
polymers

Article

High Molecular Weight Silk Fibroin Prepared by
Papain Degumming

Yanfei Feng, Jiaming Lin, Longxing Niu, Ying Wang, Zhiling Cheng, Xiaoxiao Sun and
Mingzhong Li *

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering,
Soochow University, Suzhou 215123, China; fengyanfei0123@126.com (Y.F.); jiaminglin1@126.com (J.L.);
niu18860902006@163.com (L.N.); wangying9518@163.com (Y.W.); C1473537105@163.com (Z.C.);
20185215041@stu.suda.edu.cn (X.S.)
* Correspondence: mzli@suda.edu.cn; Tel.: +86-512-6706-1150

Received: 20 August 2020; Accepted: 14 September 2020; Published: 16 September 2020
����������
�������

Abstract: A major challenge for the silk textile industry and for the process of silk-based biomaterials
is to find a degumming method that can completely remove sericin while avoiding obvious hydrolysis
damage to the silk fibroin. In this study, papain was used to degum Bombyx mori silk fibers under
nearly neutral conditions based on the specificity of papain to sericin. The degumming efficiency
was investigated, as well as the mechanical properties and molecular weight of the sericin-free silk
fibroin. The results indicated that increasing the papain concentration aided in sericin removal, as the
concentration increased to 3.0 g/L, the degummed fibers showed a clean, smooth surface morphology
and exhibited a yellow color when stained by picric acid and carmine, confirming the complete
removal of sericin from silk fibroin. Furthermore, an analysis of the amino acid composition indicated
that the silk fibroin suffered less damage because papain specifically cleaved the binding sites between
L-arginine or L-lysine residue and another amino acid residue in sericin, leading to a significantly
higher molecular weight and improved tensile strength compared to traditional sodium carbonate
degumming. This study provides a novel degumming method which cannot only completely remove
sericin, but also maintain the original strong mechanical properties and high molecular weight of
silk fibroin.
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1. Introduction

Bombyx mori silk, as a natural protein fiber, has been extensively used in the textile industry for
thousands of years, which is greatly appreciated for its desirable physical characteristics, such as good
mechanical properties, a pearly luster, a soft texture, and an elegant draping effect [1,2]. In recent years,
increasing attention has been focused on the application of silk fibroin (SF) in numerous biomedical
applications involved in controlled drug delivery, tissue engineering scaffolds, and implantable devices
due to a combination of its outstanding strength, biocompatibility, and tunable degradability [3,4].

A single strand of natural silk fiber contains two parallel SF fiber cores surrounded by a protective,
glue-like sericin coating [5]. To fabricate SF-based products for utilization in textiles and biomedical
materials, silk generally undergoes a critical degumming procedure to separate the SF from the sericin
covering. In textiles, the presence of sericin creates a harsh and stiff feeling to the silk fibers, obscures
a rich luster and whiteness, and prevents the elasticity of SF, subsequently, resulting in poor dyeing
performance in terms of staining uniformity and color fastness because residual sericin prevents the
dye and solution from penetrating during the wet treatment for silk [6]. In the field of SF-based
biomaterials, removing sericin from the silk covering is essential to guarantee the biocompatibility of
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materials [7–9]. During the regeneration of SF, degumming accelerates the dissolution of SF fibers in
a highly concentrated neutral salt solution, such as LiBr and CaCl2, since non-degummed fibers are
resistant to solubilization [10]. Moreover, some research has suggested that the degumming process
has a greater impact on the molecular weight (MW) of the regenerated SF than the dissolution process,
although they both induce breakage of the peptide chains [11,12]. The MW is a fundamental factor
that strongly affects the mechanical performance, biodegradation behavior, and thermal stability of the
regenerated SF [13,14], and these issues are important in the design of SF-based biomaterials. Therefore,
the degumming process has a substantial impact on the structure, properties, and application of
SF-based materials.

In conventional degumming processes, the silk fibers are treated with Na2CO3, soap, synthetic
detergents, or organic acid solution [15–17]. The preferred commercially available degumming agents
are based on Na2CO3 and Marseille soap because they have a high degumming efficiency and simple
operation [18]. Sericin can be completely removed from silk when boiled in 0.02 M Na2CO3 for 60 min,
but the breaking strength of the resulting silk fibers is significantly reduced by approximately 56% [19].
When boiled three times in 0.5 g/L Na2CO3 for 30 min and subsequently dissolved in LiBr aqueous
solution, the MW of regenerated SF is mainly distributed below 100 kDa [18], which is far lower
than the MW of native SF. Meanwhile, the falling in aesthetic properties, such as a dull appearance
and poor handling, often occurs after degumming [20,21]. Therefore, Na2CO3 fully removed the
sericin, but simultaneously caused destructive damage to SF. Commercially available Marseille soap is
produced by the saponification of olive oil reacting with sodium hydroxide. The solution is generally
weakly alkaline. Silk fibers would yield a 13.53% loss of strength when treated with a 10 g/L Marseille
soap solution at 98 ◦C for 120 min [22]. Marseille soap is expensive and can be replaced by synthetic
detergents in continuous degumming systems since it is incapable of buffering the acidity generated
by the accumulation of sericin hydrolysis products in the bath [23,24]. Both Na2CO3 and Marseille
soap can achieve a high silk degumming efficiency, however, SF is also highly sensitive to alkaline
conditions. The complete removal of sericin is often accompanied by hydrolysis, which destroys
the peptide bonds in the main chains of SF when it is exposed to strong alkaline treatments [10,12].
This leads to the undesirable deterioration in mechanical properties and a reduced MW of SF.

The enzymatic treatment of silk has received remarkable attention as an alternative for degumming
because it is performed by applying proteolytic enzymes that selectively react with only specific
parts of the silk to destroy the unwanted sericin and causes little hydrolytic damage to fibroin [25].
Alkaline proteases are considerable degumming reagents owing to their activity and stability under
alkaline conditions where they can readily break the sericin chains and produce a higher degumming
efficiency for silk [26]. In a previous study, silk fabric was treated with alkaline proteases 3374-L and
GC 897-H derived from genetically modified Bacillus subtilis at pH 10 for 30 min; the degumming ratio
was approximately 25% and 22% for the two proteases, respectively, which is close to the results of
soap-alkali degumming [27,28]. It has also been demonstrated that the microbial alkaline proteases
of Conidiobolus Brefeldianus and BOA-2, as well as the alkaline protease MTCC 5184 produced by
Beauveria sp. all effectively removed sericin at pH 9.0–10.0, resulting in smooth and separated fibers
without sericin deposits [29,30]. The combination of lipase and protease to treat silk at pH 8.5 resulted
in the similar weight loss, a cleaner longitudinal surface, and increased wettability compared to the
treatment with Marseille soap [31]. However, the presence of an alkaline environment increases the
deterioration degree of silk fibers that primarily results in a sharp decline in the MW and mechanical
properties of SF. Therefore, the application of a neutral protease that is highly specific to sericin and
has high catalytic efficiency under neutral conditions will be a potential strategy for silk degumming.

SF is the basic fibrous protein of silk and has a highly repetitive-Gly-Ala-Gly-Ala-Gly-Ser-motif,
which drives the formation of a large number of stable antiparallel β-sheet microcrystallites [32].
The highly oriented and crystalline structure is responsible for the strong resistance and stability of
fibroin in most solvents, including water, ethanol, dilute acids, and dilute bases. In contrast to SF,
sericin is a water-soluble globular protein that contains serine, aspartate, and glycine, totaling over 60%
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of the overall composition. Approximately 70% of the side groups are hydrophilic, such as hydroxyl,
carboxyl, and amino groups, endowing sericin with better water absorption and solubility than SF,
which comprises 79% hydrophobic residues [17,33]. The primarily amorphous structure is dominated
by random coil that is easily penetrated by degumming reagents [34]. The amino acid composition
and molecular conformation make sericin more susceptible to being hydrolyzed and removed by
extensive degumming methods. Importantly, SF and sericin also differ greatly in their content of
some amino acids. For example, in sericin, L-arginine and L-lysine occupy approximately 4.2% and
5.5%, while in fibroin they account for a relatively lower percentage of approximately 0.90% and
0.45%, respectively [35]. This significant difference in amino acid composition may provide a valuable
information for the removal of sericin by enzymatic degumming.

Papain is a neutral proteolytic enzyme that shows extensive proteolytic activity towards proteins
and peptides, and functions over a wide pH range of 3.0 to 9.5 [36,37]. It preferentially cleaves peptide
bonds between L-arginine or L-lysine residue and another amino acid residue [38,39], L-arginine
and L-lysine are much more abundant in sericin than in fibroin. Previous studies have showed that
degumming with papain can reduce the damage to SF due to the absence of alkaline reagents [40–42].
Therefore, papain is expected to specifically cleave sericin due to the substantial differences in the
content of susceptible targets between sericin and SF and is regarded as a potential and promising
choice for silk degumming.

We envisaged that sericin could be fully removed by applying a papain solution without a
reducing agent or surfactant under nearly neutral conditions based on the significant difference in
amino acid content between sericin and fibroin. The papain catalysis enabled the harsh and stiff
sericin to be gradually hydrolyzed and dissolved from the surface of the silk through the fixed-point
cleavage of specific amino acid reaction sites. Due to the low content of reactive sites at L-arginine and
L-lysine residues in SF, the enzymatically degummed silk sustained less hydrolytic damage to the SF
chains even though the sericin was completely isolated. These benefits led to an obviously increased
mechanical strength and MW of SF compared with the traditional Na2CO3 degumming method.

The aim of this study was to prepare completely degummed and high MW SF by applying
papain to specifically degrade sericin. First, we investigated the influence of papain concentration on
the degumming efficiency of silk fiber by assessing the percent weight loss, the color of picric acid
and carmine staining (PACS), the K/S value, and surface morphology to obtain the optimal papain
concentration. The traditional Na2CO3 degumming method was also performed for comparison.
Next, tensile strength tests, amino acid analysis, and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) of the resultant sericin-free silk fibers were conducted to evaluate the
effect of the degumming process on the mechanical properties, amino acid composition, and MW of
the resulting silk fibroin.

2. Materials and Methods

2.1. Materials

Grade 6A Bombyx mori raw silk (reeled silk fiber) with a 20/22 denier was used for this work (supplied
by Haian Soho International Co., Ltd., Nantong, China). Papain (EC3.4.22.2, 8 × 105 units/g solid,
lyophilized powder) was purchased from Beijing Solarbio Science and Technology Co., Ltd. (Beijing,
China). Carmine was obtained from Shanghai Chemical Reagent Co., Ltd. (Shanghai, China). Picric acid
was purchased from Zhejiang Taizhou Chemical Industry Co., Ltd. (Taizhou, China). Ammonium
solution (25 wt %) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
The 7-day-old fifth instar larvae of Bombyx mori silkworm were provided by the Rudong Guidance
Station of Sericulture (Nantong, China). Cellulose dialysis membranes, 12–14 kDa, were obtained from
Pierce (Waltham, MA, USA). All other chemicals were of analytical grade except as specified. Deionized
water was used throughout all experiments.
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2.2. Silk Degumming with Different Concentrations of Papain

The divided raw silk fibers were degummed at 85 ± 2 ◦C for 60 min in papain solution of
various concentrations (0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 4.0, 6.0 g/L) with a bath ratio of 1:50. The pH
value was adjusted to 6.0 and maintained throughout the process by the addition of pH 6.0 sodium
dihydrogen phosphate-citric acid buffer. The degummed silks were immediately placed into boiling
water to inactivate the enzymes and then thoroughly washed with warm distilled water. Traditional
degumming by the Na2CO3 method was used as a control and carried out according to previously
reported protocols [43]. In brief, raw silk fibers were boiled three times for 30 min each in 0.5 g/L
Na2CO3 aqueous solution and then thoroughly rinsed with deionized water. Next, all degummed
silk fibers were air-dried in an oven at 60 ± 2 ◦C. The degummed silk fibers were marked as X g/L
papain-silk and Na2CO3-silk for a simple description according to the applied degumming method,
where X represents the applied enzyme concentration.

2.3. Weight Loss Measurements

The degumming ratio Dr (%) was used to evaluate the degree of sericin removed by the degumming
treatment. It was expressed in terms of percentage weight loss from the samples after degumming
(n = 5), according to Equation (1):

Dr (%) =
W0 −W1

W0
×100 (1)

where W0 (g) and W1 (g) are the conditioned weights of silk fibers before and after degumming,
respectively.

Firstly, the moisture regain H (%) of the sample taken from raw silk before degumming was
determined by weight loss after drying at 140 ± 2 ◦C to reach a constant weight. Then, the silk to be
degummed was weighed and recorded as W0’ (g), the conditioned weight W0 was expressed as the
weight of silk at commercial moisture regain (11%) according to Equation (2):

W0 =
W0
′

1 + H
100

×(1+
11

100
) (2)

After degumming, all silk samples were dried in an oven at 140 ± 2 ◦C until reaching a constant
weight, marked as W1’(g). The conditioned weight W1 was expressed as the weight of silk at commercial
moisture regain (11%) according to Equation (3):

W1= W1
′
×(1+

11
100

) (3)

In order to describe the residue degree of sericin intuitively, degumming with Na2CO3 was taken
as the standard 100% weight loss; the degumming ratio was marked as Ds (%) accordingly. The residual
sericin ratio SR (%) of the papain-silk samples was calculated by comparing the enzyme treatment
with the Na2CO3 method, the SR (%) was expressed by Equation (4):

Residual sericin ratio SR (%) = Ds (%) −De (%) (4)

where Ds (%) and De (%) are the degumming ratio of silk treated by 0.5 g/L Na2CO3 and treated by the
papain solution with various concentrations, respectively.

2.4. Picric Acid and Carmine Staining (PACS) Assay

The degumming efficiency was qualitatively evaluated by the PACS assay. The staining solution
was prepared as follows. Briefly, 1 g of carmine was dissolved in 10 mL of 25 wt % ammonia, and heated
at 45 ◦C after the addition of 20 mL of deionized water. After the solution was cooled, 45 mL of
saturated picric acid solution was added before bringing to a final volume of 100 mL with distilled
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water and adjusting the pH to 8.0–9.0 by adding 0.1 mol/L HCl. The dried degummed silk samples and
the non-degummed raw silk were immersed in the staining solution for 5 min and then washed several
times with distilled water and dried at 60 ◦C. The stained silks were examined and photographed
for evaluation.

The ratio of the absorption and scattering coefficient (K/S) value of the stained silks was measured
with a HunterLab UltraScan PRO reflectance spectrophotometer (Standard Illuminant D65; 10◦ Standard
Observer, Reston, VA, USA) over the wavelength range of 350 to 700 nm (n = 5 for each sample).

2.5. Morphological Characterization of Degummed Silks

The morphology of the degummed silk samples and the non-degummed raw silk fibers (blank
control) was observed using field-emission scanning electron microscopy (SEM, S-4800, Hitachi, Tokyo,
Japan) after being sputtered with gold.

2.6. Tensile Properties

The fineness of the silk samples was determined by measuring the length and mass of the filaments.
An Instron 3365 material testing machine (Norwood, MA, USA) equipped with a 10 N load cell was
used to measure the mechanical properties of single fibers fixed to a paper frame. The samples were
preconditioned at 20 ± 2 ◦C and 65 ± 5% RH for 24 h prior to measurement. A total of 20 single fibers
for each sample group were tested at a drawing speed of 10 mm/min with a gauge length of 20 mm.
The results of raw silk fibers and Na2CO3-silk were used as control groups for comparison with 3.0 g/L
papain-silk. The results of mechanical properties were expressed as the mean ± standard deviation
(SD) of each group and statistically analyzed using the Student’s t-test [44]. For each test, a probability
value of p < 0.05 was considered to be statistically significant.

2.7. Preparation of Regenerated SF Solution and SF Solids

The 3.0 g/L papain-silk was dissolved in 9.3 M LiBr solution with a bath ratio of 1:30 at 60 ± 2 ◦C
for 1 h. The mixture was then dialyzed in deionized water for three days until an AgNO3 test could
detect no trace of bromide ions. The resulting solution was filtered and centrifuged at 5000 rpm for
10 min at 4 ◦C to remove aggregates and impurities. As a control group, a Na2CO3-derived SF solution
was prepared by the same procedures as above from the Na2CO3-degummed silk. The regenerated SF
solution were labeled as 3.0 g/L papain-SF and Na2CO3-SF, respectively.

A native SF sample extracted from the silk glands of Bombyx mori silkworms was set as another
control group (marked as Gland-SF). The silk glands were harvested from the abdominal side of
seven-day-old fifth instar larvae of the Bombyx mori silkworm and then washed several times in 0.7%
ice-cold normal saline. The gel-like fibroin samples were collected from the posterior division of the
silk gland and gradually dissolved in double-distilled water at 4 ◦C; the SF solution was then filtered.
The obtained Gland-SF solution and a portion of the 3.0 g/L papain-SF and Na2CO3-SF solution were
freeze-dried for amino acid analysis.

2.8. Amino Acid Analysis

An amino acid analysis was carried out on a Hitachi L-8900 Amino Acid Analyzer. The SF solids
were hydrolyzed in 6 N HCl for 24 h at 110 ◦C. After removing the HCl, the concentration of the
residues was diluted to 0.02% with 0.02 N HCl and filtered with Millipore 0.22-µm syringe filters
(Milford, CT, USA) [45].

The amino acid composition deduced from the genomic sequence of Bombyx mori silk fibroin
(Genomic-SF) was taken as another control group [46].
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2.9. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The molecular weight distribution (MWD) of the regenerated 3.0 g/L papain-SF and Na2CO3-SF
solution was determined by SDS-PAGE [45]. The concentration of the stacking gel was 5%, and the
concentrations of the separating gels were 6% and 15%. Pre-stained protein served as the MW markers
(5–100 and 50–250 kDa) for examining the MW values. The gels were stained with an Easy Stain
Coomassie Blue Kit (Invitrogen, Carlsbad, CA, USA).

The MW of target bands was further quantified by scanning densitometry, and the gray intensity
values of the protein bands were measured with the NIH ImageJ software. This involved selecting
target regions and determining the mean gray value. The band intensity was expressed relative to the
density of the band in the control sample [47].

3. Results and Discussion

3.1. Degumming Ratio

In this study, a nearly neutral condition (pH = 6.0) was chosen for the degumming system to avoid
creating an alkaline environment and to guarantee high catalytic activity of papain. The degumming
ratio and the degree of residual sericin on the silk fibers subjected to different concentrations of papain
were determined. The results were compared with those of the traditional Na2CO3 degumming
method (control group). As seen from Figure 1, the weight loss of the silk samples gradually increased
from 1.11 ± 0.06% to 22.73 ± 0.08% with the concentration of papain increasing from 0.01 to 3.0 g/L and
then the value hardly increased, at about 23% when papain concentrations were >3.0 g/L, which was
similar to the degumming ratio of the traditional Na2CO3 method (23.43 ± 0.04%). The residual
sericin remaining on the silk fibers correspondingly declined to a low level with increasing papain
concentrations, indicating the effective removal of sericin. The enzyme concentration is a key factor
affecting the efficiency of catalytic hydrolysis. To some degree, an increasing concentration provides
more bonding opportunities between the enzyme and substrates at the reaction sites. An increase in
the papain concentration accelerated the stripping of sericin. Since papain is highly specific to sericin,
it might cause little SF degradation, while sericin was completely removed. The degummed ratios did
not change significantly even as the enzyme concentration was increased from 3.0 to 6.0 g/L. Therefore,
3.0 g/L was considered as the critical concentration for the complete separation of SF and sericin.
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3.2. PACS Assay

PACS assay was used to estimate the effectiveness of silk fibers degumming by papain. Fibroin
selectively adsorbs picric acid molecules in alkaline conditions, generating a yellow color, whereas both
carmine and picric acid are able to adhere to sericin simultaneously because of its stronger adsorptive
properties. When sericin is present on silk fibers, the silk is stained red because the red color is more
visible than the yellow color [48,49]. Therefore, the depth of the red color indirectly reflects the amount
of retained sericin. If the silk turns yellow, this suggests that all sericin has been removed. PACS assay
has been recognized as a typical and standard method to identify the complete removal of sericin.
Figure 2A(a) shows that the non-degummed raw silk was stained dark red due to the presence of
large amounts of sericin coating on silk fibers. Conversely, the Na2CO3-silk displayed a yellow color
and exhibited a shiny appearance and soft texture instead of the stiff and dull properties of raw silk,
implying that the sericin had been removed (Figure 2A(k)). When the concentration of papain solution
was gradually increased, the red color gradually faded and even disappeared. The yellow color visible
on the surface suggested that the residual sericin content had decreased. The red color was dominant
when the concentration of papain solution ranged from 0.01 to 0.5 g/L, which resulted from the sericin
remaining on the fibers (Figure 2A(b–f)). When the enzyme concentration exceeded 1.0 g/L, the treated
silks emerged with a light yellow color similar to that of the Na2CO3-silk (Figure 2A(h–j)), however,
it is difficult to directly assess the degree of degumming solely by the differences in color.
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Figure 2. (A) Color change and (B) the absorption and scattering coefficient (K/S) value of silk samples
after picric acid and carmine staining: (a) Non-degummed raw silk, (b–j) degummed with 0.01, 0.05,
0.1, 0.3, 0.5, 1.0, 3.0, 4.0, and 6.0 g/L papain, respectively, (k) degummed with 0.5 g/L Na2CO3.

The K/S value at 520 nm representing a red-absorbing wavelength was detected to assess the
residual degree of sericin. As shown in Figure 2B, the raw silk showed the highest K/S value of 3.81;
the value was the lowest for Na2CO3-silk, at 0.65. The K/S values of the silks that underwent papain
treatment also showed a gradually decreasing trend as the papain concentration was elevated. The K/S
values of silk samples at ≥ 3.0 g/L papain were close to that of Na2CO3-silk, indicating that nearly all
of the sericin was removed after degumming (Figure 2B(h–j)). These results corresponded with the
obtained weight loss results shown in Figure 1, which jointly demonstrated that 3.0 g/L of papain may
be enough for complete degumming.

3.3. Morphological Observation of Degummed Silk Fibers

SEM observation revealed that the silk fibers before degumming were covered with a relatively
large amount of sericin and acted as a binder that could stick to fibroin, as illustrated in Figure 3a.
With increasing papain concentrations, the peripheral sericin layers gradually broke away from the
core fibroin fiber, and the longitudinal outline of the silk fiber was revealed (Figure 3b–g). The 3.0 g/L
papain-silk showed a highly uniform, clean, and smooth fibroin surface, indicating that the sericin
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was almost completely removed. The degummed fibers were approximately 9–11.5 µm in width
(Figure 3h,h’), which is in the expected range of native single SF fiber [50]. However, undesired
destruction and damage to the silk fibroin occurred at 4.0 and 6.0 g/L papain (Figure 3i,j), which was
attributed to slight hydrolysis of SF after the complete exfoliation of sericin. The surface of the
Na2CO3-silk had no sericin attached, but it suffered extensive damage, with deeper grooves and
larger cracks (Figure 3k). This finding shows that Na2CO3 acts unselectively towards the fibers and
penetrates the silk fiber to hydrolyze the fibroin core, resulting in physical damage and deteriorating
the quality of fibroin fiber [11,14,18].

Polymers 2020, 12, x FOR PEER REVIEW 8 of 15 

 

penetrates the silk fiber to hydrolyze the fibroin core, resulting in physical damage and deteriorating 
the quality of fibroin fiber [11,14,18]. 

The SEM results strongly suggested the occurrence of excessive degumming at > 3.0 g/L papain 
and with conventional 0.5 g/L Na2CO3. Combined with the obtained weight loss and PACS results, it 
was showed that degumming with 4.0 and 6.0 g/L papain resulted in the complete removal of sericin 
and a slight hydrolysis and degradation of SF. The slight damage to silk fibroin also indicated that 
the specificity enabled by papain degumming constituted a milder and more effective approach than 
the Na2CO3 treatment. A concentration of 3.0 g/L papain was found to be the critical concentration at 
which sericin could be entirely broken down without obvious damage and deterioration of the fibroin 
protein. With the aim of producing highly purified SF, the mildest degumming concentration of 3.0 
g/L papain was chosen for subsequent experiments. 

 
Figure 3. SEM images of silk fiber surfaces. (a) Non-degummed raw silk fibers, (b–j) degummed with 
0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 4.0, and 6.0 g/L papain, (k) degummed with 0.5 g/L Na2CO3, (h’) 
magnified image of (h). Scale bars: (a–k) 20 μm, (h’) 10 μm. 

3.4. Effect of Degumming Method on the Mechanical Performance of Silk Fibers 

Tensile properties are important parameters by which to evaluate fiber performance after 
degumming. Harsh degumming conditions cause substantial bond breakage, protein chain 
degradation, and serious microstructure destruction of SF, which acts as the core for bearing force. 
This degradation may induce deterioration of the mechanical performance of the SF fibers. Tensile 
tests were carried out to evaluate the mechanical properties of sericin-free fibers after different 
degumming methods. The stress-strain curves of the fibers are presented in Figure 4. The maximum 
tensile strength, elongation at break, and Young’s modulus are displayed in Table 1.  

The highest tensile strength and strain of silk fibers before degumming was 3.4 ± 0.3 cN/dtex 
and 25.2 ± 4.7%, respectively; the highest Young’s modulus value was 0.8 ± 0.1 cN/dtex. These data 
indicate the impressive strength of SF, which arises from its ordered hierarchical structure and β-
sheet crystallites containing substantial intramolecular/intermolecular hydrogen bonds together with 
intersheet Van der Waals and hydrophobic interactions [32,51]. Additionally, sericin serves as an 
adhesive that hinders slippage between filaments and reinforces the fiber strength [23]. When Na2CO3 
is used as a degumming agent, the temperature of the Na2CO3 solution has a great influence on the 
strength of the silk fiber after degumming [19,52,53]. In this study, the silk fibers were degummed 
with a boiled Na2CO3 aqueous solution. The strength of Na2CO3-silk fiber sharply decreased to 1.5 ± 
0.2 cN/dtex, with the lowest Young’s modulus of 0.4 ± 0.1 cN/dtex, demonstrating a considerable 

Figure 3. SEM images of silk fiber surfaces. (a) Non-degummed raw silk fibers, (b–j) degummed
with 0.01, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, 4.0, and 6.0 g/L papain, (k) degummed with 0.5 g/L Na2CO3,
(h’) magnified image of (h). Scale bars: (a–k) 20 µm, (h’) 10 µm.

The SEM results strongly suggested the occurrence of excessive degumming at > 3.0 g/L papain
and with conventional 0.5 g/L Na2CO3. Combined with the obtained weight loss and PACS results,
it was showed that degumming with 4.0 and 6.0 g/L papain resulted in the complete removal of sericin
and a slight hydrolysis and degradation of SF. The slight damage to silk fibroin also indicated that the
specificity enabled by papain degumming constituted a milder and more effective approach than the
Na2CO3 treatment. A concentration of 3.0 g/L papain was found to be the critical concentration at
which sericin could be entirely broken down without obvious damage and deterioration of the fibroin
protein. With the aim of producing highly purified SF, the mildest degumming concentration of 3.0 g/L
papain was chosen for subsequent experiments.

3.4. Effect of Degumming Method on the Mechanical Performance of Silk Fibers

Tensile properties are important parameters by which to evaluate fiber performance after
degumming. Harsh degumming conditions cause substantial bond breakage, protein chain degradation,
and serious microstructure destruction of SF, which acts as the core for bearing force. This degradation
may induce deterioration of the mechanical performance of the SF fibers. Tensile tests were carried
out to evaluate the mechanical properties of sericin-free fibers after different degumming methods.
The stress-strain curves of the fibers are presented in Figure 4. The maximum tensile strength,
elongation at break, and Young’s modulus are displayed in Table 1.
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Figure 4. Stress-strain curves of sericin-free silk fibers prepared by two degumming methods,
with non-degummed raw silk as a control.

Table 1. Mechanical properties of silk fibers treated by two degumming methods (n = 20).

Sample Breaking Stress
(cN/dtex) Breaking Strain (%) Young’s Modulus

(cN/dtex)

Non-degummed silk 3.4 ± 0.3 25.2 ± 4.7 0.8 ± 0.1
3.0 g/L papain-silk 2.7 ± 0.2 ** 16.5 ± 2.2 * 0.7 ± 0.1 *

0.5 g/L Na2CO3-silk 1.5 ± 0.2 8.7 ± 2.2 0.4 ± 0.1

*, ** Indicates significant differences compared with Na2CO3-Silk at p < 0.05 and p < 0.01, respectively.

The highest tensile strength and strain of silk fibers before degumming was 3.4 ± 0.3 cN/dtex and
25.2 ± 4.7%, respectively; the highest Young’s modulus value was 0.8 ± 0.1 cN/dtex. These data indicate
the impressive strength of SF, which arises from its ordered hierarchical structure andβ-sheet crystallites
containing substantial intramolecular/intermolecular hydrogen bonds together with intersheet Van
der Waals and hydrophobic interactions [32,51]. Additionally, sericin serves as an adhesive that
hinders slippage between filaments and reinforces the fiber strength [23]. When Na2CO3 is used as a
degumming agent, the temperature of the Na2CO3 solution has a great influence on the strength of
the silk fiber after degumming [19,52,53]. In this study, the silk fibers were degummed with a boiled
Na2CO3 aqueous solution. The strength of Na2CO3-silk fiber sharply decreased to 1.5 ± 0.2 cN/dtex,
with the lowest Young’s modulus of 0.4 ± 0.1 cN/dtex, demonstrating a considerable decline in
mechanical properties. This was mainly attributed to the breakage and scission of the SF chains and the
partial hydrolysis of silk macromolecules during the treatment [24]. Defects exposed on the surface of
SF are potentially weak regions that can readily break down when external force is applied. This was
demonstrated by the lower strain of 8.7 ± 2.2% for the Na2CO3-silk fibers. As expected, the 3.0 g/L
papain-silk fiber showed higher tensile strength (2.7 ± 0.2 cN/dtex) and noticeably increased strain
(16.5 ± 2.2%) and Young’s modulus (0.7 ± 0.1 N/dtex) compared to the Na2CO3-silk fiber, confirming
the less destructive exfoliation of the SF component and more limited impact on the mechanical
properties. The results indicated that the mild and efficient degumming produced by the 3.0 g/L
papain solution induced less degradation of the SF chains while simultaneously is available to achieve
sericin-free silk fibers with better mechanical performances.

3.5. Amino Acid Analysis

Amino acid analysis was conducted to compare the amino acid composition of Gland-SF,
Genomic-SF, 3.0 g/L papain-SF, and 0.5 g/L Na2CO3-SF. Figure 5 shows that Ser, Gly, and Ala accounted
for approximately 87% of the total amino acids present in 3.0 g/L papain-SF, which has no significant
difference with the results derived from Genomic-SF and Gland-SF. No significant differences in
the major components implied that papain degumming had no effect on the crystallization regions
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of SF. However, the amount of Lys and Arg was far lower in 3.0 g/L papain-SF than that in other
groups, for example, compared with natural Gland-SF (0.11 vs. 0.33 mol% and 0.27 vs. 0.45 mol%,
respectively, p < 0.05). These obvious differences revealed that Arg and Lys were characteristic cleavage
sites degraded by papain. Although the sericin was removed, the process did not cause excessive
SF degradation because the hydrolysis of SF was initiated by the breakage of Arg and Lys without
detectable loss of the other amino acids. The decreased relative content of Arg and Lys in SF also
demonstrated the specificity of papain to sericin, which has a much higher content of Lys and Arg
than SF. These results further implied that the SF obtained from 3.0 g/L papain retains a high level of
peptide chain integrity.
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3.6. Influence of Degumming Methods on the MWD

The MWD of the regenerated SF solution were measured by SDS-PAGE. Bombyx mori silk fibroin
is mainly composed of six heavy chains (~350 kDa) and six light chains (~25.8 kDa) linked by a single
disulfide bond [10,50]. Alkaline degumming can result in severe degradation of SF macromolecules by
breaking the peptide bonds in the main chains, which lowers the MW of the regenerated SF [54,55].
In the SDS-PAGE results shown in Figure 6(a-1),(a-2), the Na2CO3-SF had a broad MWD in the lower
MW ranges, with sequential bands from 5 to 100 kDa. Notably, 3.0 g/L papain-SF exhibited higher MW
bands distributed ranging from 100 to 250 kDa. A prominent band at ~25 kDa could be assigned to the
L-chain in sample B, while this band was not present in sample A, indicating that the SF degradation
by 3.0 g/L papain is milder.

The semi-quantitative analysis of the MWD of the samples was accomplished by determining the
gray intensity values in the different MW regions. As shown in Figure 6b, 3.0 g/L papain-SF had a
significantly higher percentage of polypeptides with a MW > 100 kDa compared to Na2CO3-SF, which
illustrated the presence of longer SF chains after the papain treatment. The statistical results revealed
an average MW of approximately 60 kDa for Na2CO3-SF, while the average MW of papain-SF was
nearly 145 kDa. These results proved that the 3.0 g/L papain-silk underwent a milder sericin removal
process and generated higher MW SF compared with the traditional 0.5 g/L Na2CO3 method.
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3.7. Potential Degumming Mechanism

During the degumming process, only sericin is desired to be removed from the core-shell
composite structure of silk fibers, with little damage to the fibroin. In the traditional degumming
method, the Na2CO3 solution is strongly alkaline owing to the characteristics of strong base-weak acid
salt. Peptide bonds in the main chains of proteins are easily attacked under alkaline environment and
the nonspecific reaction caused the hydrolysis of the peptide chains [56], which is the main reason
for the removal of sericin. The solubility of sericin can be also enhanced by changing the –COOH
on the side chain of sericin to –COONa+ [57]. Fully swollen silk fibers become gradually permeable
to small molecules, and Na2CO3 can be easily adsorbed onto the core fibroin, provoking undesired
hydrolysis of fibroin. In addition, when Na+ is combined with SF, a lot of water molecules will
be brought and penetrated into amorphous regions and act as a powerful plasticizer to disrupt the
inter- and intra-molecular hydrogen bond due to the strong hydratability of Na+, the destruction
of hydrogen bond further reduces the van der Waals force between the protein chains, resulting in
increased possibility for relative displacements of protein chains and stress relaxation [58,59]. Although
sericin can be completely removed with the aid of Na2CO3, it remains to cause serious breakage to the
SF molecular chains. This damage can lead to a false degumming ratio that includes the weight loss
arising from the degraded SF and results in the severe loss of tensile strength and the decrease in MW
of SF, which has been previously reported [18,19]. Compared with traditional degumming methods,
enzymatic degumming has higher sericin specificity and milder reaction conditions. Considerable
evidence for alkaline protease degumming has shown its advantages over Na2CO3 degumming.
Nevertheless, the treatment under alkaline environment is harmful to silk fibers because silk has poor
alkaline resistance. Therefore, in the current study, papain was adopted for silk degumming under
nearly neutral conditions to avoid the use of alkaline conditions based on the substantial differences in
amino acid composition between SF and sericin.

The underlying degumming mechanism of papain treatment is shown in Figure 7. Due to the
high MW (≈23 kDa) of the papain molecules, the presence of steric hindrance makes it difficult for
the enzyme to penetrate into silk fibers. The degumming process is essentially considered as the
layer-by-layer exfoliation of the sericin from the surface of silk fiber. Importantly, papain molecules
specifically hydrolyze amino acid sequences of sericin by breaking the peptide bonds formed by
L-arginine or L-lysine and another amino acid. As the sericin macromolecular chains are hydrolyzed
and cracked, they are gradually exfoliated from the fiber surface layer-by-layer. The concentration of
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3.0 g/L papain is adequate for the complete removal of sericin. When the papain concentration was
increased above this, the SF became the target of papain due to a lack of sericin protection. The limited
cleavage sites of SF leads to less SF damage, resulting in improved tensile strength and higher MW SF
compared with traditional Na2CO3 degumming. Notably, the mild papain degumming method has
a lower environmental impact, lower energy consumption, and can avoid residual alkaline regents
in degummed products, all of which are powerful advantages that should be taken into account in
industrial production.Polymers 2020, 12, x FOR PEER REVIEW 12 of 15 
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4. Conclusions

The applicability and impact of using papain to degum Bombyx mori silk fibers was investigated.
The effects of the enzymatic reaction on the degumming efficiency, mechanical properties, amino acid
composition, and molecular weight were compared to those of the conventional Na2CO3 degumming
method. The results showed that a papain concentration of 3.0 g/L was sufficient to achieve the
complete removal of sericin without obvious damage to the silk fibroin owing to the specificity
of papain for sericin. The resulting fibroin exhibited a higher molecular weight and an enhanced
tensile performance. This study provides a novel degumming method with high efficiency and low
environmental pollution for obtaining high molecular weight silk fibroin and contributes to improving
the quality of SF-based materials.
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