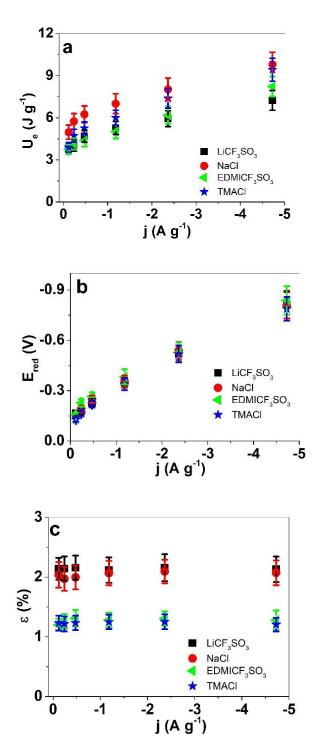

Supplementary:

Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and Energy Storage


Nguyen Quang Khuyen ¹, Rudolf Kiefer ^{1,*}, Zane Zondaka ², Gholamreza Anbarjafari ^{3,4}, Anna-Liisa Peikolainen ², Toribio F. Otero ⁵ and Tarmo Tamm ²

Received: 22 August 2020; Accepted: 8 September 2020; Published: date

Figure S1. Cyclic voltammetry (scan rate 5 mV s⁻¹) in potential range 0.65 to -0.6 V against Ag/AgCl (3 M KCl) of PPy films operating in aqueous electrolytes of LiCF₃SO₃ (black line), NaCl (red line), EDMICF₃SO₃ (green line) and TMACl (blue line) showing the charge density Q against potential E of **a**: PPy-PEO/DBS and **b**: PPy/DBS films.

Figure S2. Chronoamperometry of PPy /DBS linear films at varied current densities (±0.12 A g⁻¹, ±0.24 A g⁻¹, ±0.48 A g⁻¹, ±1.2 A g⁻¹, ±2.4 A g⁻¹ and ±4.8 A g⁻¹) and frequencies (0.0025 Hz, 0.005 Hz, 0.01 Hz, 0.025 Hz, 0.05 Hz and 0.1 Hz) in different aqueous electrolytes LiCF₃SO₃ (■), NaCl (•), EDMICF₃SO₃ (■) and TMACl (★) showing in **a**: the electrical Energy U_e, in **b**: the potential E_{red} at reduction and in **c**: the linear strain ε against the current density j at reduction.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).