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Abstract: This study is devoted to the design of an elastic polymer thin film-based capacitive
wind-pressure sensor to meet the anticipated use for real-time monitoring of structural wind pressure
in civil engineering. This sensor is composed of four basic units: lateral elastic deflection unit of a
wind-driven circular polymer thin film, parallel plate capacitor with a movable circular electrode plate,
spring-driven return unit of the movable electrode plate, and dielectric materials between electrode
plates. The capacitance of the capacitor varies with the parallel move of the movable electrode plate
which is first driven by the lateral elastic deflection of the wind-driven film and then is, after the
wind pressure is reduced or eliminated, returned quickly by the drive springs. The closed-form
solution for the contact problem between the wind-driven thin film and the spring-driven movable
electrode plate is presented, and its reliability is proved by the experiment conducted. The numerical
examples conducted show that it is workable that by using the numerical calibration based on
the presented closed-form solution the proposed sensor is designed into a nonlinear sensor with
larger pressure-monitoring range and faster response speed than the linear sensor usually based on
experimental calibration.

Keywords: capacitive pressure sensor; parallel plate capacitor; structural wind pressure; polymer
thin film; closed-form solution

1. Introduction

Wind loads may cause cyclic stress in some slender members or structures, such as light poles or
wire poles [1], wind-power towers [2], electric transmission towers [3], lifting equipment [4], long-span
bridges [5] and ultrahigh-rise buildings [6]. When the stress cycles accumulate to a certain level, fatigue
failures are very likely to occur in these structural members or structures. Therefore, to determine the
corresponding accumulating cyclic level of cyclic stress at each stress level, the real-time monitoring
of the cyclic stress in these structures or structural members is necessary. The structural safety,
accumulative damage, and residual fatigue life can thus be scientifically estimated with real-time
data monitoring. The wind-induced fatigue problem of structures, however, has always depended
on the so-called fatigue design method, which is based on predicting the wind field characteristics of
structures [7,8]. At present, real-time monitoring and assessment are rarely used in both mechanical
and civil engineering structures. An actual ambient wind field is in fact very complicated and difficult
to describe due to the fact that the distribution of wind field is random and discrete, therefore it
is usually difficult to predict and grasp the wind field characteristics of structures, especially for
ultra-high-rise buildings [9,10]. However, if we monitor the time-dependent acting force of wind
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on the exterior facade of ultra-high-rise buildings (i.e., the time-dependent wind loads of structure),
then based on the relationship between wind loads and wind-induced response of structure which can
be determined during structural design, the wind-induced fatigue of structures can be assessed by
analyzing the characteristics of wind loads varying with time, such as the maximum value, minimum
value, and cyclic frequency of the wind loads. Obviously, such a goal depends almost entirely on a
reliable and effective wind-pressure sensor, which is suitable for use in ultra-high-rise buildings, and in
particular the cost of this type of sensor should be as low as possible due to the need for a large number
of arrangements along the exterior facade of ultra-high-rise buildings. So far, however, there are no
wind-pressure sensors that can be used directly in ultra-high-rise buildings.

The monitoring methods in structural health monitoring mainly involve the measurement of force,
displacement and strain [11–13], in which the method of measuring force is rarely used due to the usually
strong force in structural members. The measurement of stress is usually achieved by first measuring
strain then transforming the measured strain into stress, rather than by measuring the force in structural
members. However, it is usually difficult to ensure that the strain monitoring results, measured by
fixing strain gauges [14] or fiber Bragg grating strain measuring instruments [15] onto the structural
members of the large-scale structures such as bridges [16,17] and ultrahigh-rise buildings [18,19],
can reflect the true strain level of the measured structural member. Usually, the effectiveness of
strain monitoring results depends not only on the accuracy of the monitoring instrument itself but
also on many factors such as the installation position and construction quality of sensors. These
methods for measuring strain could be suitable for some structural components with smaller size, but
is usually not suitable for the ones with larger size, especially for the reinforced concrete members
with larger size. However, if we directly measure the wind pressure acting on the exterior facade
of ultrahigh-rise buildings, we can avoid these strain-monitoring-related problems or difficulties.
In addition, the results of wind-pressure monitoring can directly reflect the actual wind-pressure
level (i.e., the real external action level of structures), which only depends on the accuracy of the
wind-pressure sensors. The existing methods measuring the wind pressure on the surface of structural
components or structures can be a direct method, such as pressure valve method [20,21], pressure
sensitive coating method [22,23] and pressure sensor method [24–27], or an indirect method, which is
basically measuring wind speed and then converts to wind pressure in some way [28]. The indirect
method is often affected by environmental factors such as air humidity and temperature, therefore
the direct measuring methods could be regarded as a relatively more precise method in comparison
with the direct measuring method. Among these existing direct measuring methods, most of them
have some common shortcomings, such as complicated manufacturing process, high production cost,
vulnerability to ambient factors, narrow measuring range, so that these methods are not suitable for
the use of the long-term real-time monitoring of large-scale structures, especially for the ultrahigh-rise
buildings. For an instance, Rossetti et al. [24] developed a capacitive wind-pressure sensor with a ±250
Pa pressure measuring range for wireless wind sail monitoring, where the conductive polymeric films
were used to act as the elastic deformation element and the movable electrode plate of the sensing
capacitor. The once-in-50-years basic wind pressure in civil engineering is usually in the range of
300 Pa to 1850 Pa, therefore this sensor does not meet the anticipated use for real-time monitoring
of structural wind pressure in civil engineering. Another example is An et al. [25] developed a soft
capacitive wind-pressure sensor, which employed the soft silicone rubber as the dielectric elastomer
between the two electrode plates in the capacitor. In fact, this type of techniques, which is to compress
the dielectric elastomer to change the capacitance of the capacitor, has been used in various engineering
applications [29,30]. However, the range of elastic deformation of the dielectric elastomer is usually
limited, i.e., the ability of recoverable compression deformation of the dielectric elastomer is limited,
which means that the pressure measuring range is also limited. The flexible characteristic of the
dielectric elastomer should be beneficial for lowering the minimum distinguishable pressure and be
also necessary for some soft applications [31]. However, it is also the main reason for viscoelasticity
of materials, which may bring the undesirable sensor behaviors [24]. In addition, the long-term
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real-time monitoring of wind pressure on the exterior facade of ultrahigh-rise buildings requires
that the capacitive wind-pressure sensors must be able to adapt to large changes in temperature
and humidity.

The existing capacitive pressure sensors always combine the elastic deformation element with
the capacitor, i.e., the elastic deformation element is either one of the electrode plates or the dielectric
material between the electrode plates, as done in the capacitive pressure sensors using soft dielectric
elastomer or conductive thin elastic films [32,33]. This study plans to separate the elastic deformation
element form the capacitor. The developed elastic polymer thin film-based capacitive wind-pressure
sensor is mainly composed of four basic units: lateral elastic deflection unit of a wind-driven circular
polymer thin film, parallel plate capacitor with a movable circular electrode plate, spring-driven return
unit of the movable electrode plate, and dielectric materials between electrode plates. The capacitance
of the capacitor varies with the parallel move of the movable electrode plate which is first driven by
the lateral elastic deflection of the wind-driven film and then is, after the wind pressure is reduced or
eliminated, returned quickly by the drive springs. The advantages with this design are mainly reflected
in the following aspects: (1) For the elastic deformation element, we can freely select the polymer thin
film with excellent elasticity in a wide range of materials and decide its thickness according to the
minimum distinguishable pressure of the sensor, which could be much more “free” than finding the
films with excellent conductivity and excellent elasticity; (2) Under wind pressure the variation range of
the maximum lateral elastic deflection of the circular thin film is far greater than its elastic compression
range along its thickness direction, which implicates a greater variation range of capacitance of the
parallel plate capacitor; (3) The movable electrode plate and elastic polymer thin film can be quickly
returned by springs, reducing the viscoelastic phenomenon in soft pressure sensors; (4) The choice of
the dielectric material can only involve the softness and high dielectric coefficient of the material, rather
than the resilience of the elastic deformation of the material simultaneously; (5) Parallel plate capacitors
and polymer thin films with excellent elasticity have unique feature of low cost manufacturing and are
easy to assemble as a whole.

In this paper, the closed-form solution for the contact problem between the wind-driven circular
polymer thin film and the spring-driven movable electrode plate is given, and is used to determine
the analytical relationship between the wind pressure and the displacement of the movable electrode
plate, as well as the analytical relationship between the wind pressure and the capacitance of the
capacitor. Therefore, with this closed-form solution the elastic polymer thin film-based capacitive
wind-pressure sensor can be designed into a nonlinear sensor with larger pressure measuring range and
faster response speed than the linear sensor usually based on experimental calibration. In the following
section, the structure and operating principle of the sensor are introduced in detail. In Section 3,
the contact problem between the peripherally fixed wind-driven circular polymer elastic thin film
and the spring-driven movable electrode plate that is the problem of axisymmetric deformation of
the peripherally fixed circular membrane with limited maximum deflection, is analytically solved,
and its closed-form solution for deflection and stress is presented. In Section 4, the reliability of the
presented closed-form solution is verified by comparing with the well-known Hencky solution and by
the experiment conducted. In Section 5, the design of the elastic polymer thin film-based capacitive
wind-pressure sensor is clearly illustrated by two examples, including the mathematical modeling and
numerical calibration of the sensor. Concluding remarks are presented in Section 6.

2. Structure and Operating Principle of the Sensor

The structure and operating principle of the proposed capacitive wind-pressure sensor will be
illustrated in this section. The overall configuration of the proposed capacitive wind-pressure sensor
includes upper, middle, and lower three parts, as shown in Figure 1.
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Figure 1. A schematic view of structure and operating principle of the developed capacitive 
wind-pressure sensor: (a) initial state; (b) working state; (c) sectional view. 

Figure 1. A schematic view of structure and operating principle of the developed capacitive
wind-pressure sensor: (a) initial state; (b) working state; (c) sectional view.
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The upper part is a wind pressure receiving unit of a wind-driven circular polymer thin film
with radius a, providing a displacement driving force from the lateral elastic deflection wm of the
thin film. For the purpose that the received wind pressure could, as uniformly and transversely as
possible, act on the thin film, the wind guiding hollow cylinder is set up at the front end of the proposed
sensor. The effectiveness of setting up the wind guiding hollow cylinder will be experimentally tested
in Section 4. The middle and lower two parts are two air-spaced circular parallel plate capacitors
with the same radius, and each one of the two parts uses an immovable annular equipotential
protection electrode plate to eliminate the influence of additional edge capacitance. The leftover part
surrounded by the immovable annular equipotential protection electrode plate on the same plane is
used as the working electrode plate of the sensor, and its radius is set up to be 3a/5. The immovable
circular working electrode plate of radius 3a/5 and its corresponding immovable annular equipotential
protection electrode plate are, on the same plane, insulated electrically from each other, and the distance
between them should be as small as possible but should be greater than the distance of dielectric
breakdown. As a result, the width of each immovable annular equipotential protection electrode plate
is close to but less than 2a/5, and the original distance D between the upper and lower electrode plates
of each parallel plate capacitor should be about a/5, in order to produce a better effect of eliminating
additional edge capacitance. All electrode plates should be as thin as possible, for example, they can
be made of silver or gold coating films of about 0.2 mm, to eliminate the influence of additional edge
capacitance as much as possible.

The circular parallel plate variable capacitor in the middle part is used as a working capacitor,
and its capacitance will vary along with the movement of a movable circular electrode plate that can be
formed from a very light rigid plate coated by silver or gold. The circular parallel plate fixed capacitor
in lower part is used as only a reference capacitor to eliminate the influence of the change of dielectric
constant caused by the change of air humidity. As is known to all, the air dielectric constant is very
easy to be affected by the change of air humidity, while the capacitive wind-pressure sensors here
proposed are developed mainly for the application on the exterior facade of ultrahigh-rise buildings.
Therefore, the change of air humidity is inevitable, then the change of dielectric constant cannot also
be avoided, but the ratio of the capacitance measured values of the variable and fixed capacitors has
nothing to do with the air dielectric constant. This is why the reference capacitor is set up, which will
be seen from the derivation from Equations (1) through (3).

The distance D0 between the initially flat thin film and the initial position of the movable circular
electrode plate is set up for adjusting the minimum distinguishable wind pressure of the sensor,
which may be seen from Figure 1a and the derivation from Equations (51) through (54). The lateral
elastic deflection of the wind-driven circular polymer thin film, when greater than the distance D0,
pushes the movable circular electrode plate to move in parallel, resulting in the capacitance changes
of the circular parallel plate variable capacitor. The springs are used to drive the movable circular
electrode plate to return quickly to its initial position, after the wind pressure is reduced or eliminated.
An initial compression length 4l of springs is set up for adjusting the return speed of the movable
circular electrode plate. Therefore, the capacitive wind-pressure sensor developed here does not give
rise to the viscoelastic phenomenon which is very easy to be present in soft pressure sensors.

The electrical capacitance of the circular parallel plate variable capacitor is given by C0 when the
movable circular electrode plate is in its initial position as shown in Figure 1a, i.e.,

C0 =
ε0εrπ(3a/5)2

D
, (1)

and by C when the movable circular electrode plate left its initial position as shown in Figure 1b, i.e.,

C =
ε0εrπ(3a/5)2

D + D0 −wm
, (2)
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where ε0 describes the vacuum permittivity and εr is the relative permittivity of air. Meanwhile,
the electrical capacitance of the circular parallel plate fixed capacitor always keeps C0 constant.
Therefore, if we simultaneously measure the electrical capacitance of both variable capacitor and fixed
capacitor, then it is possible to combine Equations (1) and (2) into the following relationship

C0

C
=

D + D0 −wm

D
. (3)

The influence of the change of air humidity on the value of εr is thus eliminated.
From Equation (3) and Figure 1b we may realize that if the wind pressure q can be expressed into

a function of the maximum lateral elastic deflection wm of the thin film, then it can further be expressed
into a function of C0/C by Equation (3). To this end, in the following section we will analytically
solve the contact problem between the peripherally fixed wind-driven circular polymer elastic thin
film and the spring-driven movable electrode plate, as shown in Figure 1b, which can, in mechanics,
be simplified as a problem of axisymmetric deformation of a peripherally fixed circular membrane with
elastically restricted maximum deflection under the action of uniformly distributed transverse loads q.

3. Analytical Solution to the Mechanical Model

The problem before the peripherally fixed wind-driven circular polymer elastic thin film touches
the spring-driven movable electrode plate is simplified into the well-known Föppl–Hencky membrane
problem, i.e., the problem of axisymmetric deformation of a peripherally fixed circular membrane under
the action of uniformly distributed transverse loads q [34–40], as shown in Figure 2a. The effectiveness of
the well-known Hencky solution is recognized. Figure 2b represents the problem after the peripherally
fixed wind-driven circular polymer elastic thin film touches the spring-driven movable electrode
plate, i.e., the problem of axisymmetric deformation of a peripherally fixed circular membrane with
elastically restricted maximum deflection under the action of uniformly distributed transverse loads q,
which will be dealt with below. The difference between the problem dealt herein and the problem
previously dealt in [41,42] is solely that one is elastic restriction on maximum deflection while the other
one is fixed restriction. However, such a small difference in physics will give rise to serious analytical
difficulties in mathematics, which will be seen below.

Suppose that an initially flat peripherally fixed circular membrane with Young’s modulus E,
Poisson’s ratio v, thickness h and radius a is subjected to a uniformly distributed transverse loads
q, as shown in Figure 2a, and as the loads q intensify, it will then come into contact with a smooth
frictionless rigid plate (i.e., the movable electrode plate in Figure 1) which is always under the action
of the springs with stiffness coefficient k and initial compressed length ∆l, as shown in Figure 2b.
In Figure 2, the dash-dotted line represents the geometric middle plane of the initially flat circular
membrane, in which the polar coordinates plane (r,ϕ) of the cylindrical coordinates system (r,ϕ, w)

locates, where r, ϕ and w represent the radial, circumferential, and transverse coordinates, b represents
the contact radius between the deflected circular membrane and the spring-driven frictionless movable
rigid electrode plate, D0 is the initial distance between the initially flat circular membrane and the initial
position of the frictionless movable rigid electrode plate, D represents the initial distance between
the movable and immovable electrode plates in Figure 1, q′ represents the interaction force between
the deflected circular membrane and the spring-driven frictionless movable rigid electrode plate, wm

represents the maximum deflection of the circular membrane and wm = w(b) for the contact state
between the deflected membrane and the spring-driven frictionless rigid plate.

Let us take a piece of the central portion of the whole deformed circular membrane whose radius
is b ≤ r ≤ a, to study the static problem of equilibrium of this piece of the deformed circular membrane
under the joint actions of the transverse loads q, reaction force q′ from the spring-driven rigid plate,
and the membrane force σrh acting on the boundary of radius r, as shown in Figure 3, where σr is the
radial stress and θ is the meridional rotation angle of the deflecting membrane.
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In the vertical direction perpendicular to the initially flat circular membrane, there are three vertical
forces, i.e., the applied force πr2q, reaction force πb2q′ and the vertical membrane force 2πrσrh sinθ.
Therefore, the so-called out-of-plane equilibrium equation is

2πrσrh sinθ = πr2q−πb2q′, (4)

where πb2q′ = k(wm −D0 + ∆l). Since θ = 0 at r = b, i.e., sinθ = 0 at r = b, from Equation (4) it is
easy to be found that

q′ = q. (5)
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Substituting Equation (5) into Equation (4) yields

2πrσrh sinθ = π(r2
− b2)q, (6)

where
sinθ = −

dw
dr

. (7)

Substituting Equation (7) into Equation (6), one has

(r2
− b2)q + 2rσrh

dw
dr

= 0. (8)

In the horizontal direction parallel to the initially flat circular membrane, there are the joint actions
of the circumferential membrane force σth and the horizontal component of the radial membrane
force σrh, where σt denotes circumferential stress. The so-called in-plane equilibrium equation may be
written as

d
dr

(rσr) − σt = 0. (9)

The relations of the strain and displacement of the large deflection problem may be written as

er =
du
dr

+
1
2
(

dw
dr

)
2

(10)

and
et =

u
r

. (11)

where er, et and u denote the radial strain, circumferential strain, and the radial displacement,
respectively. The relations of the stress and strain are

σr =
E

1− ν2 (er + νet) (12)

and
σt =

E
1− ν2 (et + νer). (13)

Substituting Equations (10) and (11) into Equations (12) and (13) yields

σr =
E

1− ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
] (14)
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and

σt =
E

1− ν2 [
u
r
+ ν

du
dr

+
ν
2
(

dw
dr

)
2
]. (15)

By means of Equations (14), (15) and (9), one has

u
r
=

1
E
(σt − νσr) =

1
E
[

d
dr

(rσr) − νσr]. (16)

Substituting the u of Equation (16) into Equation (14), it is found that

r
d
dr

[
1
r

d
dr

(r2σr)] +
E
2
(

dw
dr

)
2
= 0. (17)

The detailed derivation from Equation (9) to Equation (17) can be found from any general theory
of plates and shells [43], so it is not necessary to discuss it here. In addition, from the above derivation,
it is not difficult to find that Equations (8) and (17) are two equations for the solutions of σr and w.

On the other hand, in the central contact portion (0 < r ≤ b) between the deformed
circular membrane and the spring-driven frictionless rigid plate, due to dw/dr = 0,
Equations (10) and (11) become

er =
du
dr

(18)

and
et =

u
r

. (19)

Substituting Equations (18) and (19) into Equations (12) and (13) yields

σr =
E

1− ν2 (
du
dr

+ ν
u
r
) (20)

and
σt =

E
1− ν2 (

u
r
+ ν

du
dr

). (21)

Substituting Equations (20) and (21) into Equation (9) yields

r
d2u
dr2 +

du
dr
−

u
r
= 0. (22)

Obviously, Equation (22) satisfies the form of the Euler equation, and its general solution may be
written as

u(r) = C1r + C2
1
r

. (23)

where C1 and C2 are two undetermined constants. The conditions to determine C1 and C2, or the
conditions that the special solution of Equation (22) must satisfy, are u = 0 at r = 0 and u = u(b)
at r = b. Therefore, with this boundary conditions it is found that C1 = u(b)/b and C2 ≡ 0. Hence,
the special solution of Equation (22) may be written as

u(r) =
u(b)

b
r. (24)

Substituting Equation (24) into Equations (18)–(21), it is found that

er = et =
u(b)

b
in 0 < r ≤ b (25)

and

σr = σt =
E

1− ν
u(b)

b
in 0 < r ≤ b. (26)
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Now let us continue addressing the contact problem here. Based on the above derivations,
the boundary conditions and continuous conditions for the contact problem may be written as

w = 0 at r = a, (27)

et =
u
r
=

1
Eh

(σth− νσrh) = 0 at r = a (28)

and

(et)A = (et)B =
u(b)

b
at r = b, (29)

(σr)A = (σr)B =
E

1− ν
u(b)

b
at r = b, (30)

k(wm −D0 + ∆l) = πb2q at r = b, (31)

where the subscripts A and B denote the regions on two sides of the inter-connecting circle (r = b).
The side of region A is under the plane state of radial tensile or compression of the membrane within
0 < r ≤ b, while the side of region B is under the deflection state of the membrane within b ≤ r ≤ a.

Let us proceed to the following nondimensionalization

Q =
qa
Eh

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, α =
b
a

, K =
k
πEh

, L =
∆l
a

, D◦ =
D0

a
, (32)

and transform Equations (8), (16), (17) and Equation (27) to Equation (31) into

(x2
− α2)Q + 2xSr

dW
dx

= 0, (33)

x2 d2Sr

dx2 + 3x
dSr

dx
+

1
2
(

dW
dx

)
2
= 0, (34)

St = Sr + x
dSr

dx
, (35)

W = 0 at x = 1, (36)

St − νSr = 0 at x = 1 (37)

and

(St − νSr)A = (St − νSr)B =
u(b)

b
at x = α, (38)

(Sr)A = (Sr)B =
1

1− ν
u(b)

b
at x = α, (39)

K(Wm −D◦ + L) = α2Q at x = α. (40)

Eliminating dW/dx from Equations (33) and (34) yields

8x4Sr
2 d2Sr

dx2 + 24x3Sr
2 dSr

dx
+ (x2

− α2)
2
Q2 = 0. (41)

Expand Sr and W to the power series of the x− (1 + α)/2

Sr = Q2/3
∞∑

i=0

ci(x−
1 + α

2
)

i
(42)

and

W = Q1/3
∞∑

i=0

di(x−
1 + α

2
)

i
. (43)
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After substituting Equation (42) into Equation (41), the coefficients ci (i = 1, 2, 3, 4, . . .) can be
expressed into the polynomials with regard to c0, c1 and α, which are shown in Appendix A, where c0, c1

and α are three undetermined constants. Further substituting Equations (42) and (43) into Equation (33),
the coefficients di (i = 1, 2, 3, 4, . . .) can also be expressed into the polynomials with regard to c0, c1 and
α, which are shown in Appendix B, while d0 is another undetermined constant.

The values of undetermined coefficients c0, c1, α and d0 depend on the concrete problem, and can
be determined by using the above boundary conditions and continuous conditions. From Equation (43),
Equations (36) and (40) give

Q1/3
∞∑

i=0

di(
1− α

2
)

i
= 0 (44)

and

Q1/3
∞∑

i=0

di(
α− 1

2
)

i
=
α2Q

K
− L + D◦. (45)

Then Equation (45) minus Equation (44) yields

Q1/3
∞∑

i=1

di[(
α− 1

2
)

i
− (

1− α
2

)
i
] =

α2Q
K
− L + D◦. (46)

From Equations (35) and (42), Equations (37), (38) and (39) give

Q2/3(1− ν)
∞∑

i=0

ci(
1− α

2
)

i
+ Q2/3

∞∑
i=1

ici(
1− α

2
)

i−1
= 0, (47)

Q2/3(1− ν)
∞∑

i=0

ci(
α− 1

2
)

i
+ Q2/3α

∞∑
i=1

ici(
α− 1

2
)

i−1
=

u(b)
b

(48)

and

Q2/3
∞∑

i=0

ci(
α− 1

2
)

i
=

1
1− ν

u(b)
b

. (49)

Eliminating u(b) from Equations (48) and (49) it is found that

∞∑
i=1

ici(
α− 1

2
)

i−1
= 0. (50)

Therefore, for the problem in which the values of a, h, E, ν and q are known beforehand,
the undetermined constants c0, c1 and α can be determined by the simultaneous solutions of
Equations (46), (47) and (50). Furthermore, substituting the known c0, c1 and α into Equation (44) or
Equation (45), the last undetermined constant d0 can also be determined. The problem dealt with here
is thus solved.

4. Effectiveness of the Closed-Form Solution Presented in Section 3

To assess the effectiveness of the closed-form solution presented in Section 3, we conducted a
simple experiment. The photos of the experimental setup are shown in Figure 4. A piece of thin
synthesized latex film (2-ethyl hexyl methacrylate) with elastic modulus E = 3.01× 106 Pa, Poisson’s
ratio ν = 0.45 and thickness h = 0.3 mm is clamped by the two round ends of two transparent Acrylic
hollow cylinders with inner radius a = 70mm, and the lower surface of the circular polymer thin film
is in contact with a movable circular Acrylic plate with radius a = 69.5 mm and thickness t1 = 2 mm.
The lower surface of the movable circular Acrylic plate is connected to two springs with stiffness
coefficient k = 2 × 0.1867 N/mm = 0.3734 N/mm, uncompressed original length L = 43.05 mm,
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and initial compressed length l0 = 0.05 mm. A centrifugal blower with AC 220 V and 1.1 KW was used
to produce a 1707 × 10−3 kg (16.73 N) force, which is acting on the upper surface of the circular polymer
thin film with radius 70 mm, converted to the transverse uniformly distributed loads q = 1086.80 Pa,
the wind pressure value per unit area on the circular plane with radius 70 mm.
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Figure 4. Experimental setup. (a–d) The case of loading the thin film, where (a) full view and (b–d)
enlarged view; (e–f) The case of loads measurement, where (e) full view and (f) enlarged view.
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Under the action of q = 1086.80 Pa, the actually measured value of the maximum deflection
of this circular polymer thin film is about wm = 12.35 mm while the theoretical value calculated
by the closed-form solution presented in Section 3 is about wm = 11.97 mm. Figure 5 shows the
deflection profiles of this circular polymer thin film, where the solid line represents the results
theoretically calculated by the presented closed-form solution and the dash-dotted line represents the
experimental results. From Figure 5 it can be seen that the solid line is very close to the dash-dotted line,
which indicates that the closed-form solution presented here is basically reliable, from an experimental
point of view.
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To further prove the effectiveness of the closed-form solution presented in Section 3, a numerical
analysis is conducted as follows. Suppose that we continue adopting all the conditions of this experiment
example except for the spring stiffness coefficient k, i.e., the elastic modulus E = 3.01× 106 Pa, Poisson’s
ratio ν = 0.45, thickness h = 0.3 mm, and radius a = 70 mm. The transverse uniformly distributed
loads (the wind pressure value per unit area) still takes q = 1086.80 Pa; the springs still take
uncompressed original length L = 43.05 mm and initial compressed length ∆l = 0.05 mm; while the
spring stiffness coefficient k takes 10 N/mm, 1 N/mm, 0.3734 N/mm and 1 × 10−10 N/mm, respectively.
Figure 6 shows the deflection profiles of this circular polymer thin film, where the solid lines represent
the results theoretically calculated by the closed-form solution presented in this paper, the dash-dotted
line represents the experimental results, and the dashed line represents the results theoretically
calculated by the well-known Hencky solution for non-contact issues. It can be seen from Figure 6 that
the horizontal segment of the solid lines becomes shorter and shorter as the stiffness coefficient k of
springs decreases, until k takes 1 × 10−10 N/mm the horizontal segment becomes invisible to the naked
eye. This shows that the contact area between the circular polymer thin film and the movable circular
electrode plate of the parallel plate capacitor becomes smaller and smaller as the stiffness coefficient k
of springs decreases, until k takes 1 × 10−10 N/mm the contact area almost vanishes, i.e., when k takes
1 × 10−10 N/mm the contact problem here almost becomes a non-contact issue. From Figure 6 it can be
clearly seen that the solid line drawn by the closed-form solution obtained in Section 3 are very close
to the dashed line drawn by the well-known Hencky solution for non-contact issues. This indicates
that the closed-form solution presented here is reliable, as far as the recognized effectiveness of the
well-known Hencky solution is concerned.
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As is known to all, the direction of winds in nature is random. However, the closed-form solution
presented in Section 3 is observed actually to be for uniform transverse loading. Therefore, at the
front end of the proposed sensor we set up a wind guiding hollow cylinder such that the received
wind pressure could, as uniformly and transversely as possible, act on the thin film, regardless of the
direction of winds in nature. Now let us incline the centrifugal blower about 45 degrees, as shown in
Figure 7, to test the effectiveness of setting up the wind guiding hollow cylinder. The force produced
by the centrifugal blower after inclined 45 degrees is about 972 × 10−3 kg (9.53 N), which is converted
to the transverse uniformly distributed loads q = 618.79 Pa, the wind pressure value per unit area on
the circular plane with radius 70 mm. The actually measured value of the maximum deflection of the
circular polymer thin film under q = 618.79 Pa is about wm = 8.34mm, while the theoretical value
calculated by the closed-form solution presented in Section 3 is about wm = 8.12 mm. The relative
error is about 2.64%. Figure 8 shows the deflection profiles of the deformed thin film, where the
solid line represents the results calculated by the closed-form solution presented in Section 3 and the
dash-dotted line represents the experimental results. From Figure 8 it can be seen that the solid line is
very close to the dash-dotted line, which indicates that the effect of setting up the wind guiding hollow
cylinder is basically satisfactory.
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5. Numerical Calibration of the Sensor

Though the closed-form solution obtained in Section 3 has, in Section 4, been demonstrated
to have satisfactory computational accuracy, it can still not be directly used to design the proposed
elastic polymer thin film-based capacitive wind-pressure sensor. The main reason herein is that by
using the closed-form solution obtained in Section 3, we can only obtain a set of precise numerical
calculation values of the maximum deflection wm and its corresponding loads q, rather than the
analytical relationship between the loads q and the maximum deflection wm. In other words, the explicit
function q = f (wm), which is essential to design the sensor proposed here, can still not be derived from
the closed-form solution presented in Section 3, because the undetermined constants c0, c1, α and d0

can be determined only under the condition that the loads q are known beforehand.
However, the expected explicit function q = f (wm) can be obtained by the mathematical modeling

based on the precise numerical values of the maximum deflection wm and its corresponding loads q,
while these precise numerical values can be calculated by using the closed-form solution obtained in
Section 3. The basic modeling thinking is that since the applied total external forces πa2q is always
shared by the deflected circular membrane and the compressed springs, then we can make the contact
radius b as small as possible by adjusting the initial distance D0 between the initially flat circular
membrane and the initial position of the frictionless movable rigid electrode plate, such that the
deflected circular membrane in contact problem can roughly be equivalent to a deflected Föppl–Hencky
membrane (non-contact problem). The explicit function q = f (wm) for a deflected Föppl–Hencky
membrane can be derived from the well-known Hencky solution (from Equation (33) in our previous
work [35])

q =
2Eh

a4cg3(c)
w3

m, (51)

where g( ) is a function and c is an undetermined constant which depends, in the well-known
Föppl–Hencky membrane problem, on only the value of Poisson’s ratio v [35]. Therefore,
the mathematical model for the contact problem here can be approximated by

πa2q = πa2 2Eh
a4cg3(c)

w3
m + k(wm −D0 + ∆l), (52)

and is further simplified into

q =
2Eh

a4cg3(c)
w3

m +
k
πa2 wm +

k(∆l−D0)

πa2 . (53)

Therefore, if we simultaneously measure the electrical capacitance (C and C0) of both variable
capacitor and fixed capacitor, then the analytical relationship between the wind pressure q and the
ratio C0/C of the measured electrical capacitance can, from Equations (3) and (53), be written as

q =
2Eh

a4cg3(c)
(D + D0 −D

C0

C
)

3
+

k
πa2 (D + D0 −D

C0

C
) +

k(∆l−D0)

πa2 . (54)
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Obviously, the greater the initial distance D0 is, the smaller the contact radius b will be, and the
smaller the contact radius b is, the more accurate the mathematical model of Equations (53) will be,
while the greater the initial distance D0 is, the greater the minimum distinguishable wind pressure
of the sensor will be. The acceptable minimum distinguishable wind pressure could be greater
than 50–100 Pa, as far as the anticipative use of the proposed sensor for ultrahigh-rise buildings
application is concerned. By way of illustration we will show the process or steps how to do this
mathematical modeling.

Suppose that we continue adopting all the conditions of the experiment example in Section 4,
except for the spring stiffness coefficient k and the thickness h of the thin film, i.e., the elastic modulus
E = 3.01 × 106 Pa, Poisson’s ratio ν = 0.45, and radius a = 70 mm, but the thickness h = 1 mm,
the stiffness coefficient of spring k = 0.0015 and 0.01 N/mm, and the initial compressed length
of the spring ∆l = 0.05 and 0.5 mm. The initial distance D between the movable and immovable
electrode plates takes 14 mm, and the initial distance D0 takes 5 mm. Therefore, based on our previous
work [35] the undetermined constant in the well-known Föppl–Hencky membrane problem should be
c = 0.3380417 due to ν = 0.45, hence g(c) = 1.105391058. The minimum distinguishable wind pressure
is, by Equation (51), calculated to be about 68.643 Pa due to wm = D0 = 5 mm.

Table 1 shows the numerical results for k = 0.0015 N/mm and ∆l = 0.05 mm, in which the
maximum deflection wm and the contact radius b are calculated by using the closed-form solution
obtained in Section 3 and using the actually applied loads q, while the predicted loads q′′ values
are calculated by using the prediction model q′′ = 0.549144w3

m + 0.097442wm − 0.482337 (derived
from Equation (53)) and using the calculated wm values. Figures 9 and 10 show the variations of
wm and b with the loads q. Figure 11 shows the variations of q and q′′ with wm, where the solid line
represents the variation of q with wm, and the dashed line represents the variation of q′′ with wm. From
Figure 11 it can be seen that the dashed line is much closed to the solid line, which means that the
computational precision of the prediction model q′′ = 0.549144w3

m + 0.097442wm − 0.482337 is very
well due to the relatively small b (see Figure 10). Figure 12 shows the variation of the wind pressure q
with the ratio C0/C of the measured capacitance, where the dashed line is drawn by the prediction
model q′′ = −1506.851136(C0/C)3 + 6135.036768(C0/C)2

− 8327.485513C0/C + 3767.947753, which is
derived from Equation (54).

Table 1. The numerical results for k = 0.0015 N/mm and ∆l = 0.05 mm.

q [Pa] wm [mm] b [mm] q” [Pa] Relative Errors

68.7 5.0061 0.094574 68.6710 0.042213%
100 5.6598 1.774964 99.3015 0.698500%
150 6.4700 2.163162 148.3866 1.075600%
200 7.1203 2.249843 197.7866 1.106700%
220 7.3496 2.258643 217.5188 1.127818%
230 7.4586 2.260118 227.3463 1.153783%
240 7.5652 2.260116 237.2318 1.153417%
250 7.6694 2.258899 247.1701 1.131960%
300 8.1531 2.240865 296.9366 1.021133%
400 8.9823 2.180269 397.0454 0.738650%
500 9.6827 2.114636 497.3232 0.535360%
800 11.3453 1.946041 799.8860 0.014250%

1000 12.2219 1.858404 999.9076 0.009240%
1500 13.9915 1.695536 1499.9920 0.000533%
2000 15.4000 1.580867 1999.9933 0.000335%
2200 15.8973 1.543461 2199.9967 0.000150%

Relative errors = |q −q"|/q.
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Table 2 shows the numerical results for k = 0.01 N/mm and ∆l = 0.5 mm, in which the
maximum deflection wm and contact radius b are calculated by using the obtained closed-form solution
and using the actually applied loads q, while the predicted loads q′′ values are calculated by the
prediction model q′′ = 0.549144w3

m + 0.649612wm − 2.923254 (derived from Equation (53)) and using
the calculated wm values. Figures 13 and 14 show the variations of wm and b with the loads q. It can
be seen from Figures 10 and 14 that the contact radius b in Figure 14 gets much bigger than that in
Figure 10 due to the spring stiffness coefficient k increased from 0.0015 N/mm to 0.01 N/mm and
the spring initial compressed length ∆l increased from 0.005 mm to 0.5 mm. Figure 15 shows the
variations of q and q′′ with wm, where the solid line represents the variation of q with wm, and the
dashed line represents the variation of q′′ with wm. From Figure 15 it can be seen that the solid line
and dashed line diverge slightly in comparison with the case in Figure 11, which means that the
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prediction model q′′ = 0.549144w3
m + 0.649612wm − 2.923254 gives rise to a larger computational error

due to the relatively large contact radius b (see Figures 10 and 14). Figure 16 shows the variation of
the wind pressure q with the ratio C0/C of the measured capacitance, where the prediction model
q′′ = −1506.85114(C0/C)3 + 6135.03677(C0/C)2

− 8335.21590C0/C + 3775.99807, which is derived
from Equation (54), is used to draw the dashed line.
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Table 2. The numerical results for k = 0.01 N/mm and 4l = 0.5 mm.

q [Pa] wm [mm] b [mm] q’ [Pa] Relative Errors

75 5.0321 4.6977 70.3192 6.2410%
95 5.4284 5.5773 88.4441 6.9010%

100 5.5170 5.6897 92.8760 7.1240%
150 6.2919 6.1665 137.9497 8.0335%
200 6.9246 6.2119 183.9075 8.0463%
250 7.4657 6.1449 230.4311 7.8276%
300 7.9425 6.0437 277.3756 7.5415%
400 8.7623 5.8240 372.2119 6.9470%
500 9.4592 5.6189 468.0044 6.3991%
600 10.0710 5.4365 564.5354 5.9108%
800 11.1196 5.1321 759.3204 5.0850%

1000 12.0089 4.8889 955.9013 4.4099%
1200 12.7884 4.6889 1153.8950 3.8421%
1400 13.4871 4.5203 1353.0622 3.3527%
1600 14.1233 4.3756 1553.2678 2.9208%
1800 14.7094 4.2490 1754.3664 2.5352%
2000 15.3745 4.1371 2002.7175 0.1359%
2200 16.0270 4.0371 2268.1771 3.0990%

Relative errors = |q −q”|/q.
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It should be noted that as far as the design calibration of sensor is concerned, the numerical
calibration here can also be implemented by the method of curve-fitting data, i.e., by using the
nonlinear model q′′ = A1w3

m + A2wm + A3 to fit data in Table 1 or Table 2 with least square method
or gradient descent technique, as usually done in the experimental calibration of using a linear
model. Table 3 shows the fitting results to the data in Table 2 with least square method, in which
the fitted nonlinear model is q′′ = 0.5339 w3

m + 9.965 wm − 45.67, and the fitted linear model is
q′′′ = 189.6wm − 1107. Figure 17 shows the variations of q, q′′ and q′′′ with wm, where the solid line
represents the variation of q with wm, the dashed line represents the variation of q′′ with wm, and the
dash-dotted line represents the variation of q′′′ with wm. From Figure 17 and Table 3 it can be seen
that the fitting effect of the nonlinear model within 75–2000 Pa has been well improved in comparison
with Figure 15. Figure 18 shows the variations of q, q′′ and q′′′ with the ratio C0/C of the measured
capacitance, where the solid line represents the variation of q with C0/C, the dash-dotted line is drawn
by the linear-fitting model q′′′ = −2654.4C0/C + 599.4, and the dashed line by the nonlinear model
q′′ = −1465.0216(C0/C)3 + 2825.3988(C0/C)2

− 1955.8378C0/C + 433.2281. From Table 3 it can be
seen that the errors caused by the linear-fitting model has exceeded the 15% allowable error in civil
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engineering while the errors caused by the nonlinear-fitting model within 75–2000 Pa is about 3%.
Therefore, from Table 3 and Figures 17 and 18 it can be concluded that the nonlinear-fitting model
q′′ = A1w3

m + A2wm + A3 is well suitable for the numerical calibration here, while the method of fitting
a straight line is unworkable.

Table 3. The fitting results to the data in Table 2 with least square method.

q [Pa] wm [mm] q”’ (Linear-Fitting) [Pa] Relative Errors q” (Nonlinear-Fitting) [Pa] Relative Errors

75 5.0321 −145.6289 294.1719% 72.5060 3.3253%
95 5.4284 −73.1492 176.9991% 93.8264 1.2354%
100 5.5170 −56.9347 156.9347% 98.9627 1.0373%
150 6.2919 84.7962 43.4692% 150.0177 0.0118%
200 6.9246 200.5032 0.2516% 200.6043 0.3022%
250 7.4657 299.4734 19.7894% 250.8869 0.3548%
300 7.9425 386.6774 28.8925% 300.9783 0.3261%
400 8.7623 536.6332 34.1583% 400.8342 0.2086%
500 9.4592 664.0885 32.8177% 500.4716 0.0943%
600 10.0710 775.9777 29.3296% 600.0327 0.0055%
800 11.1196 967.7824 20.9728% 799.1984 0.1002%

1000 12.0089 1130.4199 13.0420% 998.6217 0.1378%
1200 12.7884 1272.9987 6.0832% 1198.3950 0.1337%
1400 13.4871 1400.7866 0.0562% 1398.5545 0.1032%
1600 14.1233 1517.1518 5.1780% 1599.1406 0.0537%
1800 14.7094 1624.3581 9.7579% 1800.1276 0.0071%
2000 15.3745 1745.9871 12.7006% 2047.7912 2.3896%
2200 16.0270 1865.3335 15.2121% 2311.9721 5.0896%

Relative errors = |q −q”|/q or |q −q”’|/q.
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6. Concluding Remarks

In this paper, an elastic polymer thin film-based capacitive wind-pressure sensor is proposed
to meet the anticipated use for real-time monitoring of structural wind pressure in civil engineering.
From this study, the following conclusions can be drawn.

The proposed capacitive wind-pressure sensor can eliminate the influence of the change of dielectric
constant caused by the change of air humidity. Therefore, it is suitable for use in natural environment.

In comparison with the existing capacitive pressure sensors using soft dielectric elastomer
or conductive thin elastic films, the proposed capacitive wind-pressure sensor has a larger
pressure-monitoring range, which profits from allowing free choice of polymer films with excellent
elasticity. It could implement 100–2000 Pa pressure measurement, and can thus meet the requirements
of wind-pressure real-time monitoring in civil engineering.

The closed-form solution presented in this paper has been proved to be basically reliable, and can
be used to generate the accurate fitting data for the numerical calibration of the proposed capacitive
wind-pressure sensor. The numerical examples conducted show that the numerical calibration here
could be conducted directly by the nonlinear-fitting model q′′ = A1w3

m + A2wm + A3, without having
to use the well-known Hencky solution.

However, the present research is only in theoretical stages or provides only a basic theoretical
framework for the design of the proposed capacitive wind-pressure sensor, and many details still need
to be further studied, especially need to be combined with more comprehensive experimental research.
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Appendix A
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β5c3
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(96β3c3
0c1 − 4τβ2c0 + 2τ2βc1 + 7τ2c0),
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c4 = − 1
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0 c1 + 15151104β10c8
0c1

−50817024β10τc7
0c2

1+32200704β9τ2c6
0c3

1+7045632β10c9
0 − 44393472β9τc8

0c1

+42056064β8τ2c7
0c2

1 + 15360β12c6
0 − 187392β11τc5

0c1 + 541440β10τ2c4
0c2

1
−516096β9τ3c3

0c3
1+150912β8τ4c2

0c4
1 − 19685895β8τc9

0+31984128β7τ2c8
0c1

−282624β10τc6
0+1718784β9τ2c5

0c1 − 2552832β8τ3c4
0c2

1 + 1024128β7τ4c3
0c3

1
+15432192β6τ2c9

0+1352448β8τ2c6
0 − 4179456β7τ3c5

0c1+2591424β6τ4c4
0c2

1
−2297856β6τ3c6

0+2920128β5τ4c5
0c1 + 1268112β4τ4c6

0 + 12096β6τ4c3
0

−24288β5τ5c2
0c1+10980β4τ6c0c2

1 − 39648β4τ5c3
0 + 36912β3τ6c2

0c1

+30828β2τ6c3
0 + 73τ8),

,

where β = (1 + α)/2, τ = (1 + 2α− 3α2)/4.

Appendix B

d1 = −
1
2
τ
βc0

,

d2 = −
1
4

1
β2c2

0

(2β2c0 − τβc1 − τc0),

d3 =
1

96
1
β5c4

0

(32β5c2
0c1 − 16τβ4c0c2

1 + 16β4c3
0 − 40τβ3c2

0c1 − 16τβ2c3
0 − τ

3),

d4 = − 1
192

1
β6c5

0
(48β6c2

0c2
1 − 24τβ5c0c3

1 + 96β5c3
0c1 − 96τβ4c2

0c2
1 + 24β4c4

0

−108τβ3c3
0c1 − 24τβ2c4

0 + 5τ2β2c0 − 4τ3βc1 − 5τ3c0)
,

d5 = 1
1920

1
β9c7

0
(384β9c3

0c3
1 − 192τβ8c2

0c4
1 + 1344β8c4

0c2
1 − 1056τβ7c3

0c3
1 + 1248β7c5

0c1

−1968τβ6c4
0c2

1 + 192β6c6
0 − 1344τβ5c5

0c1 − 192τβ4c6
0 − 40τβ6c3

0 + 112τ2β5c2
0c1

−58τ3β4c0c2
1 + 124τ2β4c3

0 − 152τ3β3c2
0c1 − 87τ3β2c3

0 − τ
5)

,
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d6 = − 1
23040

1
β10c8

0
(3840β10c3

0c4
1 − 1920τβ9c2

0c5
1 + 19200β9c4

0c3
1 − 13440τβ8c3

0c4
1

+31680β8c5
0c2

1 − 35040τβ7c4
0c3

1 + 18240β7c6
0c1 − 40800τβ6c5

0c2
1 + 1920β6c7

0
− 19200τβ5c6

0c1 + 160β8c4
0 − 1216τβ7c3

0c1 + 2104τ2β6c2
0c2

1 − 888τ3β5c0c3
1

−1920τβ4c7
0 − 1232τβ6c4

0 + 5056τ2β5c3
0c1 − 3588τ3β4c2

0c2
1 + 2596τ2β4c4

0
−4416τ3β3c3

0c1 − 1554τ3β2c4
0 + 48τ4β2c0 − 43τ5βc1 − 56τ5c0)

,

d7 = 1
1290240

1
β13c10

0
(184320β13c4

0c5
1 − 92160τβ12c3

0c6
1 + 1198080β12c5

0c4
1

−783360τβ11c4
0c5

1 + 2856960β11c6
0c3

1 − 2626560τβ10c5
0c4

1 + 2972160β10c7
0c2

1
−4343040τβ9c6

0c3
1 + 1198080β9c8

0c1 − 3571200τβ8c7
0c2

1 + 24576β11c5
0c1

−115968τβ10c4
0c2

1 + 158976τ2β9c3
0c3

1 − 59328τ3β8c2
0c4

1 + 92160β8c9
0

−1244160τβ7c8
0c1 + 22272β10c6

0 − 259584τβ9c5
0c1 + 600384τ2β8c4

0c2
1

−325440τ3β7c3
0c3

1 − 92160τβ6c9
0 − 122496τβ8c6

0 + 681984τ2β7c5
0c1

−626208τ3β6c4
0c2

1 + 217440τ2β6c6
0 − 484608τ3β5c5

0c1 − 118656τ3β4c6
0

−4288τ3β6c3
0 + 10336τ4β5c2

0c1 − 5416τ5β4c0c2
1 + 12608τ4β4c3

0
−14440τ5β3c2

0c1 − 8896τ5β2c3
0 − 43τ7)

,

d8 = − 1
5160960

1
β14c11

0
(645120β14c4

0c6
1 − 322560β13τc3

0c7
1 + 5160960β13c5

0c5
1

−3225600τβ12c4
0c6

1 + 16128000β12c6
0c4

1 − 13224960τβ11c5
0c5

1 + 24514560β11c7
0c3

1
−28385280τβ10c6

0c4
1 + 18144000β10c8

0c2
1 − 33586560τβ9c7

0c3
1 + 177408β12c5

0c2
1

−665856τβ11c4
0c3

1 + 792000τ2β10c3
0c4

1 − 271872τ3β9c2
0c5

1 + 5483520β9c9
0c1

−20885760τβ8c8
0c2

1 + 365568β11c6
0c1 − 2371584τβ10c5

0c2
0 + 4110336τ2β9c4

0c3
1

−1888128τ3β8c3
0c4

1 + 322560β8c10
0 − 5644800τβ7c9

0c1 + 155904β10c7
0

−2517504τβ9c6
0c1 + 7421376τ2β8c5

0c2
0 − 4976064τ3β7c4

0c3
1 − 322560τβ6c10

0
−741120τβ8c7

0 + 5329152τ2β7c6
0c1 − 6096192τ3β6c5

0c2
1 + 1191888τ2β6c7

0
−3349056τ3β5c6

0c1 + 14400τ2β8c4
0 − 70848τ3β7c3

0c1 + 98232τ4β6c2
0c2

1
−39204τ5β5c0c3

1 − 611712τ3β4c7
0 − 81664τ3β6c4

0 + 248224τ4β5c3
0c1

−159400τ5β4c2
0c2

1 + 143840τ4β4c4
0 − 203272τ5β3c3

0c1 − 79216τ5β2c4
0

+947τ6β2c0 − 892τ7βc1 − 1182τ7c0)

,

where β = (1 + α)/2, τ = (1 + 2α− 3α2)/4.
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