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2. Method 

 

2.1 Ab-initio calculations 

The geometry optimization of structures, adsorption energies, and action radius were 

performed with Gaussian 16 software [1]. DFT calculations were made with the 

generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation framework [2]. Due the predominant interactions between the 

polymer molecules with the graphene are the non-covalents ones, it is necessary 

incorporated an empirical dispersion correction with the Grimme’s method (D3-BJ) 

[3]. The total energy, with the empirical dispersion is EPBE-D=EPBE + Edisp. The empirical 

dispersion correction is given by Edisp=E(2)+E(3). Where E(2) is given by: 
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The parameter Cij6 is the dispersion coefficient wich represent the quantum 

interaction between the pair of atoms ij, Rij is the distance between those atoms, s6=1 

and represents the global scaling factor of the dispersal correction. Then in the D3-BJ 

is introduced a damping function: 
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Rrj is the sum of the atomic van der Waals radii of each atom, d=20 is the depth of the 

potential of the damping function, Rrj0 is the distance at the equilibrium 

configuration. With the dampinf function, the E(3) energy is: 
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The linear dependent parameter γ depends of the angles between Rij, Rjk, and Rki, the 

coeficient C9ABC are called the ternary dispersion coefficients and it is obtained by the 

modified Casimir-Polder integral [4]: 
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Also, the damping function is: 
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which is finite when ,0→abR and s8=0.7875 for PBE. 

 

2.2. Stochastic simulation 

The stochastic simulation is made to emulate the experimental situation as accurately 

as possible. The simulation is made in three parts; The deposition process of the 

graphene nanoparticles on the polymer; The accumulation process, and finally, the 

electronic transport in the nanocomposite is modeling. All the details of the 

simulation are explained below. 

 

2.2.1. Deposition Proccess 

We used a Metropolis Monte-Carlo model to simulate the random deposition of 

the graphene nanoparticles over the polymer matrix within a specific percentage of 



graphene included in the polymer. The implementation of this model consists of three 

subparts: a first-neighbours function, the introduction of a training period, and a 

condition to generate the random deposition of graphene. 

The modeling was made over an nxm matrix simulating the polymer. We moved 

over each cell of the matrix, analyzing its first neighbors; if none of them have 

graphene nanoparticles, the probability of having (or not) graphene nanoparticles are: 

P(xi,j has nanoparticles) = p, 

P(xi,j does not has nanoparticles) = 1 - p. 

Where p is the probability to find the nanoparticles. If a first neighbour has a 

graphene nanoparticle, the probability changes as:  

P(xi,j has nanoparticles) = p (1+q), 

P(xi,j does not has nanoparticles) = 1 - p(1+q). 

The procedure is repeated until the matrix is completely covered. The parameters 

p and q depend entirely on the material and are between 0 < p < 1 and 0 < q < 1/p-1. The 

cells at the edge of the matrix have a bias since they have fewer first neighbours than 

the inner counterparts. To solve this, we introduce a period for training or annealing, 

which consists of adding as many rows and columns as necessary so that the cells that 

are on the edges on the original matrix are inner cells in the extended matrix. Once the 

graphene deposition process is finished, we eliminate the extra rows and columns. In 

this way, it is forced to have a homogeneous deposition process. 

 

2.2.2. The graphene-clustering process 

 

It is well known that the deposition process may produce clustered particles over 

the substrate. In particular, the graphene nanoparticles in a polymer tends to make 

clusters or fragments that fit together, forming a two-dimensional coverage. In the 

previous procedure, we could get a small concentration of graphene particles or even 

an isolated one. Thus, we establish a minimum number of connected graphene 

particles to be considered a cluster. 



We set two initial integer values, one to count the number of clusters to be created 

(k), the second value represents the minimal number of elements needed to form a 

cluster (N). We then proceed to create a new matrix with the coordinates of each cell 

obtained by the previous step. This new matrix is often called the coordinates matrix 

(CM). 

In general, the algorithm used to produce the cluster is displayed as: 

 

1. It takes an initial element of CM (x0) and evaluates if there is graphene or not in 

the cell. If it does not have graphene, then it goes on to the next cell. Otherwise, 

the coordinates of the present cell x0 will be saved in CM. 

2. Each time there is a new cell in CM, it evaluates the first neighbors around it and 

repeat step 1. 

3. If the number of elements added to the CM is equal or greater than N, then it 

creates a cluster k with the elements added in this process and increases the 

counter k by one. Otherwise, it deletes them from the CM matrix and sets them as 

a non-graphene cell in the matrix. 

4. Finally, it moves on to the next cell. By the end of this iterative process, we obtain 

a CM matrix whose elements contain graphene and have been clustered. 

 

2.2.3 Transmission probabilities 

 

We take a sample of 5% of columns from the beginning and the end of the CM 

matrix. Those clusters have at least one element within the initial limit taken as initial 

states, defining the initial probability vector (n). These initial states are assigned a 

uniform probability of an electron starting there. Then, we defined the intensity 

matrix (M) as a function of the Euclidean distance between clusters and each 

nanocomposite potential. The interaction potential (uij) between the i-th and the j-th 

clusters was expressed as an expansion of the van der Walls interaction potential 

proposed by Hamaker [5]. The interaction potential was tested with several terms of 

different nature (other terms of the power series as ≈ R-6, R-8, and R-12) [6]. In the end, 

we saw that the systems were described appropriately in terms of quantum nature. In 



particular, a term of long-range and another of short-range nature [7] form the 

potential 
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where dist(i,j) is the minimal distance between clusters and the parameter R is entirely 

determined by the nanocomposite and represents the action radius of each term of the 

power law of the uij. I(a≤b) represents the indicator function and is defined as: 
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We denote the intensity matrix (M) as: 
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It should be noted that M is a superior triangular matrix, so the allowed 

movements are to the right and upwards, which corresponds to the Last-passenger 

simulation. The absorption state vector (t) is defined as the probability of transporting 

those clusters, which are in the last 5% of the matrix. The inversion of the submatrix of 

M without the absorption state vectors is the Green matrix of the system [8], which 

allows us to calculate the transition rate. 

In stochastic theory, the transition rate is defined as the probability to pass from 

the i-th to the j-th cluster. Meanwhile, in electronic transport theory, the sub-intensity 

matrix is called the Transmission matrix. In particular, in phase-type distribution 

theory, the sub-intensity matrix is defined from M and U = (-T)-1 , where U is the 

expected value in state j prior to absorption given initiation in state i [8]. Now, we 

calculate the value of the heaviest trajectories (i.e., the cumulative probability) in U. 

We repeat this procedure 50,000 times and the output data is the saturation of the 



simulated polymer. In the supplementary material, it is shown how the stochastic 

simulation occurs.  
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