Supplementary Materials:

Straight versus branched chain substituents in 4'-(butoxyphenyl)-3,2':6',3"terpyridines: Effects on (4,4) coordination network assemblies

Dalila Rocco¹, Alessandro Prescimone¹, Edwin C. Constable¹ and Catherine E. Housecroft¹

¹ Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; dalila.rocco@unibas.ch (D.R.); alessandro.prescimone@unibas.ch (A.P.); edwin.constable@unibas.ch (E.C.C.), catherine.housecroft@unibas.ch (C.E.H.)

* Correspondence: catherine.housecroft@unibas.ch; Tel: +41 61 207 1008

Figure. S2. Electrospray mass spectrum of 4.

Figure. S5. HMQC spectrum of compound *rac*-**2** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S6. HMBC spectrum of compound *rac*-**2** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S7. ¹H NMR spectrum of compound **4** (500 MHz, 298 K, CDCl₃). * = residual CHCl₃.

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25

Figure. S8. ${}^{13}C{}^{1}H$ NMR spectrum of compound **4** (126 MHz, 298 K, CDCl₃). * = CDCl₃.

Figure. S9. HMQC spectrum of compound **4** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S10. HMBC spectrum of compound **4** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S12. ¹³C{¹H} NMR spectrum of compound **3a** (126 MHz, 298 K, CDCl₃). * = CDCl₃.

Figure. S13. HMQC spectrum of compound **3a** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S14. HMBC spectrum of compound **3a** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S15. Electrospray mass spectrum of compound 3a.

Figure. S17. ¹H NMR spectrum of compound **3** (500 MHz, 298 K, CDCl₃). * = residual CHCl₃.

Figure. S19. HMQC spectrum of compound **3** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S20. HMBC spectrum of compound **3** (¹H 500 MHz, ¹³C 126 MHz, 298 K, CDCl₃). * = residual CHCl₃ or CDCl₃.

Figure. S21. The solid-state FT-IR spectrum of *rac-2*.

Figure. S23. The solid-state FT-IR spectrum of 4.

Figure. S24. The solid-state FT-IR spectrum of [{Co(*rac*-**2**)₂(NCS)₂}·CHCl₃]_n.

Figure. S26. The solid-state FT-IR spectrum of [{Co(4)₂(NCS)₂}·CHCl₃]_n.

Figure. S27. ORTEP representation of the coordination sphere of atom Co1 (with symmetry generated Co centers) in [{Co(*rac*-**2**)₂(NCS)₂}·CHCl₃]_n (symmetry codes: i = 1-*x*, 1-*y*, 1-*z*; ii = $\frac{1}{2}-x$, $-\frac{1}{2}+y$, $\frac{1}{2}-z$; iii = $\frac{3}{2}-x$, $\frac{1}{2}+y$, $\frac{3}{2}-z$; iv = $\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z$; v = $\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$].

Figure. S28. Overlays of parts of the (4,4) nets in $[{Co(rac-2)_2(NCS)_2} CHCl_3]_n$ (red) and $[{Co(4)_2(NCS)_2} CHCl_3]_n$ (blue).