Supplementary material

Temperature behavior of aqueous solutions of poly(2oxazoline) homopolymer and block copolymers investigated by NMR spectroscopy and dynamic light scattering

Rafał Konefał^{1*}, Peter Černoch¹, Magdalena Konefał¹ and Jiří Spěváček^{1,&,*}

- ¹ Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic; <u>konefal@imc.cas.cz</u> (R.K.), <u>cernoch@imc.cas.cz</u> (P.Č.),magdalenakonefal@imc.cas.cz (M.K.), <u>spevacek@imc.cas.cz</u> (J.S.),
- * Correspondence: <u>konefal@imc.cas.cz</u> (R.K.), <u>spevacek@imc.cas.cz</u> (J.S.)
- & Professor Emeritus (J.S.)

Figure S1. Temperature dependences of the fraction p as determined for all signals of various proton types in D₂O solution (c = 5 wt%) of PIPOx homopolymer during gradual cooling.

Figure S2. Temperature dependences of the fraction *p* as determined for all signals of various proton types in D₂O solution (c = 5 wt%) of P(MeOx/IPOx)(14/86) copolymer during gradual cooling.

Figure S3. Temperature dependences of the fraction *p* as determined for all signals of various proton types in D₂O solution (c = 5 wt%) of P(MeOx/EtOx)(28/72) copolymer during gradual cooling.

Figure S4. Temperature dependences of the fraction *p* as determined for all signals of various proton types in D₂O solution (c = 5 wt%) of P(MeOx/EtOx)(7/93) copolymer during gradual cooling.

Figure S5. Temperature dependences of the fraction p as determined for all signals of various proton types in D₂O solution (c = 0.5 wt%) of PIPOx homopolymer during gradual heating.

Figure S6. Temperature dependences of the fraction p as determined for all signals of various proton types in D₂O solution (c = 20 wt%) of PIPOx homopolymer during gradual heating.

Figure S7. Temperature dependences of the fraction p as determined for all signals of various proton types in D₂O solution (c = 0.5 wt%) of P(MeOx/EtOx)(28/72) copolymer during gradual heating.

Figure S8. Temperature dependences of the fraction p as determined for all signals of various proton types in D₂O solution (c = 20 wt%) of the P(MeOx/EtOx)(28/72) copolymer during gradual heating.

Figure S9. Temperature dependence (a) and time dependence at 360 K (b) of ¹H spin-spin relaxation times T_2 of HDO in D₂O solution (c = 5 wt%) of the P(MeOx/IPOx)(14/86) copolymer.

Figure S10. Temperature dependence (a) and time dependence at 360 K (b) of ¹H spin-spin relaxation times T_2 of HDO in D₂O solution (c = 5 wt%) of the P(MeOx/EtOx)(28/72) copolymer.

Figure S11. 2D NOESY spectrum of the P(MeOx/IPOx)(14/86) block copolymer in D_2O solution (c = 5 wt%) measured at 295 K with mixing time 600 ms. On the right there is 1D slice spectrum extracted from the signal at 1.05 ppm of CH₃ protons of PIPOx units of the NOESY spectrum.

Figure S12. 2D NOESY spectrum of the P(MeOx/IPOx)(14/86) block copolymer in D₂O solution (c = 5 wt%) measured at 320 K with mixing time 600 ms. On the right there is 1D slice spectrum extracted from the signal at 1.05 ppm of CH₃ protons of PIPOx units of the NOESY spectrum.

Figure S13. 2D NOESY spectrum of the P(MeOx/IPOx)(14/86) block copolymer in D₂O solution (c = 5 wt%) measured at 335 K with mixing time 600 ms. On the right there is 1D slice spectrum extracted from the signal at 1.05 ppm of CH₃ protons of PIPOx units of the NOESY spectrum.

Figure S14. 2D NOESY spectrum of the P(MeOx/EtOx)(28/72) block copolymer in D₂O solution (c = 5 wt%) measured at 295 K with mixing time 600 ms.

Figure S15. 2D NOESY spectrum of the P(MeOx/EtOx)(28/72) block copolymer in D₂O solution (c = 5 wt%) measured at 340 K with mixing time 600 ms.

Figure S16. 2D NOESY spectrum of the P(MeOx/EtOx)(28/72) block copolymer in D₂O solution (c = 5 wt%) measured at 360 K with mixing time 600 ms.