintain the required amount of switching domains for the
first temporal shape.
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3.3. Thermoresponsive Shape Memory Performance

The SME tests were conducted in three stages. In the first stage, a dual shape memory
effect (dual-SME) at the temperature Tg,PLA was programmed to determine the character-
istics of the processes for fixing the temporary and recovering the original shape for the
blends and composites (Figure 5). In the second stage, the dual-SME was programmed at
the temperature Tm,PBAT (Figure 6). In the third stage, the possibility of programming the
triple-SME was investigated (Figure 7). It is revealed that the shape recovery of blends, in
the case of dual-SME at the temperature Tg,PLA, is incomplete with Rr of 29 and 32% for
3wt.% and 7wt.% CNFs, respectively. At the same time, significantly higher Rr values are
achieved for composites, namely, 42% for a composite containing 3wt.% CNFs and 85% for
a composite with 7wt.% CNFs.
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The differences are related to the characteristics of the morphology of the minor PBAT
phase and the content of the CNFs. In the case of droplet matrix morphology, a weak
network of physical entanglements is likely formed at the interfaces of PLA-PBAT and
PLA-CNFs. As a result, PLA chains slip during the formation of a temporary shape and are
not able to effectively recover their original shape during subsequent heating. An increase
in CNF concentration leads to more entanglements at the PLA-CNF interface but does not
change the number of physical entanglements at the PLA-PBAT interface. This leads only
to a partial improvement in SME properties. In composite, the PBAT nanofibers form an
effective network of physical entanglements at the PLA-PBAT interface, which leads to the
achievement of higher Rr values. The presence of CNFs causes the formation of longer
and thinner PBAT nanofibers, which are capable of forming a more developed network
of physical entanglements, which significantly increases the recovery rate, especially in a
composite with 7 wt.% CNFs.

Dual-SME at the temperature Tm,PBAT has its own features. No shape recovery is
observed in blends and composites with a low content of CNFs (3 wt.%) (shown in Supple-
mentary Material), which is probably due to the low density of physical entanglements at
the PBAT-CNFs interface. Increasing the CNF content to 7wt.% leads to the formation of
effective physical entanglements between PBAT and CNFs and to an improvement in SME
properties. The change in PBAT morphology from droplet to fibrillar leads to higher Rr
values (Figure 6). It should be noted that in contrast to the dual-SME at temperature Tg, PLA,
in the case of the dual-SME at temperature Tm, PBAT, the change in PBAT morphology
also leads to a significant difference in the time of shape recovery tr. In the case of the
PLA/PBAT/7 wt.% CNFs blend, complete shape recovery is achieved within 15 min, while
in the case of PLA/PBAT/7 wt.% CNF—4 min.

Based on the above data for dual-SME at the temperatures Tg,PLA and Tm,PBAT, triple-
SME was programmed for a blend and composite with 7 wt.% CNFs (Figure 7). It can be
seen that both the blend and the composite show good fixation of the temporary shapes and
their subsequent recovery to the original shape. However, the in situ generated composite



Polymers 2021, 13, 1900 10 of 12

showed a significantly higher thermoresponsive SME than the blend during the shape
memory cycle.

3.4. Thermoresponsive SME Mechanism of PLA/PBAT/CNF Systems

Based on the above analysis, the thermoresponsive SME mechanism of PLA/PBAT/CNFs
blend and in situ generated composite was proposed. In these systems the PLA phase is
the first reversible phase, the crystalline PBAT phase is the second reversible phase, while
PBAT below Tm and CNFs are the fixed phases to maintain the temporary PLA phase and
CNFs to maintain the temporary PBAT phase. In fact, physical crosslinking at the PLA-
PBAT, PLA-CNF, and PBAT-CNF interfaces maintains temporary phases by restricting the
irreversible sliding of PLA and PBAT chains during the shape memory cycle. Accordingly,
the first deformation temperature (Td1) should be higher than Tm,PBAT and the first fixation
temperature (Tf1) should be between Tg,PLA and Tc,PBAT, while the second deformation
temperature (Td2) should be the glass transition temperature of PLA. The second fixation
temperature (Tf2) should be the temperature below Tg,PLA (e.g., room temperature). In SME
programming, PBAT crystals are first melted at Td1 and the temporary network is formed
by the viscous flow of the PBAT molecular chains under external stresses. When the tem-
perature has cooled down to Tf1, the first temporary shape is fixed by rapid crystallization
of the reversible phase PBAT even without external stress. The presence of CNFs causes
the crystallization of PBAT phase at a temperature higher than the Tg of PLA. The first
temporary shape is maintained by the permanent network of CNFs. Then, the temperature
is lowered to Tg,PLA so that a temporary PLA network can be formed. At the same time,
PBAT and CNFs act as physical nodes for this network. During the subsequent heating,
first the PLA and then the PBAT chains regain mobility and release the stress stored in the
temporary networks, thus restoring the original shape. It should be noted that the presence
of CNFs as well as the morphology of the minor polymer phase determine the density of
the physical entanglements and thus influence the properties of the SME.

3.5. Mechanical Properties

As polymer materials with SME must have high mechanical properties from a practical
point of view, this aspect was also investigated. It is known that the creation of a network
of flexible polymer nanofibers in a brittle polymer matrix can lead to a simultaneous
increase in their strength and plasticity [31]. Table 1 shows the values of modulus of
elasticity E, yield stress σy, tensile strength σb and strain at break εb for PLA/PBAT and for
PLA/PBAT/CNFs blends and composites. It can be seen that in the case of composite, a
simultaneous increase in strength properties and strain at break can be achieved, whereas
in the case of a blend, an increase in plasticity is accompanied by a decrease in strength. The
introduction of CNFs leads to an increase in modulus of elasticity, yield stress and tensile
strength in both blends and composites. However, unlike PLA/PBAT/CNFs blends, which
are highly embrittled, PLA/PBAT/CNFs composites retain a sufficiently high degree of
plasticity. Together with the high SME properties, this allows in situ generated composites
to be considered as effective polymer materials with triple shape memory.

Table 1. Mechanical properties of PLA/PBAT/CNFs blends and composites.

Material CNFs,
wt.%

Modulus of Elasticity
(GPa)

Yield Stress
(MPa)

Stress at Break
(MPa)

Strain at
Break (%)

Blend
0 1.64 ± 0.12 41.6 ± 1.4 51.2 ± 1.4 136.2 ± 11.1
3 1.85 ± 0.09 42.2 ± 1.3 55.0 ± 0.6 12.1 ± 2.4
7 2.28 ± 0.10 45.0 ± 1.6 56.7 ± 1.5 8.8 ± 2.0

Composite
0 2.35 ± 0.12 44.8 ± 2.1 66.7 ± 3.3 185.2 ± 9.0
3 2.60 ± 0.13 47.2 ± 1.5 60.1 ± 3.3 24.5 ± 3.4
7 2.92 ± 0.12 50.0 ± 1.6 62.7 ± 2.2 38.4 ± 2.9

Neat PLA: E = 2.04 + 0.09 GPa, σb = 43.0 ± 1.7 MPa, εb = 7.0 + 1.0%.
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4. Conclusions

The concept of in situ generation of polymer-polymer nanocomposites was applied
to the production of triple SMPs. A green hybrid blend PLA/PBAT/CNFs was chosen as
the initial polymer system. The in situ fibrillation of the dispersed PBAT component led to
the formation of more effective physical entanglements at the PLA-PBAT and PBAT-CNF
interfaces due to their higher specific interfacial area compared to droplet dispersed fillers,
playing the role of physical cross-links (net-points). The introduction of CNFs promoted
more efficient conversion of the PBAT phase from droplets to fibers and, as a consequence,
the formation of thinner and longer PBAT nanofibers, which caused stronger interaction
at the PLA-PBAT and PBAT-CNF interfaces. At a CNF concentration of 7 wt.%, physical
entanglements were formed at the PBAT-CNF interface, which allowed the shape memory
effect to be realized at Tm,PBAT. Moreover, the presence of CNFs caused a significant
increase in the crystallization temperature of PBAT by 30 ◦C, which allowed to separate the
processes of programming temporary shapes associated with the crystallization of PBAT
and the glass-rubber transition of PLA. The advantages of the composites compared to
blends, such as increased strength and stiffness of the polymer inclusions; the presence of
physical entanglements at the interfaces and improved interfacial compatibility resulting
from a larger specific contact area between the phases contributed to the formation of a
better shape memory performance (strain recovery, strain fixity rates, recovery rate) and a
better complex of mechanical properties (modulus, yield stress, strain at break). In addition,
better shape memory properties of in situ produced composites were achieved without
deterioration of the mechanical properties. It should be noted that the inherent versatility
of this concept allows an unprecedented degree of design flexibility for functional triple- or
even multi-shape memory polymers and systems.
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.3390/polym13121900/s1, Figure S1: Temperature and strain of PLA/PBAT/CNFs blends (a) and
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Table S1. The method Log for dual-SME and triple-SME.
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