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Abstract: Fused filament fabrication (FFF) has numerous process parameters that influence the
mechanical strength of parts. Hence, many optimization studies are performed using conventional
tools and algorithms. Although studies have also been performed using advanced algorithms,
limited research has been reported in which variants of the naked mole-rat algorithm (NMRA)
are implemented for solving the optimization issues of manufacturing processes. This study was
performed to scrutinize optimum parameters and their levels to attain maximum impact strength,
flexural strength and tensile strength based on five different FFF process parameters. The algorithm
yielded better results than other studies and successfully achieved a maximum response, which may
be helpful to enhance the mechanical strength of FFF parts. The study opens a plethora of research
prospects for implementing NMRA in manufacturing. Moreover, the findings may help identify
critical parametric levels for the fabrication of customized products at the commercial level and help
to attain the objectives of Industry 4.0.

Keywords: fused-filament fabrication; mechanical strength; naked mole-rat algorithm; optimization;
process parameters

1. Introduction

In the last few decades, the manufacturing sector has witnessed a paradigm shift from
conventional to advanced manufacturing techniques in both developed and developing
nations. Another breakthrough was achieved by researchers after developing additive
manufacturing (AM) technologies, which is gradually taking the present industry into
the era of Industry 4.0 [1]. The ever-increasing demand for good quality and customized
products at lower cost has brought additive manufacturing technologies into the limelight.
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AM primarily solves the problem of long delay periods between customer demands and
product development. During new product development, conventionally, it must pass
through many stages, which are eliminated in AM, even for complex parts [2]. This
technology used digital fabrication methods where the computer-generated design of the
required product is created through a layer-by-layer manufacturing technique. There is
no requirement for jigs, fixtures, dies and other tools for processing. Researchers have
even successfully developed multiple valve attachments for ventilators during emergency
conditions, such as pandemic occurred in 2020 [3]. Thus, the rapid delivery of high-quality
customized products while maintaining minimum cost is the reason for the supremacy of
these techniques.

Fused-filament fabrication (FFF) is the most popular AM technology, which works on
the principle of layer-by-layer manufacturing as designated by ASTM [4]. This technology
can transfer conceptual digital drawing into an actual product within a few hours using a
wide range of polymers and polymer composite filaments as raw material. The fiber and
particle-reinforced composites find vast applications in the areas of medicine, aerospace,
automobile and electronics [5,6]. Moreover, carbon-reinforced composites fabricated using
FFF are more cost-efficient than powdered alloys used in metal printers [7]. Due to
its material flexibility, easy transportation, minimal environmental degradation, lower
installation and material cost [8], researchers have used it extensively while developing
smart materials, metamaterials, implants, and other biomaterials for medical applications.
Medical 3D printing is gaining popularity as customized anatomical models are prepared
with higher accuracy and minimum lead time [9]. The inclusion of materials with sensing
capabilities in 3D printing has realized the dream of producing smart materials [10]. FFF
uses two-dimensional motion (X- and Y-direction) of heated extrusion nozzle, moved by
stepper motors and controlled by a microprocessor. The feedstock filament is passed by
rotating rollers into the extrusion nozzle, which heats it slightly lower than the melting
point, as shown in Figure 1. This semi-molten polymer bead is deposited on the build
platform; after one layer is deposited, the build platform moves downward (Z-direction),
and the next layer of materials is deposited. The motion of the nozzle and build platform
are synchronized by the microprocessor according to the product design [11]. The part
is immediately cooled and cleaned after completion, after which it can be used for the
desired application.
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Despite advantages, FFF has certain process limitations like poor surface finish and
mechanical strength than injection molding [12]. The surface finish can be enhanced by
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postprocessing methods, including mechanical finishing, chemical finishing and vapor
smoothing. However, there is no method available, which can improve the mechanical
strength of FFF parts. This aspect limits the usability of these components for certain
applications where flexural strength, compressive strength and tensile strength are manda-
tory [13]. On the contrary to postprocessing, the FFF part shows significant variation
in mechanical stability while manufactured at different conditions. There are numerous
studies, which have found that process parameters like layer thickness, raster angle, build
temperature, orientation angle, infill density, infill pattern and layer gap have a significant
impact on the mechanical stability of FFF parts [14,15]. As a general notion, the filament
layers deposited in the direction of tensile force and compressive force results in higher
mechanical strength [11]. Honeycomb structure with 100% infill density has yielded max-
imum tensile strength, as reported by Fernandez-Vicente et al. [16]. However, complex
issues arise when estimating strength is done for intricate designs manufactured using
different build strategies. In addition to conventional optimization techniques, researchers
have utilized advanced algorithms to identify optimum parameter settings to attain higher
mechanical stability. Section 2 presents different optimization algorithms used for mechan-
ical strength enhancement of FFF parts. Afterward, in Sections 3 and 4, the novel naked
mole-rat algorithm (NMRA) and its variants are discussed. Section 5 elaborates the case
study performed to test the performance of advanced algorithms followed by simulation
results and discussion in Section 6.

2. Literature Review

Most of the studies, which reported using advanced algorithms for the FFF process
were performed to enhance surface finish and mechanical strength of parts by optimizing
various process parameters. Initially, conventional techniques were used for optimizing
tensile strength based on orientation angle. At the same time, results were compared with
finite element analysis (FEA) data. The simulated results were in strong correlation with
experimental data, thus validating the FEA model. The maximum tensile strength has
occurred at a 45◦ orientation angle [17]. Panda et al. [18] studied the impact of several
process parameters of FFF-like layer thickness, raster width, raster angle, orientation,
and air gap on tensile strength, flexural strength and impact strength of standard test
samples. Experiments were carried out, and bacterial foraging technique was implemented
after ANOVA tests. This advanced optimization technique was robust enough to predict
the response for parameters outside the range of mathematical models formulated by
experimental data.

Rayegani and Onwubolu [19] proposed a relation between input parameters of FFF
with tensile strength using the hybrid group method of data handling. The raster angle,
air gap, orientation angle, and raster width varied during experimentation. Results were
compared with modeled data, which showed a strong correlation between experimental
and predicted tensile strength. Goudswaard et al. [20] tested and compared the efficacy
of evolutionary algorithm, particle swarm optimization and Simulated Annealing during
optimizing tensile strength of FFF parts. It was clear that particle swarm optimization
outclassed both evolutionary and simulated annealing algorithms in quality and consis-
tency. Liu et al. [13] solved the problems of the anisotropic behavior of FFF materials using
hybrid deposition path planning and topology optimization technique. The anisotropy is
induced by tool paths generated during the slicing of part, which results in the variation of
mechanical properties in different loading directions. The hybrid tool path was developed
using the techniques above, which performed better than regular infill strategies, such
as crisscross and contour offset. The simulated results were compared with actual parts
fabricated using a new algorithm, which validated its efficacy.

Genetic programming technique [1] was used for optimizing fatigue behavior of FFF
parts considering six input parameters with three levels of each. Contour number was
found to be a significant parameter than the other five. At the same time, genetic program-
ming outperformed response surface methodology during the prediction of fatigue.
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The artificial neural networks technique was successfully implemented to enhance the
creep behaviors of FFF parts after investigating the impact of five input parameters [21].
The best creep compliance occurred at 0.127 mm layer thickness, zero raster angle and
air gap, 17.188◦ deposition angle, 0.4572 mm width with 10 contours. ANN emerged
as the most popular optimization tool for manufacturing processes. It can be applied to
nonlinear and multitudinous cases, which was validated by this study. Raju et al. [22]
utilized hybrid particle swarm and bacterial foraging techniques for four FFF process
parameter optimization while studying their impact on hardness, mechanical strength and
surface finish of test samples. Compared to conventional optimization tools, the hybrid
tool yielded a 7.44% higher response in all the output parameters. Moreover, this tool
also performed better than the other algorithms like conventional particle swarm and
bacterial foraging. Rao and Rai [23] solved the single and multiobjective optimization
issues of FFF using simple and non-dominated TLBO techniques, respectively. Five case
studies were discussed with different objective functions and parameter bounds. The
response parameters, such as compressive strength, sliding wear, flexural strength, impact
strength and tensile strength, were investigated using advanced optimization tools. All
the mathematical models were created by previous researchers during experimentations,
which were employed as input to study and compare the performance of the optimization
tools, which proves highly efficient than previous results.

Malviya and Desai [24] coupled two techniques, i.e., artificial neural networks and
Bayesian algorithm, to optimize orientation angle. A significant impact on tensile strength
parameters was experienced. The proposed methodology has successfully achieved desired
goals despite the anisotropic behavior of FFF parts. Yadav et al. [25] discussed the impact
of infill density, material density and nozzle temperature on the tensile strength of FFF
parts manufactured by different materials. They used a hybrid genetic algorithm-artificial
neural network technique for the optimization. The experimental data showed strong
similarity with predicted results with an error of less than 3%, thus validating the efficiency
of the hybrid algorithm. Natarajan et al. [26] used a Non-dominated sorting modified
TLBO for conventional machining processes. The impact of four input parameters was
studied during the machining of polytetrafluoroethylene with a cemented carbide tool.
This algorithm performed better than the other six algorithms by yielding more uniform
results and non-dominated solutions. While comparing predicted and experimental results,
only 3.7% error was observed while validating the efficacy of this tool. Some researchers
also used different algorithms to solve a single objective function to compare and identify
the most efficient algorithm. Saad et al. [27] tested four different algorithms for minimizing
the surface roughness of FFF parts. The symbiotic organism search algorithms were most
effective as minimum surface roughness was predicted at optimum parameter settings,
further validated by experimental results.

Another research reported using the firefly algorithm to optimize the wear rate of
copper-plated FFF parts. The mathematical model was designed based on the raster angle,
air gap, voltage and time to predict the wear rate [28]. A Multicriteria genetic algorithm
was utilized by Pandey et al. [2] to predict optimum orientation angle against two objective
functions, i.e., build time and surface roughness. The algorithm was robust enough to
predict the surface roughness and build time for parts of any geometry.

The research, development and testing of the efficacy of new algorithms is a never-
ending process as advanced versions of algorithms are rapidly developed by researchers.
This study focuses on optimizing process parameters of FFF to attain maximum mechanical
strength using NMRA [29] and its variants, which are discussed in the next section.

3. Naked Mole-Rat Algorithm Variants

Researchers are motivated by the behavioral characteristics of naked mole rats (NMRs)
to design an optimization technique termed NMRA [29]. The algorithm reproduces the
natural mating patterns of NMRs for designing algorithms. NMRs are classified into two
types, i.e., breeders and worker NMRs. The breeders are the most efficient NMRs in the
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group, and these are only intended for mating with the queen. Workers are doing the
additional tasks, and the best performing workers will move on to the breeding group. The
best executor of the breeder’s pool will be the queen’s mating partner.

There are three steps to the algorithm. The NMR group is initially created, and the
NMR group is then divided into employees and breeders. The group of breeders is selected
based on the probability of breeding. The NMRA steps are as follows:

3.1. Initialization

Initially, n NMRs are generated at random. The D-dimensional vector space is repre-
sented by each NMR in the range of [1, 2, . . . . . . , n]. Each NMR shall be initialized as

NMRi,j = NMRmin,j + U(0, 1)×
(

NMRmin,j − NMRmax,j
)

(1)

where i ∈ [1, 2, . . . . . . , n], j ∈ [1, 2, . . . . . . , D], and U(0, 1) is a uniform random number.
After initialization, the objective function and fitness values are determined, and breeders
(B) and workers (W) based on their fitness function and the best solution d is selected.

3.2. Worker Phase

To switch to the breeder group and to get a chance to mate with the queen, each
worker tries to improve his fitness. The new fitness value of NMR is calculated, and the
updated solution is selected and recorded if the fitness is better than the previous one. The
previous solution will otherwise be chosen.

The equation used to generate the updated solution is as follows:

wt+1
i = wt

i + λ
(

wt
j − wt

k

)
(2)

where ith worker is represented by wt
i in the tth iteration. The random solution (jth and

kth worker) chosen from the worker’s group is wt
j and wt

k. wt+1
i represents a new fitness

solution. A uniform distribution ranges from [0, 1] provides the value of λ.

3.3. Breeder Phase

The breeder needs to update the NMRs to be chosen as their partner or to remain a
breeder. The breeder’s NMRs are updated with the best d overall reproductive probability
(bp). This bp is a random [0, 1] number. If breeders do not update fitness, they may be
removed from the worker’s pool:

bt+1
i = (1− λ)bt

i + λ
(
d− bt

i
)

(3)

where in tth iteration bt
i represents ith breeder, λ controls the mating frequency and assists

in the next iteration in identifying a new breeder bt+1
i . At first, bp is set to 0.5 for breeders.

The entire search process is repeated iteratively until the termination criteria is satisfied.
Consequently, the best breeder chosen from the whole population is the possible solution
to the problem under study.

Because of its linear nature, NMRA has recently gained interest among researchers.
The revised NMRA improves performance by improving both its basic exploitation and
exploration capabilities. The elite opposition-based learning (EOBL) strategy [30] improves
the exploration of basic NMRA. Exploitation is improved by local neighborhood search
(LNS) with information on the best solution to date in the small neighborhood of the
solution [25]. The following are the main changes:

3.3.1. NMRA Version 1.0

NMRV 1.0 has improved NMRA’s exploration capabilities through implementing the
EOBL Strategy [30]. The opposition-based NMRA, also called NMRV 1.0, Algorithm 2
detailed the pseudocode of NMRV 1.0.
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Algorithm 1 Pseudocode of NMRA

Input: Define objective function f (NMR), NMR = (NMR1, NMR2, . . ., NMRD)
Output: Identify current best solution d;
Initialization: Initialize NMRs: n, breeders B: n/5, workers W: B − n

Describe breeding probability: bp
while iterations < itmax

for i = 1: w
wt+1

i = wt
i + λ

(
wt

j −wt
k

)
evaluate wt+1

i
end for

for i = 1: B
if rand > bp

bt+1
i = (1− λ)bt

i + λ
(
d− bt

i
)

end if
evaluate bt+1

i
end for
combine the updated breeder and worker population
estimate the NMRs
update the overall best d
update iteration count
end while
update final best d
end

Algorithm 2 Pseudocode of NMRV 1.0

Input: Define objective function f (NMR), NMR = (NMR1, NMR2, . . ., NMRD)
Output: Identify current best solution d;
Initialization: Initialize NMRs: n, breeders B: n/5, workers W: B − n

Describe breeding probability: bp
Update the current population with EOBL;

while iterations < itmax
for i = 1: w

wt+1
i = wt

i + λ
(

wt
j −wt

k

)
evaluate wt+1

i
end for

for i = 1: B
if rand > bp

bt+1
i = (1− λ)bt

i + λ
(
d− bt

i
)

end if
evaluate bt+1

i
end for
combine the updated breeder and worker population
estimate the NMRs
update the overall best d
update iteration count
end while
update final best d
end

3.3.2. NMRA Version 2.0

The local neighborhood search (LNS) model has been employed [30] to enhance the
exploitation capacity of NMRA. In the basic NMRA, workers change their position during
the employee phase according to local information and their past experience. The new
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best solution is restructured with LNS in the upgraded NMRA version 2.0, and the worker
phase is updated as a solution:

Lt
i = wt

i + u ∗
(
wn_opt − wt

i
)
+ v ∗

(
wt

p − wt
q

)
(4)

where wn_opt is the best solution in the neighborhood of wt
i and u, v ∈ rand() are the scaling

factors, and p, q ∈ [i − r, i + r] (p 6= q 6= i) neighborhood. The updated solution using LNS
in the worker phase is given by:

wt+1
i = Lt

i + λ
(

wt
j − wt

k

)
(5)

where λ ∈ rand( ) is a scaling factor, Lt
i is the LNS updated best solution. The pseudocode

of NMRV 2.0, i.e., LNS-based NMRA, is shown in Algorithm 3.

Algorithm 3 Pseudocode of NMRV 2.0

Input: Define objective function f (NMR), NMR = (NMR1, NMR2, . . ., NMRD)
Output: Identify current best solution d;
Initialization: Initialize NMRs: n, breeders B: n/5, workers W: B − n

Describe breeding probability: bp
while iterations < itmax

for i = 1: w
Lt

i = wt
i + u ∗

(
wn_opt −wt

i
)
+ v ∗

(
wt

p −wt
q

)
wt+1

i = Lt
i + λ

(
wt

j −wt
k

)
evaluate wt+1

i
end for

for i = 1: B
if rand > bp
bt+1

i = (1− λ)bt
i + λ

(
d− bt

i
)

end if
evaluate bt+1

i
end for
combine the updated breeder and worker population
estimate the NMRs
update the overall best d
update iteration count
end while
update final best d
end

3.3.3. NMRA Version 3.0

NMRA version 3.0 has two modifications in basic NMRA to balance the exploitation
and exploration capacity [30]. First, the exploration tendency is improved by the EOBL
strategy. Second, the exploitation capability is improved by LNS. The pseudocode of
NMRV 3.0 is given in Algorithm 4.
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Algorithm 4 Pseudocode of NMRV 3.0

Input: Define objective function f (NMR), NMR = (NMR1, NMR2, . . ., NMRD)
Output: Identify current best solution d;
Initialization: Initialize NMRs: n, breeders B: n/5, workers W: B − n

Describe breeding probability: bp
Update the current population with EOBL;

while iterations < itmax
for i = 1: w

Lt
i = wt

i + u ∗
(
wn_opt −wt

i
)
+ v ∗

(
wt

p −wt
q

)
wt+1

i = Lt
i + λ

(
wt

j −wt
k

)
evaluate] wt+1

i
end for

for i = 1: B
if rand > bp

bt+1
i = (1− λ)bt

i + λ
(
d− bt

i
)

end if
evaluate bt+1

i
end for
combine the updated breeder and worker population
estimate the NMRs
update the overall best d
update iteration count
end while
update final best d
end

4. Case Study

The simulation results were compared with the optimization study carried out by
Panda et al. [18], where the influence of five FFF parameters was optimized to improve the
mechanical properties. The process parameters utilized for this study are:

x1 Layer thickness (in mm)
x2 Building orientation (in degree)

x3 Raster angle (in degree)
x4 Raster width (in mm)

x5 Air gap (in mm)

The primary motivation for selecting the above-mentioned input parameters is the
literature review, which has found a good correlation between abovesaid parameters
with mechanical properties of FFF components [2,19]. The output variables used for this
case study are impact strength (IS) in MJ/m2, flexural strength (FS) in MPa and Tensile
Strength (TS) in MPa. The main reason for selecting these output parameters is that
these components undergo different types of loading conditions for medical, aerospace
and automobile applications. Therefore, it is mandatory to evaluate all these mechanical
properties utilizing an advanced optimization algorithm. These response parameters are
considered as an objective function for the present case study.

The objective function is shown in Equations (6)–(8):

TS = 13.5625 + 0.7156x1 − 1.3123x2 + 0.9760x3 + 0.5183x5 + 1.1671x2
1 − 1.3014x2

2 − 0.4363x1x3 + 0.4364x1x4
−0.4364x1x5 + 0.4364x2x3 + 0.4898x2x5 − 0.5389x3x4 + 0.5389x3x5 − 0.5389x4x5

(6)

FS = 29.9178 + 0.8719x1 − 4.8741x2 + 2.4251x3 − 0.9096x4 + 1.6626x5 − 1.7199x1x3 + 1.7412x1x4 − 1.1275x1x5
+1.0621x2x5 + 1.0621x3x5 + 1.0408x4x5

(7)

IS = 0.401992 + 0.034198x1 + 0.008356x2 + 0.013673x3 + 0.021383x2
1 + 0.008077x2x4 (8)
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It is required to maximize each type of strength; thus, maximization of objective
functions is performed.

The lower and upper bounds of process parameters are identified based on constraints
as most commercially available FFF machines can manufacture components within the
following parameter bounds. The parameter bounds for objective function are expressed
in Table 1 as follows:

Table 1. Parameter bounds for the objective function.

Parameter Lower Bound Upper Bound

x1 Layer thickness (in mm) 0.127 0.254
x2 Building orientation (in degree) 0 30
x3 Raster angle (in degree) 0 60
x4 Raster width (in mm) 0.4064 0.5064
x5 Air gap (in mm) 0 0.008

5. Simulation Results and Discussion

In the FFF process, to resolve this optimization problem, the NMRA variants are
utilized. Since heuristic algorithms are stochastic optimization methods, these must be exe-
cuted at least 10 times to generate meaningful statistics. For this purpose, the simulations
are performed 30 times. Population sizes vary from 20 to 40, and the number of iterations
varies from 100 to 500. The NMRA variants have been selected for efficiency check by
the FFA [31], FPA [32], NBA [33], SCA [34] and SSA [35] algorithms. Table 2 details the
parameter settings used to compare the results.

Table 2. Parameter values.

Algorithm Parameters

FFA NP = 20− 40, dim = 5, itmax = 100− 500; β0 = 1; βmin = 0.2; ∝= 0.5; γ = 1
FPA NP = 20− 40, dim = 5, itmax = 100− 500; p = 0.7

NBA NP = 20− 40, dim = 5, itmax = 100− 500; A=0.5; r = 0.5; α = γ = 0.9; fmin = 0;
fmax = 1.5

SCA NP = 20− 40, dim = 5, itmax = 100− 500; a = [2− 0]
SSA NP = 20− 40, dim = 5, itmax = 100− 500; c1 = [2− 0]
NMRA NP = 20− 40, dim = 5, itmax = 100− 500; bp = 0.5
NMRV
1.0 NP = 20− 40, dim = 5, itmax = 100− 500; bp = 0.5

NMRV
2.0 NP = 20− 40, dim = 5, itmax = 100− 500; bp = 0.5

NMRV
3.0 NP = 20− 40, dim = 5, itmax = 100− 500; bp = 0.5

Here, NP is the population size, dim is the dimension of the problem, itmax is the
number of iterations

The optimum results attained by simulated algorithms with population size 40 and
maximum amount of iterations, i.e., 500, are shown in Tables 3–5 for TS, FS and IS, re-
spectively. It is clear from the results that the NMRV 2.0 and 3.0 algorithm’s fitness values
are slightly better than others for TS and FS fitness functions, respectively. Outcomes
of all competitive algorithm’s fitness values are nearly similar to competitive algorithms
for IS fitness function. The convergence rate for TS, FS and IS are drawn in Figures 2–4,
respectively, which is also better than others. The performance of simulated algorithms
for FFF for TS, FS and IS are specified in Tables 3–5, respectively. This demonstrates that
NMRV 3.0 algorithm’s standard deviation is better than others that demonstrates improved
exploitation and exploration capabilities of NMRV 3.0 for process parameters optimization
of FFF as confirmed by box-plots shown in Figures 5–7.
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Table 3. Statistics of simulated algorithms with population size 40 over 30 independent runs for
500 iterations for Tensile Strength (TS) estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 174.8324 174.9215 174.9123 174.9215 0.021354
FPA 174.9215 174.9215 174.9215 174.9215 1.20 × 10−10

NBA 174.9215 174.9215 174.9215 174.9215 1.17 × 10−11

SCA 174.61 174.9215 174.7647 174.757 0.143845
SSA 174.71 174.9215 174.897 174.9215 0.057414

NMRA 174.9215 174.9215 174.9215 174.9215 8.26 × 10−14

NMRV 1.0 174.9215 174.9215 174.9215 174.9215 8.67 × 10−14

NMRV 2.0 174.9215 174.9215 174.9215 174.9215 7.97 × 10−14

NMRV 3.0 174.9215 174.9215 174.9215 174.9215 8.24 × 10−14

Table 4. Statistics of simulated algorithms with population size 40 over 30 independent runs for
500 iterations for Flexural Strength (FS) estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

FPA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

NBA 162.1491 162.6744 162.6569 162.6744 0.095915
SCA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

SSA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

NMRA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

NMRV 1.0 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

NMRV 2.0 162.6744 162.6744 162.6744 162.6744 5.78 × 10−14

NMRV 3.0 162.6744 162.6744 162.6744 162.6744 5.71 × 10−14

Table 5. Statistics of simulated algorithms with population size 40 over 30 independent runs for
500 iterations for Impact Strength (IS) estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

FPA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

NBA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

SCA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

SSA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

NMRA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

NMRV 1.0 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

NMRV 2.0 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16

NMRV 3.0 1.605824 1.605824 1.605824 1.605824 2.26 × 10−16
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The performance evaluation of simulated algorithms with population size 40 and
maximum amount of iterations, i.e., 100, are specified in Tables 6–8 for TS, FS and IS,
respectively. It is clear from the statistics that NMRV 3.0 algorithm’s fitness values are
slightly better than others for TS, FS and IS fitness functions.

To further check the effectiveness of proposed variants, the simulations were carried
out for different numbers of iterations and population sizes [36]. The performance evalua-
tion of simulated algorithms with population size 20 and maximum amount of iterations,
i.e., 100, are given in Tables 9–11. It is clear from the results that NMRV 3.0 algorithm’s
fitness values are slightly better than others for TS, FS and IS fitness functions.
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Table 6. Statistics of simulated algorithms with population size 40 over 30 runs for 100 iterations for
TS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 174.1897 174.9215 174.731 174.7742 0.194092
FPA 174.6641 174.9215 174.8728 174.9107 0.0739
NBA 174.6234 174.9215 174.8686 174.9215 0.112
SCA 174.4651 174.9213 174.6961 174.6229 0.140252
SSA 174.6239 174.9215 174.8157 174.877 0.117193

NMRA 174.9215 174.9215 174.9215 174.9215 4.31 × 10−6

NMRV 1.0 174.9215 174.9215 174.9215 174.9215 3.02 × 10−7

NMRV 2.0 174.9215 174.9215 174.9215 174.9215 5.48 × 10−7

NMRV 3.0 174.9215 174.9215 174.9215 174.9215 4.21 × 10−8

Table 7. Performance of simulated algorithms with population size 40 over 30 runs for 100 iterations
for FS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 162.5976 162.6744 162.6555 162.6574 0.0187
FPA 162.615 162.6744 162.6697 162.6744 0.0152
NBA 162.1491 162.6744 162.6044 162.6744 0.181637
SCA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−7

SSA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−7

NMRA 162.6744 162.6744 162.6744 162.6744 6.65 × 10−6

NMRV 1.0 162.6744 162.6744 162.6744 162.6744 6.25 × 10−7

NMRV 2.0 162.6744 162.6744 162.6744 162.6744 2.25 × 10−6

NMRV 3.0 162.6744 162.6744 162.6744 162.6744 4.11 × 10−7
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Table 8. Performance of simulated algorithms with population size 40 over 30 runs for 100 iterations
for IS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 1.604239 1.605824 1.605749 1.605824 3.02 × 10−4

FPA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−10

NBA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−10

SCA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−10

SSA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−10

NMRA 1.605824 1.605824 1.605824 1.605824 2.52 × 10−10

NMRV 1.0 1.605824 1.605824 1.605824 1.605824 1.14 × 10−10

NMRV 2.0 1.605824 1.605824 1.605824 1.605824 9.56 × 10−10

NMRV 3.0 1.605824 1.605824 1.605824 1.605824 8.12 × 10−11

Table 9. Performance of simulated algorithms with population size 20 over 30 independent runs for
100 iterations for TS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 174.1762 174.9215 174.724 174.7416 0.189432
FPA 174.6634 174.9215 174.8716 174.9093 0.0727
NBA 174.6231 174.9209 174.8679 174.9128 0.159
SCA 174.4648 174.9213 174.6948 174.6218 0.150682
SSA 174.6236 174.9214 174.8149 174.8637 0.127843

NMRA 174.9214 174.9215 174.9215 174.9215 4.38 × 10−5

NMRV 1.0 174.9215 174.9215 174.9215 174.9215 3.13 × 10−7

NMRV 2.0 174.9215 174.9215 174.9215 174.9215 5.53 × 10−7

NMRV 3.0 174.9215 174.9215 174.9215 174.9215 4.52 × 10−8

Table 10. Performance of simulated algorithms with population size 20 over 30 independent runs for
100 iterations for FS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 162.218 162.6709 162.5367 162.5618 0.119
FPA 155.0595 162.6744 162.3814 162.3684 1.39
NBA 162.1491 162.6744 162.6219 162.6172 0.160298
SCA 162.1491 162.6744 162.6044 162.6059 0.182
SSA 162.6744 162.6744 162.6744 162.6744 5.78 × 10−4

NMRA 162.6744 162.6744 162.6744 162.6744 2.38 × 10−5

NMRV 1.0 162.6744 162.6744 162.6744 162.6744 1.02 × 10−5

NMRV 2.0 162.6743 162.6744 162.6743 162.6743 9.03 × 10−5

NMRV 3.0 162.6744 162.6744 162.6744 162.6744 1.72 × 10−6

Table 11. Performance of simulated algorithms with population size 20 over 30 independent runs for
100 iterations for IS estimation.

Algorithm Worst Best Average Median Std. Dev.

FFA 1.602716 1.605824 1.605407 1.605812 7.42 × 10−4

FPA 1.599358 1.605824 1.605184 1.605806 1.74 × 10−3

NBA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−9

SCA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−9

SSA 1.605824 1.605824 1.605824 1.605824 2.26 × 10−9

NMRA 1.605823 1.605824 1.605824 1.605824 4.68 × 10−8

NMRV 1.0 1.605824 1.605824 1.605824 1.605824 2.22 × 10−9

NMRV 2.0 1.605824 1.605824 1.605824 1.605824 3.08 × 10−9

NMRV 3.0 1.605824 1.605824 1.605824 1.605824 1.71 × 10−9
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6. Confirmatory Experiments

To validate the findings of NMRA, the confirmatory experiments were planned to
fabricate sample parts at optimized parameters followed by mechanical testing. Five
samples were manufactured using the FFF process at predefined conditions as suggested
by NMRA. The samples are prepared for confirmation of TS and FS of parts fabricated at
optimum parameter settings. The samples for TS and FS are prepared as per ASTM D638
and ASTM D790 standards. The dimensions of TS and FS samples are shown in Figure 8.
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Figure 8. Dimensions of test parts for (a) TS (b) FS.

Acrylonitrile butadiene styrene (ABS) has been extensively used for automobile and
electronic components and hence it is most popular raw material used in FFF printers.
The filament material selected for the fabrication of test samples in the present study is
ABS P400 with a 1.75 mm diameter supplied by Robokits, India. Table 12 displays the FFF
process parameters selected during the fabrication of test samples.

Table 12. Process parameters selected for the fabrication of test parts.

Parameter Details

Layer height 0.12 mm
Building orientation 0◦

Raster angle 60◦

Raster width 0.4064 mm
Air gap 0.008 mm

Infill pattern Cubic
Infill density 50%

Printing speed 50 mm/s

The FFF machine used for the fabrication of test parts was Model I3 supplied by Prusa
Research, Prague, Czech Republic and Universal testing machine (UTM) was supplied by
Shanta Engineering Pvt. Ltd., Pune, India, as shown in Figure 9. The UTM was operated at
50 mm/min strain rate with gradual bending load subjected at three points during flexural
tests (see Figure 9d). During tensile testing, the samples were held in two jaws with 52 mm
grip separation. The tensile force was exerted gradually at 50 mm/min until the samples
were fractured. Afterward, the fracture points of both tensile and flexural test samples
were studied using scanning electron microscope (SEM) images which were generated by
Model IT500HR supplied by Jeol Ltd. Tokyo, Japan.
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used for testing (d) FS sample during testing.

The mechanical strength of parts was measured and compared with simulated results,
as shown in Figure 10. The experimental results were compared with predictions made by
the NMRA algorithm at suggested parametric settings. Notably, experimental results were
in significant agreement with the modeled data when experiments were performed at opti-
mum parameter settings. The output of NMRA yielded significant and promising results,
which may be beneficial for deciding 3D printing and part manufacturing conditions at the
commercial level. During mass production and part production, the optimized parametric
settings would be utilized to attain desired mechanical properties in products.

In addition, the SEM images retrieved after mechanical testing reveal the conditions
at the location of breakage. Figure 11a shows the SEM micrographs of tensile test parts,
indicating higher flexibility in the layers at the point of failure. A higher elongation was
experienced for these parts as an optimized combination of parameters was used. In
Figure 9b, the flexural test sample was photographed. It can be confirmed that failure
occurs after extreme elongation due to flexibility induced in parts. The mechanical strength
and flexibility attained at this location reveal the strategic selection of parametric levels.



Polymers 2021, 13, 1702 16 of 18

Polymers 2021, 13, x FOR PEER REVIEW 16 of 19 
 

 

  
(c) (d) 

Figure 9. (a) FFF printer (b) FS sample during the fabrication (c) Universal Testing Machine (UTM) 
used for testing (d) FS sample during testing. 

The mechanical strength of parts was measured and compared with simulated re-
sults, as shown in Figure 10. The experimental results were compared with predictions 
made by the NMRA algorithm at suggested parametric settings. Notably, experimental 
results were in significant agreement with the modeled data when experiments were per-
formed at optimum parameter settings. The output of NMRA yielded significant and 
promising results, which may be beneficial for deciding 3D printing and part manufac-
turing conditions at the commercial level. During mass production and part production, 
the optimized parametric settings would be utilized to attain desired mechanical proper-
ties in products. 

 
Figure 10. Comparison of experiments and simulated results of mechanical strength. 

In addition, the SEM images retrieved after mechanical testing reveal the conditions 
at the location of breakage. Figure 11a shows the SEM micrographs of tensile test parts, 
indicating higher flexibility in the layers at the point of failure. A higher elongation was 
experienced for these parts as an optimized combination of parameters was used. In Fig-
ure 9b, the flexural test sample was photographed. It can be confirmed that failure occurs 

Figure 10. Comparison of experiments and simulated results of mechanical strength.

Polymers 2021, 13, x FOR PEER REVIEW 17 of 19 
 

 

after extreme elongation due to flexibility induced in parts. The mechanical strength and 
flexibility attained at this location reveal the strategic selection of parametric levels. 

 
(a) (b) 

Figure 11. SEM images of point of failure of parts during (a) tensile test (b) flexural test. 

7. Conclusions and Future Scope 
The mechanical strength of FFF parts is significantly lower than conventionally pre-

pare thermoplastics components, which hinders their applicability for certain applica-
tions. Thus, we must identify optimum process parameters to enhance TS, FS and IS of 
FFF parts. The performance of advanced naked mole-rat algorithm variants was tested to 
solve FFF issues of poor mechanical strength. The results indicated a significant enhance-
ment of tensile, flexural and impact strength than previous studies using NMRV 3.0. The 
study could be further extended to identify optimum parameter settings to achieve max-
imum dimensional accuracy and surface finish of FFF components. Moreover, the efficacy 
of the enhanced versions of NMRA algorithms could be further tested for optimizing pa-
rameters of the other additive manufacturing techniques, such as stereolithography, elec-
tron beam melting and selective laser melting. 

Author Contributions: Conceptualization, J.S.C.; N.M.; R.K.; S.S. (Sandeep Singh); S.S. (Shubham 
Sharma); methodology, J.S.C.; N.M.; R.K.; S.S. (Sandeep Singh); S.S. (Shubham Sharma); software, 
J.S.C.; N.M.; R.K.; S.S. (Sandeep Singh); S.S. (Shubham Sharma); S.P.D.; A.S.; S.C.; R.A.I.; valida-
tion, J.S.C.; N.M.; S.S. (Shubham Sharma); S.C.; R.A.I.; C.H.L.; S.W.; formal analysis, J.S.C.; N.M.; 
S.S. (Shubham Sharma); S.P.D.; A.S.; S.C.; R.A.I.; C.H.L.; S.W.; investigation, J.S.C.; N.M.; R.K.; S.S. 
(Sandeep Singh); S.S. (Shubham Sharma); resources, J.S.C.; N.M.; S.S. (Shubham Sharma); R.A.I.; 
C.H.L. and S.W.; writing—original draft preparation, J.S.C.; N.M.; R.K.; S.S. (Sandeep Singh); S.S. 
(Shubham Sharma); writing—review and editing, J.S.C.; N.M.; R.K.; S.S. (Sandeep Singh); S.S. 
(Shubham Sharma); S.P.D.; A.S.; S.C.; R.A.I.; C.H.L. and S.W.; supervision, J.S.C.; N.M.; R.K.; S.S. 
(Sandeep Singh); S.S. (Shubham Sharma); funding acquisition, S.S. (Shubham Sharma); S.C.; R.A.I.; 
C.H.L.; S.W. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Figure 11. SEM images of point of failure of parts during (a) tensile test (b) flexural test.

7. Conclusions and Future Scope

The mechanical strength of FFF parts is significantly lower than conventionally prepare
thermoplastics components, which hinders their applicability for certain applications. Thus,
we must identify optimum process parameters to enhance TS, FS and IS of FFF parts. The
performance of advanced naked mole-rat algorithm variants was tested to solve FFF issues
of poor mechanical strength. The results indicated a significant enhancement of tensile,
flexural and impact strength than previous studies using NMRV 3.0. The study could be
further extended to identify optimum parameter settings to achieve maximum dimensional
accuracy and surface finish of FFF components. Moreover, the efficacy of the enhanced
versions of NMRA algorithms could be further tested for optimizing parameters of the
other additive manufacturing techniques, such as stereolithography, electron beam melting
and selective laser melting.
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