Supporting Information

Ameliorated performance of sulfonated poly(arylene ether sulfone) block copolymers with increased hydrophilic oligomer ratio in proton exchange membrane fuel cells operating at 80% relative humidity

Ae Rhan Kim ^{1, 2,*}, Mohanraj Vinothkannan ³, Kyu Ha Lee ¹, Ji Young Chu ¹, Sumg Kwan Ryu ², Hwan Gyu Kim ¹, Jae-Young Lee ⁴, Hong-Ki Lee ⁴ and Dong Jin Yoo ^{1, 2, 3, **}

- ¹ Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- ² Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
- ³ R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
- ⁴ Hydrogen Fuel Cell Center, Woosuk University, 151 Dusan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55315, Republic of Korea

* Correspondence: aerhankim@jbnu.ac.kr (A.R. Kim); djyoo@jbnu.ac.kr (D.J. Yoo)

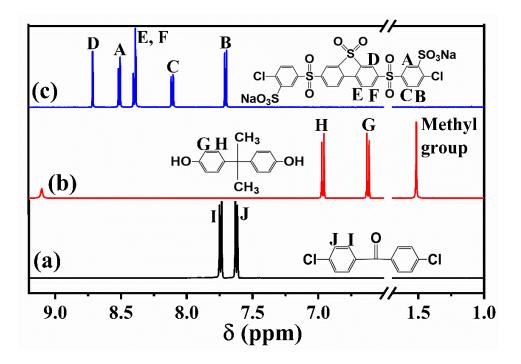


Figure S1. ¹H NMR spectra of (a) DCBP, (b) BPA and (c) sBCPSBP. The monomers were dissolved in DMSO-d₆ for ¹H NMR analysis.

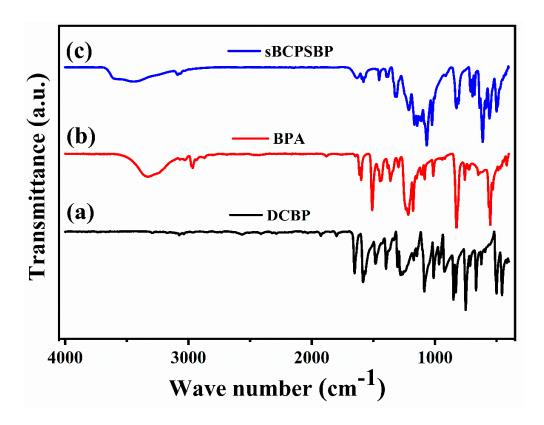


Figure S2. FT-IR spectra of (a) DCBP, (b) BPA and (c) sBCPSBP.