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Abstract: In this study, a type of alkaline solid polyelectrolyte (ASPE) membrane was developed
via the introduction of microcrystalline cellulose (MCC) and its modified product (QMCC) into
the polyvinyl alcohol (PVA) matrix. In this process, green NaOH/urea-based solvent was used
to achieve a good dispersion of MCC in the PVA matrix; meanwhile, the OH− groups in the
NaOH/urea-based solvent provided an alkaline environment for good ion conductivity. Compared
to the MCC-incorporated ASPE, further improved conductivity was achieved when the MCC was
modified with quantitative quaternary ammonium salt. TGA showed that the addition of QMCC
improved the water retention of the matrix, which was beneficial to the OH− conduction in the system.
Compared to the control (50 mS cm−1), a maximum conductivity of 238 mS cm−1 was obtained
after the incorporation of QMCC in the PVA matrix. Moreover, the tensile strength of the polymer
electrolyte were also significantly increased with the addition of QMCC. Finally, this developed ASPE
membrane was used in assembling a flexible Zn–air battery and showed a promising potential in the
development of flexible electronic devices.

Keywords: microcrystalline cellulose; polyvinyl alcohol; quaternary ammonium salt; alkaline poly-
electrolyte membrane; Zn–air battery

1. Introduction

With the rapid development of wearable electronic devices, there is an increasing
demand for flexible batteries via various structure-based design strategies [1–4]. Flexi-
ble battery is a kind of new battery that can be deformed under certain external forces
without impairing its performance [5–8]. Compared to conventional batteries, the key
part of a flexible battery, i.e., the electrolyte, needs to meet higher requirements: such
as smaller size, lighter mass, and bending resistance. In this context, a solid polymer
electrolyte (SPE)—a kind of new electrolyte was developed [5]. Among these electrolytes,
alkaline solid polyelectrolyte (ASPE) membrane is a promising substitute for the alkaline
electrolyte in the application of alkaline batteries, in which ASPE plays a key role as an
anion exchange membrane for the OH− transportation. As one of the core components in
battery, the alkaline polyelectrolyte is composed of polymeric materials and alkali metal
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salts [9,10]. The alkaline solid polyelectrolyte (ASPE) membrane plays roles in OH− conduc-
tion and the separation of cathode and anode, endowing batteries with high conductivity,
light weight, low cost, and environmental protection properties. In recent years, ASPE has
been extensively studied, especially in the fields of super capacitor, lithium-ion battery,
and sensor [8,11–17].

Generally, alkaline polyelectrolytes can be classified as aliphatic and aromatic types.
The aliphatic type includes chitosan (CS)- [18,19], polyoxyethylene (PEO)- [20,21], and poly-
vinyl alcohol (PVA) [22,23]-based polyelectrolyte. Chitosan-based alkaline polyelectrolytes
are readily available and biodegradable. However, due to low ion mobility and poor solu-
bility, the application value of chitosan has been seriously restricted [19]. For PEO-based
polymeric electrolytes, the large number of ether bonds in its main chain could interact with
metal ions, which endows the polymeric electrolyte with better conductivity. However,
the intrinsic crystallization within the PEO matrix hinders the effective transportation of
OH− in the polymer matrix and limits further improvement in conductivity [24]. In com-
parison, PVA-based alkaline polyelectrolytes contain a large amount of –OH groups with
good hydrophilicity and low crystallinity, providing a possibility for further improving
the conductivity. On the other hand, it is noteworthy that the poor alkali resistance of
PVA makes the chemical structure prone to being destroyed in alkali environment. To im-
prove the alkali resistance of PVA, some materials with alkali resistance properties can
be applied via blending with the PVA. A series of substances with good alkali resistance,
such as cellulose, have been used to enhancethe alkali resistance of PVA-based polyelec-
trolyte [10]. In terms of aromatic polymer electrolytes, such as polyetherimide(PEI) [25],
polyarylethersulfone(PAES) [26], polyaryletherketone(PEK) [27], polyphenylene oxide
(PPO) [28], polybenzimidazole (PBI) [29], etc., they are good at chemical stability and ther-
mal stability; however, their intrinsic poor solubility reduces their value in polyelectrolyte
application [30]. Hydroxides such as potassium-, lithium-, and sodium-based alkali metal
salts are commonly used in alkaline polyelectrolytes. With the discovery that the ion migra-
tion number of KOH is much larger than that of NaOH and LiOH, KOH has become the first
choice for researchers in the study of alkaline electrolyte membranes [31]. There are usually
two ways to introduce KOH into an electrolyte membrane: one is to immerse the prepared
polyelectrolyte membrane in a certain concentration of KOH solution [32], the other is to
add KOH into the polymer compound directly [10]. No matter which introduction method
is used, good alkali stability is necessary for the system, whereby a higher content of OH−

can be incorporated in the system to achieve improved conductivity [33–38].
In order to improve the alkali’s stability without compromising the OH− conductivity

of the polymeric matrix, a strategy was proposed in this paper to design the alkaline
polyelectrolyte. Here, green NaOH/urea-based solvent was used for the dissolution of
microcrystalline cellulose, and a quaternary ammonium salt (QAS)–grafted cellulose was
prepared therefrom. A novel polyelectrolyte membrane was finally obtained via casting
the blend of QAS-grafted cellulose with PVA in KOH solution [39]. As the most abundant
natural resource, cellulose was selected herein due to the large number of hydroxyl groups
grafted on the cellulose chain, which endows the material with good water retention
capacity and alkaline resistance. This property is beneficial for the increase of OH− and
water contents, as well as the resulting conductivity [40,41]. After being modified by
QAS, a further improved conductivity can be obtained due to the higher content of OH−

groups captured via QAS. Furthermore, the poor mechanical properties of PVA can be
improved via cellulose under strong alkaline conditions owing to the intrinsic high strength
of cellulose [16].

2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (Mn = 80,000, AR, Chemical Reagent Factory of Tianjin, Tianjin,
China), Microcrystalline cellulose (MCC) with a diameter of 20 µm (Sigma-Aldrich Co., St.
Louis, MO, USA), epichlorohydrin (AR, Shanghai Macklin Biochemical Co., Ltd., Shanghai,
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China), dodecyl dimethyl tertiary amine (AR, Shanghai Macklin Biochemical Co., Ltd.,
China), polyvinylidene fluoride and N-methyl-2-pyrrolidone(Tianjin Baishi chemical Co.
Ltd., Tianjin, China), potassium permanganate (AR, Tianjin Damao Chemical Co., Ltd,
Tianjin, China).

2.2. General Characterization

Scanning electron microscopy (SEM, JSM-7500F, JEOL Ltd., Akishima-shi, Japan) was
applied to observe the fracture surface morphology of the alkaline polymer electrolyte
membrane. The specimens were freeze-dried, frozen under liquid nitrogen, then fractured,
mounted, coated with gold, and observed. The infrared (FTIR) spectrum was measured in
a Fourier infrared spectrometer (Nicolet 10, Thermo Fisher Scientific, Waltham, MA, USA)
by KBr tableting. A TGA/SDTA851 system (Setaram, Caluire-et-Cuire, France) was used
to analyze the polymer by thermogravimetry (TGA) under a nitrogen (N2) atmosphere at a
flow rate of 10 ◦C/min. For PVA/KOH/QMCCx alkaline polymer electrolytes, the ionic
conductivity was conducted using electrochemical impedance analyzer (CHI660E, Shang-
hai Chenhua Instruments Co., Shanghai, China) with an AC impedance method at room
temperature. The AC frequency was scanned from 105 to 10−2 Hz with an amplitude of
5 mV. Samples were sandwiched between two stainless steels (SS|SPE|SS) with a surface
area of 0.785 cm2. The bulk resistance, Rb, can be obtained via the cross point of the curves
at the real axis. In terms of the ionic conductivity, calculation formula σ = L/(Rb × A)
is used, where Rb, A, and L represent bulk resistance (ohm), area (cm2), and the thick-
ness (cm) of the sample, respectively. The electrochemical stability window was tested
via a cyclic voltammetry curve using a CHI660E Electrochemical Workstation. The sam-
ples with a radius of 0.5 cm were sandwiched between two stainless steels (SS|SPE|SS).
PVA/KOH/QMCCx alkaline polymer electrolyte membranes were tested in a voltage
ranging from −0.5 V to 0.5 V and a scan rate of 10 mV s−1 at 25 ◦C. The charge–discharge
performance of the battery was studied using a LAND auto-cycler (CT2001A, Wuhan Blue
Electrical Co., Wuhan, China). The mechanical performance of the PVA/KOH/QMCCx
alkaline polymer electrolyte membranes was tested using a mechanical testing machine
(WDL-005, Jinan Xinshijin Experimental Instrument Co., Jinan, China) with a crosshead
speed of 20 mm/min. The specimens with 30 mm length and 11 mm width were applied
and coated with silicone wax to avoid the evaporation of water in the test.

2.3. Preparation of PVA/KOH Alkaline Polyelectrolyte Membrane

Briefly, 2.15g PVA was dissolved in 20 mL deionized water via mechanical stirring
at 85 ◦C for 1 h, and 1 g glycerol was added into the solution dropwise with continuous
stirring for 1 h until complete dissolution. Upon cooling to room temperature, 10 mL
9 M KOH solution was added dropwise with continuous stirring for 1 h. After removing
bubbles via vacuum, the prepared solution was poured on a polytetrafluoroethylene mold
and dried in the fume hood for hours, and a PVA/KOH polymeric electrolyte membrane
was obtained. This prepared PVA/KOH membrane was rinsed with ethyl alcohol and
deionized water several times and placed in a 50% humidity environment for water balance
and later use.

2.4. Preparation of PVA/KOH/MCC Alkaline Polyelectrolyte Membrane

To obtain the cellulose solution, 7 wt.% NaOH and 12 wt.% urea (urea) were dissolved
in deionized water. At room temperature, 1, 4, and 7 g MCC were added into NaOH/urea
solution separately, which were uniformly dispersed by ultrasound and stirred at −12.3 ◦C
until completely dissolved, thus obtaining a colorless, transparent cellulose solution.

Next, 2.15 g PVA was dissolved in 20 mL deionized water, mechanically stirring at
85 ◦C for 1 h, then 1 g glycerol was added into the solution, stirring for 1 h until completely
dissolved. The above-mentioned cellulose solution was added into the PVA solution,
with continuous stirring for 1 h to obtain a uniform solution. Upon cooling to room tem-
perature, 10 mL 9 M KOH solution was added dropwise and continuously stirred for 1 h.
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After removing bubbles via vacuum, the prepared solution was poured on a polytetrafluo-
roethylene mold and dried in the fume hood for hours, and a PVA/KOH/MCC polymeric
electrolyte membrane was obtained. The prepared PVA/KOH/MCC membrane was rinsed
with ethyl alcohol and deionized water several times and placed in a 50% humidity envi-
ronment for water balance and later use. The membranes loaded with 1, 4, and 7 g MCC
are denoted as PVA/KOH/MCC1, PVA/KOH/MCC4, and PVA/KOH/MCC7, in which
the weight fractions of MCC are 12, 36, and 50 wt.%, respectively.

2.5. Preparation of PVA/KOH/QMCC Alkaline Polyelectrolyte Membrane

Briefly, 7 wt.% NaOH and 12 wt.% urea (urea) were dissolved in deionized water.
At room temperature, 0.5, 1, and 2 g MCC were added to NaOH/urea solution separately
and were uniformly dispersed by ultrasound and stirred at −12.3 ◦C until completely
dissolved, thus obtaining a colorless, transparent cellulose solution.

Following this, 44 mL epichlorohydrin and 60 mL dodecyl tertiary amine solution
were heated and stirred at 60 ◦C for 2 h to obtain a high-viscosity solution, and the excess
epichlorohydrin solution was removed by rotary evaporation. The product was dissolved
in acetone solution and stored at 25 ◦C for 8 h. The filtered product was repeatedly washed
with ether and then dried in vacuum at 60 ◦C for 24 h to obtain the quaternary ammonium
salt (QAS).

Subsequently, 1 g quaternary ammonium salt was added into cellulose solution and
stirred at 25 ◦C for 24 h to obtain cellulose quaternary ammonium salt solution. The solution
was washed to neutral by ultracentrifugation and purified to obtain quaternary ammonium
salt–modified cellulose (QMCC).

Next, 2.15 g PVA was dissolved in 20 mL deionized water, mechanically stirred with
85 ◦C for 1 h. After which, 1 g glycerol was added into the solution, stirring continuously
for 1 h until dissolved completely. The above-mentioned QMCC was added into the PVA
solution, stirring continuously for 1 h to obtain a uniform solution. Upon cooling to room
temperature, 10 mL 9 M KOH solution was added dropwise and stirred continuously
for 1 h. After removing bubbles via vacuum, the resultant solution was placed on a
polytetrafluoroethylene mold and dried in a fume hood to obtain the PVA/KOH/QMCC
alkaline electrolyte membrane. This membrane was washed repeatedly with ethyl alco-
hol and deionized water and placed in 50% humidity for water balance and later use.
The addition of 0.5, 1, and 2 g MCC in the system are denoted as PVA/KOH/QMCC0.5,
PVA/KOH/QMCC1, and PVA/KOH/QMCC2, in which the weight fractions of QMCC
are 17, 22, and 30 wt.%, respectively.

2.6. Preparation of Zn–Air Electrode

Preparation of air electrode: 0.5 g acetylene black, 0.5 g carbon black, 2.0 g sodium
sulfate, 2.0 g KMnO4, and 0.5 g vinylidene chloride were ground into a uniform mixture.
N-methylpyrrolidone solution was added into the mixture dropwise. The mixture was then
evenly coated on a nickel foam mesh with a diameter of 12 mm to obtain an air electrode.

Preparation of zinc electrode: 5 g zinc powder and 0.5 g vinylidene chloride were
ground into a uniform mixture. N-methylpyrrolidone solution was added into the mixture
dropwise and stirred continuously to form a mixture with a certain viscosity; the mixture
was evenly coated on a nickel foam mesh with a diameter of 12 mm, and the residual
N-methylpyrrolidone solution was removed by vacuum drying at 100 ◦C to obtain a zinc
electrode.

Copper foil was used as current collector and attached to the surfaces of the zinc and
air electrodes. The air electrode, polymer electrolyte membrane, and zinc electrode were
listed together in order, and the Zn–air battery was assembled by hot pressing and sealing
for later use.



Polymers 2021, 13, 9 5 of 13

3. Results and Discussion
Preparation and Characterization of Quaternary Ammonium Salt-Modified Cellulose (QMCC)

At room temperature, cellulose was grafted with quaternary ammonium salt with
a high positive charge. In this process, cellulose polyhydroxy is replaced by quaternary
ammonium group to form quaternized cellulose. Figure 1 shows the reaction mechanism
between MCC and quaternary ammonium salt. The chlorine atom on epichlorohydrin
was replaced by quaternized amine groups through the reaction of epichlorohydrin and
dodecyl tertiary amine. The epoxy ring at the chain end was further grafted on the cellulose
via a ring-opening reaction between the epoxy group and hydroxyl group on the cellulose.
Finally, quaternary ammonium salt–modified cellulose (QMCC) with higher ion mobility
was prepared.
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Figure 1. Preparation of quaternary ammonium salt–modified cellulose (QMCC) via grafting quater-
nary ammonium salt (QAS) on cellulose.

Figure 2 shows the FTIR spectrum of MCC, in which the absorption bands at 3000~3700
and 2850~3000 cm−1 are attributed to the stretching vibration of O–H and C–H, respectively.
After grafting with QAS, no significant difference was found between QMCC (1 g MCC
grafted with 1 g QAS) and MCC, except the band around 3000~3700 cm−1. Since the
absorption at 3000~3700 cm−1 is attributed to the stretch vibration of O–H, the graft of
QAS on the OH groups of MCC may change the chemical environment of MCC and lead
to a subtle difference in this wave range.
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To confirm the grafting of QAS on MCC, SEM analysis with EDX measurement was
conducted on the QMCC1-treated ASPE membrane. The EDX spectra shown in Figure 3
revealed the N signal recognized clearly on the cross-section of the ASPE membrane
(Figure 3). This N signal provides evidence that the QAS salts were grafted on the MCC
and dispersed in the PVA matrix. It was found that the distribution of the N element is
quite different in the cross-section of the ASPE membrane. As Figure 3 shows, spots 1’,
2’, and 3’ demonstrate higher N content than spots 1, 2, and 3, indicating the possible
aggregation of QMCC1 on spots 1’, 2’, and 3’.
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Figure 3. (A) The EDX curve of PVA/KOH/QMCC alkaline polymer electrolyte membranes at
Spot 1. (B) The EDX curve of PVA/KOH/QMCC alkaline polymer electrolyte membranes at Spot 1’.
(C) The EDX curve of PVA/KOH/QMCC alkaline polymer electrolyte membranes at Spot 2. (D) The
EDX curve of PVA/KOH/QMCC alkaline polymer electrolyte membranes at Spot 2’. (E) The EDX
curve of PVA/KOH/QMCC alkaline polymer electrolyte membranes at Spot 3. (F) The EDX curve of
PVA/KOH/QMCC alkaline polymer electrolyte membranes at Spot 3’.
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A comparison of the cross-section morphology of the ASPE membranes treated with
MCC and QMCC1 was made as Figure 4 shows. Porous morphologies can be clearly recog-
nized in both samples. These irregular pores were formed via the water removal through
freeze-drying approach and played an important role in ion transportation. When the
ASPE membrane is soaked with water, these pores can act as ion channels to transfer
OH− anions. Compared to the surface of PVA/KOH/MCC1, PVA/KOH/QMCC1 shows
a rougher surface on which particulate matter appeared. Combined with the result ob-
served in Figure 3, it is speculated that these particulate matters were probably due to the
crystallization of quaternary ammonium salt during the freeze-drying process.
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In order to evaluate the water-holding capacity of the alkaline polyelectrolyte mem-
brane, a TGA test was carried out. According to Figure 5, it can be clearly found that the
weight loss of the alkaline electrolyte membrane is obvious in the temperature range of
45–120 ◦C, which is attributed to the evaporation of water in the composite membrane.
In Figure 5A, it can be found that the water loss of the pure PVA electrolyte membrane is
about 60% around 120 ◦C, while the weight loss of the alkaline polymer electrolyte treated
with cellulose is about 70% at 120 ◦C, and the highest weight loss is about 75% when
the cellulose loading is 4 g. This is mainly because the introduction of microcrystalline
cellulose leads to a large number of hydroxyl groups in the matrix. These hydroxyl groups
can form a large number of hydrogen bonds with water and provide favorable conditions
for the transfer of OH− in the matrix and, thus, improve ionic conductivity (see Figure 6).
When the cellulose loading reaches 7 g, the water retention capacity of the polymer elec-
trolyte decreases. This result is probably caused by the further increased microcrystalline
cellulose content. The excessive MCC will agglomerate and reduce the specific surface
area, impairing the contact between cellulose and water molecules, further reducing the
water retention capacity. In this context, a TGA test of PVA/KOH/QMCC was carried
out. Figure 5B shows that an improved water retention capacity for PVA/KOH/QMCC
system, in which the weight loss reached up to 80%, was observed when the QMCC load-
ing reached 2 g. The introduction of QAS on cellulose significantly enhanced the water
retention capacity and was beneficial for the improvement of the ionic conductivity of the
ASPE membrane.
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The AC impedance curve of the composite membrane was tested using an electrochem-
ical workstation, and the test results are shown in Figure 6A,C. From the AC impedance
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curve, the volume resistance, Rb (the intersection of the curve and the horizontal axis), of the
polyelectrolyte membrane is obtained, and the ionic conductivity of the polyelectrolyte is
calculated by Equation (1).

σ = L/(Rb × A) (1)

in which σ is the ionic conductivity (mS cm−1), L is the membrane thickness (cm), Rb is the
volume resistance (ω), and A is the membrane surface area (cm2).

Figure 6B shows the conductivity curves of the PVA/KOH and PVA/KOH/MCC
composite polyelectrolyte membranes. It can be seen that the conductivity of the composite
membrane increases at first and then decreases. When cellulose is not added, the ionic
conductivity of the PVA/KOH electrolyte is 50 mS cm−1, while when cellulose loading
reaches 4 g, the ionic conductivity of the composite membrane reaches the highest value
of 91 mS cm−1. This is mainly because MCC increases the alkali resistance and water
retention ability of the PVA matrix. With the increase of MCC content, the decreased PVA
ratio impaired the transportation of OH−, leading to a decrease in conductivity. Compared
to the MCC, the QMCC endows the ASPE membrane with a remarkable improvement in
conductivity (Figure 6D). The highest value of 238 mS cm−1 was obtained when QMCC
loading reached 1 g, which is almost five times of the conductivity value of the PVA/KOH
membrane. Clearly, the intrinsic hydroxyl groups on the QMCC favor water absorption;
moreover, the quaternary ammonium salts grafted on the MCC chains play an important
role in absorbing higher contents of OH− via electrostatic interaction. Similar to the results
obtained in Figure 6B, more loading of QMCC would not benefit the conductivity, and a
declined value was obtained when the QMCC reached 2 g.

In order to evaluate the electrochemical stability window, the cyclic voltammetry
curves of polyelectrolyte membranes were measured using an electrochemical workstation.
As Figure 7A shows, the PVA/KOH composite polyelectrolyte membrane demonstrates an
electrochemical stability window of about 1.0 V, and there is no significant change after
the introduction of MCC. These curves have good symmetry and no redox peak, showing
good electrochemical stability and potential in recycling at high current density. Compared
to the PVA/KOH/MCC alkaline electrolyte membranes, the quaternary ammonium salt–
modified membranes demonstrate a different electrochemical behavior. It can be found
in Figure 7B that there is a larger area surrounded by the cyclic voltammetry curve of the
PVA/KOH/QMCC membrane, indicating a higher specific capacity for the quaternary
ammonium salt–modified ASPE compared to the neat one. Moreover, the stable voltage
of the alkaline electrolyte membrane modified by quaternary ammonium salt is −0.5 to
+0.5 V, showing no significant difference compared to that of the neat one. This electro-
chemical stability window shown in Figure 7B suggests that the membrane made with
PVA/KOH/QMCC can meet the application requirements of a Zn–air battery.

A Zn–air battery was then assembled using the PVA/KOH/QMCC1 membrane as the
alkaline solid polyelectrolyte. Figure 8A shows the mechanical properties of the PVA/KOH/
QMCC1membrane. Compared to the PVA/KOH membrane, it can be found in Figure 8A that
the tensile stress was increased by almost two times after the addition of QMCC1, combined
with an increased breaking strain from 75% to 100%. The improved mechanical properties
were attributed to the intrinsic high modulus of the microcrystalline cellulose (MCC) and the
interactions between PVA and MCC via the hydrogen bonds. Clearly, the increased breaking
strain and tensile stress are beneficial for the battery design. Figure 8B,C show the discharge
polarization curves and the power density curves of the Zn–air battery using PVA/KOH and
PVA/KOH/QMCC1 as the ASPE membrane, respectively. The current density and power
density of the zinc–air battery with PVA/KOH/QMCC1 are obviously higher than those of
zinc air battery with PVA/KOH. When the open circuit voltage is 0.9 V, the corresponding
current density can reach 128 mA cm−2, and the peak power density can reach 48 mW
cm−2. Figure 8D shows the discharge curves of zinc–air batteries using PVA/KOH and
PVA/KOH/QMCC1 as a polyelectrolyte, under a condition of current density of 20 mA cm−2.
The rapid voltage drop within 0–2 min during the discharge process is due to self-discharge,
and then the rapid voltage drop reaches a stable state. In this progress, the zinc electrode
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is consumed constantly, leading to a rapid voltage drop. Compared with the initial voltage
of 0.85 V and discharge time of 56 min for the zinc–air battery using PVA/KOH as the
ASPE membrane, the zinc–air battery using PVA/KOH/QMCC1 as the ASPE membrane
demonstrated an initial voltage of 0.99 V and a discharge time of 73 min, indicating a longer
discharge time and an improved performance. Figure 8E–G shows the assembled flexible
zinc–air battery and its application in light-emitting diode (LED, 1.8 V). As Figure 8F,G shows,
after being bent 90 degrees, the battery using PVA/KOH/QMCC1 as the ASPE membrane
still makes the LED bulb glow.
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4. Conclusions

In this paper, quaternary ammonium salt–grafted cellulose was prepared by dissolving
microcrystalline cellulose with a green solvent NaOH/urea solution and reacted with
quaternary ammonium salt (QAS). A film was then prepared via mixing QAS-grafted
cellulose with PVA in KOH solution. Taking advantage of the hydrophilicity and alkali
resistance of the cellulose, the improved water retention, ionic conductivity, and alkali
resistance properties were obtained for the MCC added PVA/KOH membrane. Further
increased ionic conductivity and specific capacity can be achieved via the modification of
the cellulose with quaternary ammonium salt. Experimental results show that after the
addition of QMCC, a remarkable increase in ionic conductivity from 50 to 238 mS cm−1 was
achieved for the PVA/KOH electrolyte system. As reinforcing fillers, celluloses can also
improve the mechanical properties of polyelectrolyte membranes, whereby a tensile stress
increased by two times was obtained. Moreover, the PVA/KOH/QMCC polyelectrolyte
membrane studied here demonstrates a feasibility in assembling a flexible Zn–air battery
and shows promising potential in the development of flexible electronic devices.
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