Supporting Information

Effect of Metal-Ligand Coordination Complexes on Molecular Dynamics and Structure of Cross-Linked Poly(dimethylosiloxane)

Angelika Wrzesińska ^{1,*}, Izabela Bobowska ¹, Paulina Maczugowska ¹, Joanna Małolepsza ², Katarzyna M. Błażewska ² and Aleksandra Wypych-Puszkarz ^{1,*}

- ¹ Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; izabela.bobowska@p.lodz.pl (I.B.); paulina.maczugowska@edu.p.lodz.pl (P.M.)
- ² Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; gmach.joanna@gmail.com (J.M.); katarzyna.blazewska@p.lodz.pl (K.M.B.)
- * Correspondence: aleksandra.wypych@p.lodz.pl (A.W.); angelika.wrzesinska@edu.p.lodz.pl (A.W.-P.); Tel.: +48-42-631-32-05 (A.W.-P.)

Figure 1. ¹H NMR spectrum of 4,4'-dimethyl-2,2'-bipyridine (bpy) in D₂O.

Figure S2. ¹H NMR spectrum of aminopropyl terminated poly(dimethylsiloxane) (PDMS) in CDCl₃.

Figure S3. ¹H NMR spectrum of 2,2'-bipyridine-terminated poly(dimethylsiloxane)(bpyPDMS) in CDCl₃.

Figure S4. FT-IR spectra of bpy, bpyPDMS, and PDMS in the range of 1500–2000 cm⁻¹.

Figure S5. Geometry of optimized coordination compounds (Me: Mn²⁺, Fe²⁺, Ni²⁺, Zn²⁺).

[Fe(bpy)3] ²⁺	[Zn(bpy) ₃] ²⁺	[Ni(bpy)3] ²⁺	[Mn(bpy) ₃] ²⁺
r _{Me-N} [Å]			
1.9541	2.2602	2.1417	2.3121
1.9549	2.2601	2.1409	2.3127
1.9548	2.2601	2.1401	2.3127
1.9544	2.2596	2.1411	2.3110
1.9538	2.2581	2.1405	2.3101
1.9546	2.2583	2.1401	2.3103
∢N-Me-N [º]			
81.85	73.06	77.04	71.72
95.30	97.93	97.26	98.69
86.16	78.06	82.10	76.47
87.57	97.85	97.28	98.50
95.32	91.76	88.93	92.49
87.51	91.73	88.99	92.42
95.42	97.88	97.23	98.64
95.28	78.00	82.11	76.32
86.10	97.91	97.26	98.67
95.45	73.59	77.03	71.71
95.40	97.88	97.22	98.64
87.53	77.94	82.07	76.27
81.87	91.74	88.93	92.49
81.84	97.81	97.26	98.47
86.26	73.56	76.99	71.68

Table S1. Geometry-optimized structure of 2,2'-bipyridine complexes.

Figure S6. Frequency dependence of loss tangent at 293 K of PDMS and its metalloorganic complexes.

Figure S7. Exemplary of fitting procedure using WinFit software for bpyPDMS-FeCl₂ metalloorganic

complex.