

Electrospun Composites Made of Reduced Graphene Oxide and Polyacrylonitrile-Based Activated Carbon Nanofibers (rGO/ACNF) for Enhanced CO₂ Adsorption

Faten Ermala Che Othman ¹, Norhaniza Yusof ¹, Javier González-Benito ^{2,*}, Xiaolei Fan ³ and Ahmad Fauzi Ismail ¹

- ¹ Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; fermala2@live.utm.my (F.E.C.O.); norhaniza@petroleum.utm.my (N.Y.); afauzi@utm.my (A.F.I.)
- ² Department of Materials Science and Engineering and Chemical Engineering, IQMAAB, Universidad Carlos III de MadridAvda. Universidad, 15, Leganés, 28911 Madrid, Spain;
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester M13 9PL, UK; xiaolei.fan@manchester.ac.uk
- * Correspondence: javid@ing.uc3m.es

Supplementary Information

Table S1. Dope formulation of gACNFs composite with different concentrations of reduced graphene oxide (rGO).

Sample	Concentration of rGO (% relative to PAN wt.)	PAN (% reladtive to total wt.)	DMF (% relative to total wt.)
NF	0	8	92
rGO/NF0.01	1	8	92
rGO/NF0.05	5	8	92
rGO/NF0.1	10	8	92

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).