

Article

pH-Responsive Polyketone/5,10,15,20-Tetrakis-(Sulfonatophenyl)Porphyrin Supramolecular Submicron **Colloidal Structures**

Esteban Araya-Hermosilla ^{1,*}, Ignacio Moreno-Villoslada ^{2,*}, Rodrigo Araya-Hermosilla ³, Mario E. Flores ², Patrizio Raffa 4, Tarita Biver 5, Andrea Pucci 6, Francesco Picchioni 4 and Virgilio Mattoli 1.*

- ¹ Center for Micro-BioRobotics, Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 2 5090000, Chile; mario.flores@uach.cl
- ³ Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago 8940000, Chile; rodrigo.araya@utem.cl
- ⁴ Department of Chemical Product Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands; p.raffa@rug.nl (P.R.); f.picchioni@rug.nl (F.P.)
- ⁵ Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy; tarita.biver@unipi.it
- ⁶ Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy; andrea.pucci@unipi.it
- * Correspondence: esteban.araya@iit.it (E.A.-H.); imorenovilloslada@uach.cl (I.M.-V.); virgilio.mattoli@iit.it (V.M.); Tel.: +39-050-883417 (E.A.-H.); +56-(63)-2293520 (I.M.-V.); +39-050-883417 (V.M.)

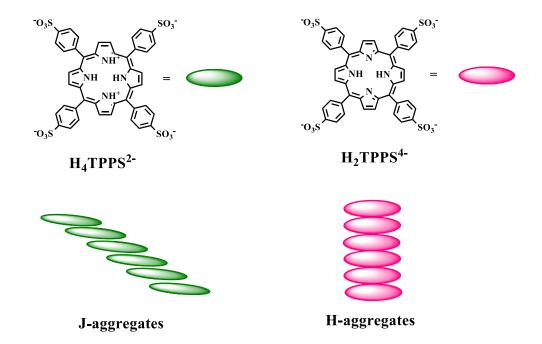


Figure S1. Schematic structure of J-aggregates (left) and H-aggregates (right) formed by TPPS.

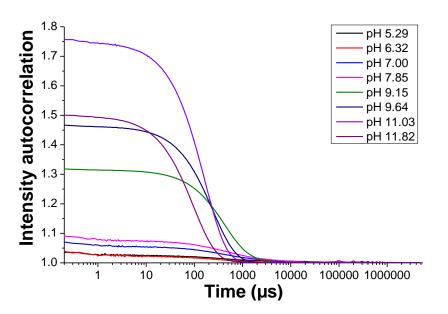
Section S1: Model compound synthesis

As described previously by our group [1], a model compound was synthetized and use as a reference to characterize the complex structure of the polymer. The model compound system was synthetized by mixing a one to one ratio between 2,5-hexadione and HEDA in a round bottom flask provided with a magnetic stirrer and reflux. The reaction was set under vigorous stirring at 100 °C for 4 h using a Heat-OnTM Block System. The product was analyzed by ¹H NMR (Varian Mercury Plus 400 MHz spectrometer) using CDCl3 as solvent. δ = 2.2 ppm (s, 6 H), 2.7 ppm (t, 2H, J = 6.9 Hz), 2.9 ppm (t, 2H, J = 6.9 Hz), 3.6 ppm (t, 2H, J = 6.9 Hz) 3.9 ppm (t, 2H, J = 6.9 Hz), 5.8 ppm (s, 2H).

Section S2: Polyketone modification

....

The PK was preheated to the liquid state at 100 °C for a few min. Then, HEDA was added dropwise to the reactor in the first 30 min. The stirring speed was set at 400 rpm during 4 h. During the reaction, the color of the reaction mixture changed progressively from light yellow to a range of brown due to pyrrole formation as polymer backbone. The product was cooled down to room temperature and dissolved in chloroform for purification by the solvent/solvent extraction technique using brine as co-solvent. The process was repeated three times to remove unreacted amine molecules. The resulting polymer solution was dried at reduced pressure and transferred to a vacuum oven at 50 °C for 24 h for complete dryness. To avoid hydration, the samples were sealed in brown glass vials and stored at 6 °C for further characterization. Finally, the polymers were analyzed by ¹H-NMR and ATR-FT-IR. The carbonyl conversion was defined as the molar fraction of 1,4-dicarbonyl units converted via the Paal-Knorr reaction (*x*). It was calculated by elemental analysis EA (Elementar Vario Micro Cube) as follows.


$$x = \frac{NM_c}{nM_N + N(M_c - M_p)} \tag{1}$$

where *N* is the nitrogen content per g, M_N represents the atomic mass of nitrogen (14 g/mol), *n* is the number of nitrogen atoms of the converted 1,4-dicarbonyl segment (2 units for HEDA), M_p is the molecular weight of the converted 1,4-dicarbonyl segment (194 g/mol for HEDA), and M_c is the molecular weight of the non-converted 1,4-dicarbonyl segment (126 g/mol) of PK. M_p and M_c were calculated taking into account the incorporation of ethylene and propylene in the copolymers at a ratio of 1:1.

In order to adjust the stoichiometry of the functional groups, a polymer molecular weight (PMW) of 236 g/mol of aliphatic amino groups (or hydroxyl groups) was considered, related with x of 0.74. This is calculated by the following formula.

$$PMW = \frac{xM_p + yM_c}{x} \tag{2}$$

where *y* is the fraction of non-converted 1,4-dicarbnyl groups, provided by x + y = 1.

Figure S2. Correlograms of the PKHEDA (1×10^{-4} M) polymeric suspensions.

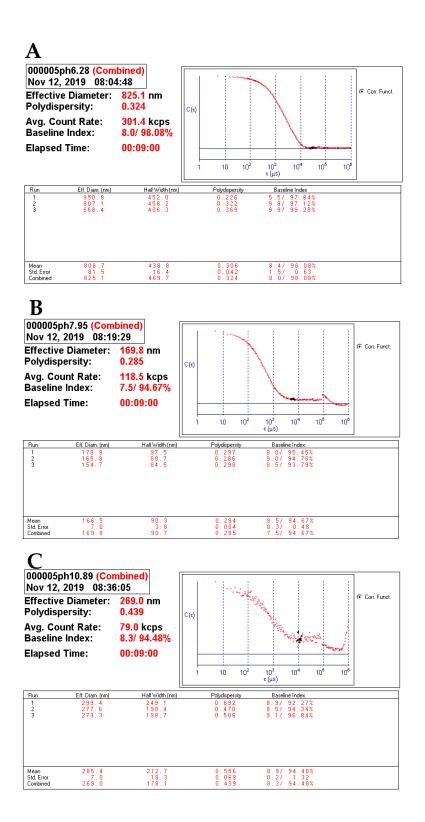
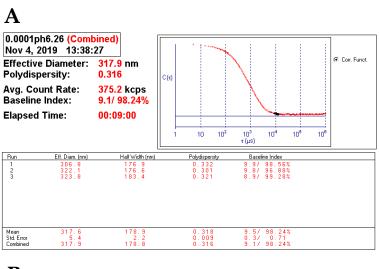



Figure S3. Size analysis report of the PKHEDA (1×10^{-4} M)/ TPPS (5×10^{-5}) system at different pHs (A) 6.28, (B) 7.95, (C) 10.89.

B

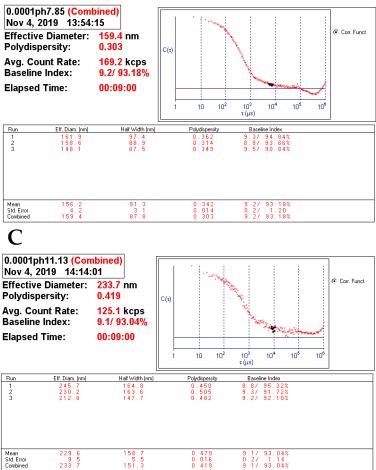


Figure S4. Size analysis report of the PKHEDA $(1 \times 10^{-4} \text{ M})/\text{TPPS} (1 \times 10^{-4})$ system at different pHs (A) 6.26, (B) 7.85, (C) 11.13.

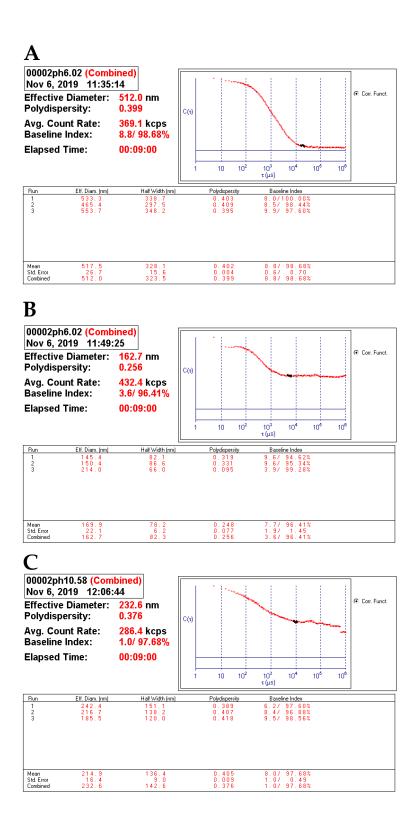
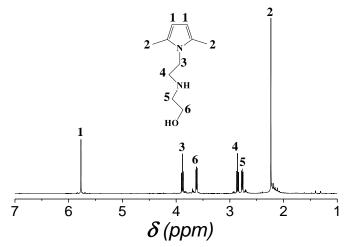



Figure S5. Size analysis report of the PKHEDA (1×10^{-4} M)/TPPS (2×10^{-4}) system at different pHs (A) 6.02, (B) 7.56, (C) 10.58.

Concentration PKHEDA (M functional groups)	Concentration TPPS (M)	pН	Solution (mL)
1 × 10-4	5×10^{-5}	2.57	10
1×10^{-4}	5×10^{-5}	4.07	10
1×10^{-4}	5×10^{-5}	6.28	10
1×10^{-4}	5×10^{-5}	7.95	10
1×10^{-4}	5×10^{-5}	10.89	10
1×10^{-4}	1×10^{-4}	2.33	10
1×10^{-4}	1×10^{-4}	3.72	10
1×10^{-4}	1×10^{-4}	6.26	10
1×10^{-4}	1×10^{-4}	7.85	10
1×10^{-4}	1×10^{-4}	11.13	10
1×10^{-4}	2×10^{-4}	2.55	10
1×10^{-4}	2×10^{-4}	4.66	10
1×10^{-4}	2×10^{-4}	6.02	10
1×10^{-4}	2×10^{-4}	7.56	10
1×10^{-4}	2×10^{-4}	10.58	10

Table S1. Ultrafiltration experimental conditions

Figure S6. ¹H-NMR spectrum of pyrrol-HEDA model compound used as reference to assign the peaks to the polymer.

8 of 10

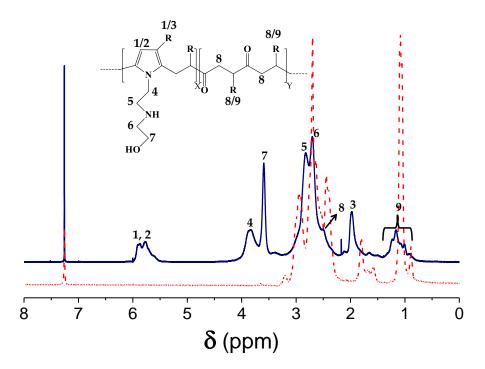
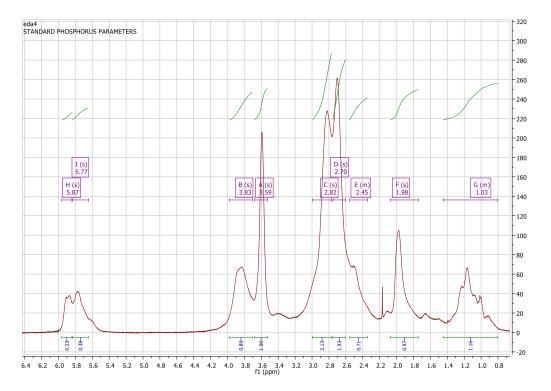
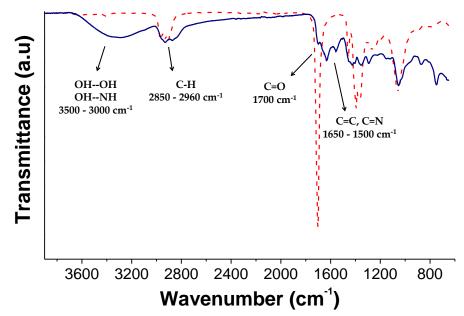
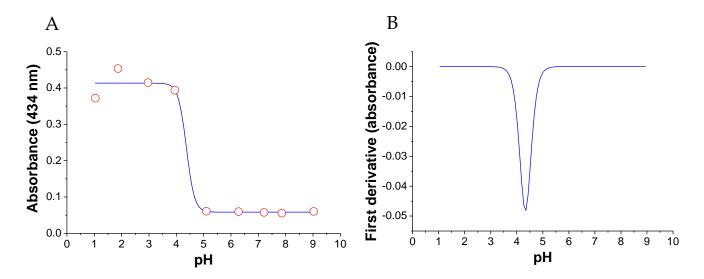


Figure S7. 1H NMR spectra of PK before (red dashed line) and after (solid black line) modification with HEDA

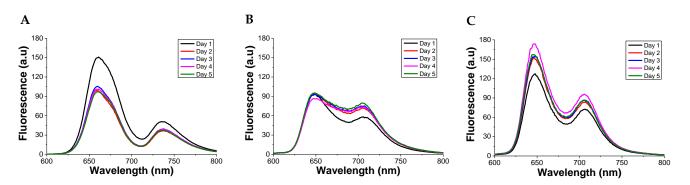

Figure S8. ¹H NMR spectrum of PK functionalized with HEDA and its respective integrals.

Figure S9. ATR-FTIR spectra of PK before (red dashed line) and after (solid blue line) modification with HEDA. Notice the hydrogen bonding peak-band around 3300 cm⁻¹)

Figure S10. (**A**) Transition pH of TPPS at a concentration of 1×10^{-6} M. The absorbance of the TPPS band at 434 nm was used to estimate the transition pH in a range of pH from 1 to 9 that reveals the protonation of the pyrrole groups. (**B**) Fitting data using the Boltzmann sigmoidal curve and further derivation to find the transition pH of TPPS at 4.35.

Figure S11. Fluorescence spectra of TPPS at a concentration of 5 × 10⁻⁵ M and different pH in the presence of PKHEDA 1 × 10⁻⁴ M. pHs: (**A**) 2.92, (**B**) 6.29, (**C**) 10.7. Excitation slit 5 nm and emission slit 10 nm. Excitation wavelength 430 nm.

Reference.

1. Araya-Hermosilla, E.; Roscam Abbing, M.; Catalán-Toledo, J.; Oyarzun-Ampuero, F.; Pucci, A.; Raffa, P.; Picchioni, F.; Moreno-Villoslada, I. Synthesis of tuneable amphiphilic-modified polyketone polymers, their complexes with 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin, and their role in the photooxidation of 1,3,5-triphenylformazan confined in polymeric nanoparticles. *Polymer* **2019**, *167*, 215-223, doi:https://doi.org/10.1016/j.polymer.2019.01.079.