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Abstract: We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with
different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward,
we fabricated the corresponding membranes via a solution-casting approach. We verified the
SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed
the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic
force microscope (AFM) results revealed that we effectively attained phase separation of the SPES
membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition
temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES
membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange
capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton
conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided
a 74.7 mS cm−1 proton conductivity at 90 ◦C, which is better than other SPES membranes, but slightly
lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange
membrane fuel cells (PEMFCs) at 60 ◦C and 80% relative humidity (RH), the PEMFC power density
exhibited a similar increment-pattern like proton conductivity pattern.

Keywords: sulfonated poly(arylene ether sulfone); phase-separation; proton conductivity;
proton-exchange membrane fuel cells; 80% relative humidity

1. Introduction

Proton-exchange membranes (PEMs) are gaining great attention as both ion conductors and
reactant separators for various energy storage/conversion devices such as fuel cells, solar cells and
secondary batteries [1–4]. Among various fuel cells, proton-exchange membrane fuel cells (PEMFCs)
have various inherent benefits such as high energy density and efficiency, trivial pollution contributions
and quick startup times [5]. Because of these benefits, they are competitive with traditional batteries
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and combustion engines as clean power sources for automobiles and stationary applications [6,7].
Due to their high ion conductivity and extended chemical stability, perfluorosulfonic acid (PFSA)
membranes—especially Nafion—are widely utilized as PEMs for PEMFCs [8–10]. PFSA membranes
are by no means perfect, however. They are expensive, exhibiting low proton conductivity at high
temperatures and low relative humidity (RH) and are highly permeable for fuels. Proton conductivity
degradation is caused by Nafion’s inability to retain water in ionic clusters [11]. Moreover, high
fuel crossover of Nafion from anode to cathode owing to its direct pathway for fuel permeation [12].
These drawbacks hinder Nafion’s widespread commercialization. Sulfonated poly(arylene ether
sulfone) (SPAES) are a hydrocarbon material containing sulfone and ether bridges [13,14]. They are
the most commonly adopted material for PEM fabrication because of their design and fabrication
flexibility, low price, tunable proton conductivity and film-forming ability [15]. One inherent limitation
of the SPES membrane is its low mechanical integrity and, thereby, PEMFC durability. This low
mechanical integrity is caused by a high degree of sulfonation or maximum hydrophilic fragment
proportion in SPES. A low sulfonation degree or minimal hydrophilic fragment proportion can also be
problematic due to decreased water absorption and proton conductivity [15,16]. It is highly desirable
to fabricate SPES with equal proportions of hydrophilic and hydrophobic units for PEM applications,
since this would offer reasonable ion conductivity, as well as dimensional, thermal and mechanical
stability [17–19]. In the SPES block copolymer, hydrophilic units provide the ability to conduct
protons and uptake water, whereas hydrophobic unit enhance, thermal, mechanical, dimensional and
oxidative stabilities of membranes. There are many types of SPES-based block copolymer membranes
available that have high ion conductivity, a comprehensive mechanical modulus and thermal stability.
While effects of variations in oligomer ratio on mechanical properties, chemical properties and proton
conductivity have been studied extensively, there is little understanding of SPES block copolymer
membrane suitability for fuel cell application.

Hence, the objective of this study is to prepare a series of SPES block copolymer membranes
and apply them in a PEMFC operating under 80% RH and 60 ◦C. We designed and synthesized
(A) hydrophobic oligomer-, (B) hydrophilic oligomer-, (AB) hydrophobic-hydrophilic polymer-, (ABA)
hydrophobic-hydrophilic-hydrophobic polymer-, and (BAB) hydrophilic-hydrophobic-hydrophilic
polymer-SPES types via a simple and cost-competitive poly condensation strategy. We fabricated
the corresponding membranes using a solution-casting approach. We characterized membrane
surface morphologies to evaluate phase separation and surface variation for various oligomer ratios.
We also investigated water uptake, swelling ratio, ion-exchange capacity, water-contact angle, water
sorption and proton conductivity since they are intimately related to fuel-cell performance. Finally,
we individually integrated AB, ABA and BAB membranes into the PEMFC device at 80% RH and
60 ◦C to assess the suitability of these membranes for real-time applications. Among them, the BAB
membrane demonstrated a superior PEMFC power output: 124.5 mW cm−2 at a 206.3 mA cm−2

load-current output.

2. Materials and Methods

2.1. Materials

Bisphenol-A (BPA, 228.29 g mol−1), 4,4’-bis[(4-chlorophenyl) sulfonyl]-1,1’-biphenyl (BCPSBP,
503.42 g mol−1), dimethyl sulfoxide (DMSO, 78.13 g mol−1), N,N-dimethylacetamide (DMAc,
87.12 g mol−1), 4,4’-dichlorobenzophenone (DCBP, 251.11 g mol−1), potassium carbonate (K2CO3,
138.20 g mol−1) were supplied by Alfa Aesar, Seoul, South Korea. Other chemicals were procured from
Samcheon Chemical Corporation, Seoul, South Korea and used without further purification.

2.2. Synthesis of A

We synthesized the A starting with equipment of a nitrogen (N2) gas inlet, Dean–Stark condenser
and magnetic stirrer with a round-bottomed (RB) flask. In the RB flask, we dispersed BPA (1.50 g,
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6.58 mM), DCBP (1.82 g, 7.24 mM) and K2CO3 (2.00 g, 14.48 mM) in toluene and DMAc at 300 rpm
and 140 ◦C. We increased the temperature to 160 ◦C and maintained it for 36 h. We recrystallized and
filtered the oligomer product using a mixture of water, methanol and acetone (1:1:7 V/V) and dried
the product for 24 h at 80 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 7.8–7.6, 7.5–7.1, 7.1–7.0, 1.7–1.4; FT-IR,
(KBr, cm−1) 2967, 1651, 1591, 1496, 1414, 1306, 1277, 1235, 1159, 1104, 1081, 1013, 927, 873, 767, 685,
545, 497.

2.3. Synthesis of B

At first, we synthesized a sulfonated BCPSBP (sBCPSBP) according to a previous study [7].
Afterward, we placed the sBCPSBP (6.00 g, 7.80 mM), BPA (1.96 g, 8.58 mM), K2CO3 (2.40 g, 17.2 mM),
toluene and DMAc in an RB flask and proceeded process in the same manner as described for the
oligomer A. 1H NMR (600 MHz, DMSO-d6) δ 8.6–7.2, 7.2–6.6, 1.8–1.4; FT-IR (KBr, cm−1) 3448, 3066,
2968, 1585, 1503, 1465, 1307, 1238, 1153, 1116, 1076, 1028, 881, 825, 709, 684, 616, 558.

2.4. Synthesis of AB, ABA and BAB

For the synthesis of block copolymers (AB, ABA and BAB), we exploited a poly-condensation
strategy. To synthesize AB, A (0.79 g, 2.2 × 10−5 M), B (0.31 g, 2.2 × 10−5 M) and K2CO3 (0.04 g,
8.8 × 10−5 M) were mixed in 15 mL of toluene and 15 mL of DMAc to the RB flask. For ABA synthesis,
A (0.61 g, 4.40 × 10−5 M), B (0.79 g, 2.20 × 10−5 M) and K2CO3 (0.04 g, 8.80 × 10−5 M) were mixed in
15 mL of toluene and 15 mL of DMAc to the flask. In the case of BAB synthesis, A (0.31 g, 2.2 × 10−5 M),
B (1.58 g, 4.40 × 10−5 M) and K2CO3 (0.04 g, 8.80 × 10−5 M) were mixed in 15 mL of toluene and 15 mL
of DMAc to the flask. The rest of the synthesis for AB, ABA and BAB followed the experimental
procedure described for the A. AB: 1H NMR (600 MHz, DMSO-d6) δ 8.5–7.9, 7.8–7.6, 7.6–7.3, 7.3–6.8,
1.8–1.4; FT-IR (KBr, cm−1) 3456, 3069, 2967, 1706, 1590, 1498, 1465, 1380, 1305, 1235, 1155, 1122, 1074,
1025, 1013, 927, 876, 831, 766, 683, 614, 557. ABA: 1H NMR (600 MHz, DMSO-d6) δ 8.5–7.9, 7.8–7.64
7.6–7.4, 7.4–6.8, 1.8–1.4; FT-IR (KBr, cm−1) 3518, 3060, 3039, 2966, 2932, 2871, 1710, 1650, 1590, 1496, 1465,
1416, 1306, 1277, 1231, 1157, 1122, 1074, 1013, 927, 873, 767, 683, 614, 558. BAB: 1H NMR (600 MHz,
DMSO-d6) δ 8.5–7.9, 7.8–7.6, 7.6–7.4, 7.4–6.8, 1.8–1.4; FT-IR, (KBr, cm−1) 3518, 3060, 2966, 2932, 2871,
1710, 1650, 1590, 1496, 1465, 1416, 1306, 1277, 1231, 1157, 1122, 1074, 1013, 927, 873, 832, 767, 683,
614, 558.

2.5. Membrane Preparation

We obtained all the membranes using a simple solvent-casting approach, similar to our previous
studies [5,6]. We dissolved block copolymer (AB, ABA or BAB) in DMF solution and stirred for 72 h at
60 ◦C. Next, we cast the solution on a glass platter and left it to dry for 12 h at 80 ◦C. Afterward, we
pretreated the obtained membranes by submerging them in 1.0 M H2SO4 for 1 h at 60 ◦C, followed by
rinsing with deionized water. All membrane thicknesses were measured at various random points and
found to be ~70 µm.

3. Characterizations

We characterized the membranes using a scanning electron microscope (SEM, model: JEOL,
JSM-6400, Borken, Germany), atomic force microscope (AFM, model: Bruker, multimode-8, CA,
USA), 1H nuclear magnetic resonance spectrometer (NMR, model: JNM-ECA-600 MHz, Peabody,
St. Louis, MO, USA), Fourier-transform infrared spectroscopy (FT-IR, model: PerkinElmer, MA,
USA), thermogravimetric analyzer (TGA, model: Q50, New Castle, DE, USA), differential scanning
calorimetry (DSC, model: Q20, New Castle, DE, USA). These instruments are installed at the Center
for University-wide Research Facilities (CURF) at Jeonbuk National University (JBNU). We tested 5 × 1
cm (dimension x thickness) membrane mechanical stability using an INSTRON 3365 universal testing
machine (UTM, Norwood, MA, USA) at ambient temperature operation. We employed HLC-8320 gel
permeation chromatography (GPC, Tokyo, Japan) to explore Mw, Mn, MZ and poly dispersity index of
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the oligomers and polymers. The GPC measurement conditions, such as mobile phase: DMF solvent,
detector: RI detector/optional UV detector and column: H type (packed with styrene polymers), were
exploited. We determined membrane surface wettability by measuring water-contact angle with a
Surface Electro Optics (Model Phoenix-300, Seoul, South Korea) and evaluated water sorption and
desorption at different RH via dynamic vapor sorption (DVS, Zurich, Switzerland) on a DVS advantage
I measurement system.

We evaluated the membrane water uptake/retention properties over 24 h using each membrane’s
weight change before and after water uptake at room temperature. We measured the weights of wet
(Wwet in grams) and dry (Wdry in grams) membrane samples using a Denver four-digit counter balance
(Model: S-234) and calculated the water uptake using equation given below [20].

Water uptake (%) =

[Wwet −Wdry

Wdry

]
100 (1)

Ion-exchange capacity (IEC) helps to evaluate the milliequivalents of ionizable groups exist in
membranes. We used a conventional acid–base titration method to measure membrane IEC and the
detailed procedure of measurement shown in reference [21]. Equation (2) was used to quantify the IEC.

IEC
(
meq. g−1

)
=

NaOH volume consumed×NaOH concentration
Dry sample weight

(2)

We measured the membrane’s chemical/oxidative degradation directly using a Fenton reagent
solution (2 ppm FeSO4 dissolved with 3% hydrogen peroxide). We soaked the membrane (2 × 2 cm) in
the solution for 12 h at room temperature before calculating the residual weight [22].

We tested the membrane’s proton conductivity using alternating current (AC) impedance
spectroscopy by integrating approximately 3 cm × 0.5 cm membranes into the four-probe BekkTech
cell and measuring conductivity at 40, 50, 60, 70, 80 and 90 ◦C in 80% RH. We calculated conductivity
using Equation (3) [23].

σ (mS/cm) =
L

RTW
(3)

where σ is cation conductivity, L is the length (cm) between the measuring electrodes, R is resistance
(Ω), W is film width (cm) and T is film thickness (cm).

Prior to PEMFC analysis, we obtained the membrane electrode assembly (MEA) using a
conventional hot-press method [24]. Two commercial catalyst-coated carbon cloths (0.25 mg cm−2 Pt
loading) sandwiched the AB, ABA, BAB and Nafion-117 membranes individually. Hot-pressing at
70 ◦C and 80 bar for 2.5 min allowed the catalyst to adhere to the membrane, providing a 5 cm2 active
area. Afterward, using a hydrogen anode feed and an air cathode feed with 1 and 2 stoichiometries,
respectively, we conducted MEA single-cell performance testing at 80% RH and 60 ◦C. Before testing,
MEA conditioning performed at 150-mA cm−2 current density for 4 h. We recorded PEMFC H2–O2

polarization curves using a fuel cell test system (Horizon Fuel Cell Technologies; Model: SKFC-TS001).
Each testing polarization point stabilized at the setting current for 3 min and testified the average
voltage over the last 25 s.

4. Results and Discussion

4.1. Synthesis and Structural Properties

We derived A from DCBP and BPA monomers. We used sBCPSBP and BPA as monomers
to synthesize the B. We used the A and B oligomers to synthesize the di-block (AB) and tri-block
copolymers (ABA and BAB) (Scheme 1). To determine the chemical structures, we dissolved the
hydrophobic oligomer, hydrophilic oligomer, control copolymer, tri-block copolymer (ABA or BAB)
and di-block (AB) copolymer in DMSO-d6 solvent and analyzed the resulted using NMR spectroscopy
(Figure 1). The signals observed between 7.8 and 6.8 ppm were assigned to the aromatic protons
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of hydrophobic oligomer. The H’ and G’ signals between 7.3 and 6.7 ppm were due to aromatic
phenylpropane protons and I signal between 7.8 and 7.66 ppm was from the benzophenone group.
The signals between 1.7 and 1.4 ppm were related to the hydrophobic oligomer’s biphenyl propane
methyl group. On the other side, NMR spectra of hydrophilic oligomer contained aromatic phenyl ring
protons with sulfonate groups. A–F was the lowest signal in the 8.55–7.3 ppm range. Signals between
1.85 and 1.40 ppm confirmed biphenyl propane methyl group presence. The tri-block copolymer (ABA
and BAB) and the di-block copolymer (AB) had significant signals in the 8.50 to 6.82 ppm range. These
arise from aromatic hydrophobic and hydrophilic proton units. We calculated the degree of sulfonation
(DS of hydrophilic oligomer is 50% and used it to synthesize AB, ABA and BAB copolymers. The I
signal’s decreasing intensity (7.81–7.62 ppm) from ABA to AB to BAB indicates a hydrophobic oligomer
ratio reduction. The D signal’s increasing intensity (8.53–8.45 ppm) from ABA to AB to BAB indicates
an incremental polymer hydrophilic ratio increase. A signal in the 7.41–7.16 ppm range indicates a
small quantity of non-sulfonated hydrophilic fragments. FT-IR spectra of A, B, control, AB, ABA and
BAB membranes are displayed in Figure 2. In the case of copolymers, the absorption band observed at
1013 cm−1 was assigned to the stretching vibration of diphenyl ether units. In contrast, the absorption
band at 1465 cm−1 was related to the stretching vibration of C=C in the polymer backbones. The B, AB,
ABA and BAB had the absorption bands at 1122 and 1074 cm−1, which were attributed to the sulfonic
acid groups. The DCBP, BPA and sBCPSBP monomers were also subjected to 1H NMR and FT-IR
analysis to confirm their usage during polymer synthesis. The obtained results are given in Supporting
information (Figures S1 and S2).
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Table 1 shows that A (13,900 g mol−1) and B (35,600 g mol−1) had considerably high molecular
weights. We controlled the A to B ratio at 1:1, 2:1 and 1:2 molar for making AB, ABA and BAB,
respectively. The average molecular weights for the di-block and tri-block copolymers (AB, ABA and
BAB) were 45,200 g mol−1, 61,900 g mol−1 and 78,400 g mol−1, respectively. The AB, ABA and BAB
PDI (Mw/Mn) values were 4.6, 6.9 and 6.1, respectively.

Table 1. Molar ratio and molecular weight distributions (Mn, Mw, Mz and PDI) of the polymers.

Polymer Molar
Ratio a

Mn,
g mol−1

Mw,
g mol−1

Mz,
g mol−1

Mw/Mn
(PDI)

A 10:0 4300 13,900 31,200 3.2

B 0:10 16,500 35,600 68,000 2.1

Control – 4600 14,800 38,100 3.2

AB 1:1 9600 45,200 212,100 4.6

ABA 2:1 8400 61,900 431,800 6.9

BAB 1:2 12,800 78,400 915,500 6.1
a A:B.

4.2. Morphologic Behaviors

The FE-SEM morphologies of the as-made AB, ABA and BAB membranes are shown in Figure 3.
Each membrane was stained with lead salt before analysis, wherein dark areas exemplify hydrophilic
domains containing the lead sulfonate. The BAB membrane exhibits well-developed phase separation
with a hydrophilic domain size of ca. 30 nm—as evidenced from Figure 3c. This result is consistent
with that of our previous block copolymer containing the same hydrophilic block [15]. Such wide
and interconnected hydrophilic domains are beneficial to promote the water contact with membrane
surface and facilitate proton conduction in BAB membrane. By contrast, AB (Figure 3a) and ABA
(Figure 3b) membranes have only inefficient phase separation, owing to lower hydrophilic blocks
in polymer structure [25]. The contact angle of BAB membranes is 85.18◦ (Figure 3f), representing
the presence of hydrophilic surface owing to the availability of polar groups. However, this value is
increased to 90.13◦ and 98.73◦ in the case of AB and ABA because of lower quantity of hydrophilic unit
in membrane. Figure 3h–k show the digital photographs of A, B, BAB polymer and BAB membrane.
When compared to A and B, BAB has a fiber form confirming the polymer structure of BAB. The digital
photograph of BAB membrane indicate that membrane is being flexible without significant visible
defects, like Nafion-117. In AFM (Figure 4), we detected bigger size brighter regions in the ABA
membrane (Figure 4c,d) as a result of high ratio of hydrophobic domains. A higher phase-separation
quantity for the AB membrane compared to ABA and BAB membranes. This occurs because of the
equal hydrophilic and hydrophobic oligomer amounts.

4.3. Thermal and Mechanical Behaviors

Figure 5i exhibits the TGA curves of di-block and tri-block copolymers and Nafion-117 to determine
% of weight loss as a function of temperature. Excluding Nafion-117, the other membranes displayed
a three stage weight loss: (i) below 160 ◦C is ascribed to evaporation of water contained in polymer
chains, (ii) between 180–390 ◦C is resulting from split up of sulfonic acid from polymer backbones
and (iii) over 450 ◦C is credited to the deterioration of polymer backbones. At 795 ◦C, the Nafion-117
membrane measured 99.6% weight loss, possibly due to rapid decomposition of the main skeleton.
The ABA membrane had a 56.7% weight loss at the same temperature; the AB membrane had a 60.1%
weight loss and BAB had a 64.5% weight loss. These results reveal that the AB and BAB membranes are
less thermally stable than the ABA type polymer. The accelerated decomposition of BAB is attributed
to the high portion of hydrophilic oligomer in the polymer chains. First scan DSC curves of AB and
BAB membranes, except ABA membrane, showed considerable endothermic inflection (Tg) values
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(Figure 5ii). All of the membranes had a Tg in the 80–150 ◦C range. Of these membranes, the BAB
exhibited the highest Tg. In general, a membrane’s Tg increases when there are more ionic sites in the
polymer chain (ionomer effect). A high density of SO3H groups increases the membrane’s molecular
bulkiness, so Tg increases according to bulkiness. This is because these sulfonic acid groups generate a
large number of internal hydrogen bonds that restrict polymer chain reorganization during heating
and results in increased Tg for AB and BAB membranes [26]. For the case of ABA membrane, there is
no clear Tg found, so, the second scan DSC curves were recorded (Figure 5iii). In the second scan DSC
curves, the ABA membrane only exhibits the Tg curve, demonstrating the high thermal stability of
ABA membrane. All other membranes adopted flat shape curves, suggesting that original structure of
polymer were transformed.
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Mechanical strength is vital for the membrane materials to function in fuel cells during long-term
operation. We evaluated membrane mechanical properties using the stress–strain curves demonstrated
in Figure 5iv; the resulting graph is provided in Table 2. Continuous hydrophobic domains with
alternative ether and ketone structures acting as a backbone reinforcing material of the membrane,
which promote mechanical modulus. AB had a 24.68 MPa tensile strength, 2005.32 MPa Young’s
modulus and 9.6% elongation at break. Increasing the hydrophobic oligomer ratio enhanced ABA’s
tensile strength to 28.2 MPa and decreased Young’s modulus and elongation at break to 1451.35 MPa
and 4.13 MPa, respectively. This suggests that high hydrophobic oligomer ratios cause the ABA
membrane to be brittle. The high hydrophilic network structure of BAB concentrated the strain during
the stretching process, thereby retaining stress at 24.31 MPa and improving the BAB membrane’s
elongation at break to 32.51%. The BAB membrane’s mechanical properties were improved by the
high density of sulfonic acid groups causing the membrane to plasticize [27].

Table 2. Mechanical properties of fabricated membranes.

Membrane Tensile Strength (Mpa) Elongation at Break (%) Young’s Modulus (Mpa)

AB 24.68 9.60 2005.32

ABA 28.20 4.13 1451.35

BAB 24.31 32.51 1284

4.4. Oxidative Stability

We performed the Fenton test to scrutinize the SPAES membranes oxidative stability.
After immersing membranes in Fenton’s solution for 12 h, the BAB membrane lost 8% of its original
weight, whereas the AB and BAB membranes lost only 6% and 3%, respectively (Figure 6). The higher
amounts of OH available in the BAB membrane’s sulfonic acids and phenol groups favor direct free
radical reactions (OH• and OOH•) with polymer chains, causing accelerated membrane degradation.
Since the AB and ABA membranes have a comparatively low sulfonic acid group density, their
degradation is lower.
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4.5. Water Uptake, Swelling Ratio, IEC and Water Sorption

Figure 7 shows AB, ABA, BAB and Nafion-117 membrane physiochemical characteristics: water
uptake, swelling ratio IEC and water sorption. The BAB membrane had a higher water uptake at
different temperatures than the AB and ABA membranes because of the high density of sulfonic
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acid groups and large number of hydroxyl groups present in BAB’s structure (Figure 7i). This led
to strong water absorption and retention [28,29]. The membrane’s swelling ratio is dependent to
that of water uptake. The maximum swelling ratio was found to be 16.5% at 90 ◦C for the BAB
membrane, which is nearly 1.4- and 2.1-fold higher than those of AB and ABA membranes, respectively
(Figure 7ii). The BAB membrane’s high swelling ratio was due to high water uptake in all three
dimensions. The BAB membrane also has enhanced IEC as given in Figure 7iii. This is because of
the higher sulfonic acid group density in polymer backbones, which facilitates H+ the ion mobility.
We scrutinized the membrane’s surface hydrophilicity using water sorption measurements and found
the BAB membrane’s water sorption to be higher than that for AB and ABA membranes (Figure 7iv,v).
The water sorption increased as hydrophilic oligomer ratio increased in polymer chains and is further
supported by water-contact angle characteristics, as displayed in Figure 3d–f.
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4.6. Proton Conductivity and Arrhenius Plots

Taking into account the significance of membrane’s proton conductivity during fuel cell operation
under slightly low RH, proton conductivity of AB, ABA and BAB membranes was quantified at
80% RH and plotted in Figure 8i. The BAB membrane revealed the conductivities of 19.0, 30.0, 32.4,
39.9, 53.5 and 74.7 mS cm−1 at 40, 50, 60, 70, 80 and 90 ◦C, respectively, while ABA and AB attained
relatively lower conductivities at same temperatures. High density of sulfonic acid groups, owing to
the maximized proportion of hydrophilic oligomer in BAB membrane, would be responsible for high
proton conductivity of BAB membrane. We calculated the activation energy (Ea) for ion conduction
using the Arrhenius plot by Arrhenius formula as provided below.

lnσ = lnσ0 −
Ea

RT
(4)
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The detailed description about Equation (4) can be found in reference [30,31]. The ABA, AB
and BAB membranes revealed Ea of 20.5, 18.3 and 16.1 KJ mol−1, respectively (Figure 8ii). It is
noteworthy that high density of sulfonic acid groups with polymer chains are responsible for good
proton conductivity of membrane that assists decrease in Ea and bring the BAB membrane suitable
for real-time PEMFC technology. The obtained Ea values indicate that the membrane follows both
vehicular and Grotthuss mechanisms. In the vehicular mechanism, protons are possibly transfer
through the water molecules. While, in the Grotthuss mechanism, the protons are hopping through the
hydrogen bonding networks between the ionic sites in the polymer chains [32]. Scheme 2 demonstrates
the proton-transfer mechanisms through the BAB membrane.
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4.7. Single Cell Performance

We incorporated the AB, ABA, BAB and Nafion-117 membranes into MEAs and measured
PEMFCs with H2/O2 at 60 ◦C and 80% RH (Figure 9). The AB membrane performed reasonably; the
power density reached 88.6 mW cm−2 at a 175 mA cm−2 current density. As hydrophobic oligomer
ratio increased, however, cell performance worsened. The cell power density with an ABA membrane
was only 54.9 mW cm−2 at a 108.7 mA cm−2 current density. This indicates that the ABA membrane’s
ohmic impedance and proton conduction decreased dramatically due to decreasing acidic group
concentration. By comparison, the BAB membrane’s cell performance remained higher, with a cell
power density reaching 124.5 mW cm−2 at a 206.3 mA cm−2 current density. The enhanced cell
performance partly stemmed from good proton conduction, which reduced electrolyte resistance and
increased the rate of the cathode reaction. The BAB membrane cell reached a performance level close
to that of the Nafion-117 membrane cell (140.8 mW cm−2 at a 274.9 mA cm−2 current density). This
result suggests that the BAB membrane is suitable for potential PEMFC technology.
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5. Conclusions

In summary—using a facile poly condensation method—we successfully synthesized efficient
PEMs based on SPAES block copolymers (AB, ABA and BAB) with varying oligomer ratio for PEMFCs.
Compared to AB and ABA membranes, the BAB membrane showed enhanced water uptake, IEC,
contact angle and water sorption owing to the higher molar ratio of the hydrophilic oligomer in
BAB polymer. Still, BAB membrane exhibited slightly lower physiochemical properties than that of
Nafion-117 membrane. On the other side, increasing hydrophilic ratio in BAB membrane slightly
reduced the thermal, mechanical and oxidative stabilities of BAB membrane compared to the AB, ABA
and Nafion-117 membranes. The BAB membrane’s higher local sulfonic acid concentration caused a
microphase separation with opposing hydrophobic domains, which led to increased proton conductivity.
The maximum proton conductivity value attained by the BAB membrane was 74.7 mS cm−1 at 90 ◦C
under 80% RH. This is a few fold higher than those of AB and ABA membranes and lower than that of
Nafion-117 membrane. The BAB membrane’s current and power densities were 258.6 mA cm−2 and
124.5 mW cm−2, respectively. These are higher values than the AB and ABA membranes at 60 ◦C and
80% RH, but lower than Nafion-117 membrane. Based on these results, we conclude that the SPAES
(BAB) membrane is most suitable for PEMFC applications.
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1H NMR analysis, Figure S2. FT-IR spectra of (a) DCBP, (b) BPA and (c) sBCPSBP.
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