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Abstract: Zirconocene-catalyzed coordination oligomerization of higher α-olefins is of theoretical
and practical interest. In this paper, we present the results of experimental and theoretical study
of α-olefin oligomerization, catalyzed by (η5-C5H5)]2ZrX2 1/1′ and O[SiMe2(η5-C5H4)]2ZrX2 2/2′

(X = Cl, Me) with the activation by modified methylalymoxane MMAO-12 or by perfluoroalkyl borate
[PhNMe2H][B(C6F5)4] (NBF) in the presence and in the absence of organoaluminium compounds,
Al(CH2CHMe2)3 (TIBA) and/or Et2AlCl. Under the conditions providing a conventional mononuclear
reaction mechanism, 1′ catalyzed dimerization with low selectivity, while 2′ initiated the formation
of oligomers in equal mass ratio. The presence of TIBA and especially Et2AlCl resulted in an
increase of the selectivity of dimerization. Quantum chemical simulations of the main and side
processes performed at the M-06x/ DGDZVP level of the density functional theory (DFT) allowed
to explain experimental results involving traditional mononuclear and novel Zr-Al1 and Zr-Al2
mechanistic concepts.

Keywords: coordination polymerization; density functional theory; methylenealkanes; α-olefins;
oligomerization; zirconocenes

1. Introduction

Zirconocenes hold a significant position among single-site catalysts of α-olefin polymerization
due to high catalytic activity, excellent copolymerization homogeneity, and wide boundaries of regio-
and sterecontrol [1–6]. Even in recent years, many of the studies of the reaction mechanisms [7–10] and
structure–activity relationships [11–16] for these catalysts were performed using a generally accepted
cationic concept (Scheme 1A) based on the fundamental research of Cossee and Arlman [17–26].

It is known that zirconocene dichloride (η5-C5H5)2ZrCl2 (1, Scheme 1B) [27–30], disubstituted
zirconocenes (η5-RC5H4)2ZrCl2 [31–35], ansa-zirconocenes Z(η5-C5H4)2ZrCl2 (where Z is one-
or two-membered bridge between cylopentadienyl rings) [36,37], and thiapentalene zirconium
complex [38] catalyze the oligomerization of α-olefins RCH=CH2 with a formation of the mixtures of
methylenealkanes and higher oligomers (Scheme 1B). For 1, this reaction results in selective formation
of methylenealkanes (DPn = 2, Scheme 1B) in the presence of a minor excess of methylaluminoxane
(MAO). Christoffers and Bergman [28,29] demonstrated that chloride is an indispensable component of
the catalyst system that provides the high selectivity of dimerization. Their observation was confirmed
experimentally by an increase of the selectivity of zirconocene/MAO catalyzed dimerization in the
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presence of R2AlCl [30,39]. SiOSi-bridged zirconium complex 2 (Scheme 1B) demonstrated the best
performance in terms of catalytic activity and α-olefin dimer yield [36,40].
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selective α-olefin dimerization (1, 2) and pre-catalysts studied in this work (1′, 2′).

In the early 1990s, zirconocene-catalyzed oligomerization of higher α-olefins had been considered
as a particular case of single-site polymerization, keeping in mind that, at higher MAO/Zr ratios,
1 and its analogs catalyzed the formation of lower oligomers and matched the Flory distribution in
full compliance with traditional cationic mononuclear coordination-insertion concept presented in
Scheme 1A [10,38,41]. However, in recent years, the coordination oligomerization of higher α-olefins
has attracted the major attention of researchers because of the importance of this process for the
synthesis of hydrogenated oligomers of α-olefins (in most cases, 1-decene) which are high quality
polyolefin oil basestocks (PAOs). Such oligomerization provides the high structural homogeneity of
the oligomers, but requires abandoning the high Al/Zr ratios in a catalytic system to suppress monomer
transfer to Al [38]. Thus, the task of a more thorough investigation of the α-olefin oligomerization in
the presence of minimal amounts of organoaluminium compounds became relevant again.

In this paper, we report the results of the experimental study of 1-octene oligomerization using
zirconocenes 1 and 2 and their dimethyl derivatives 1′ and 2′ (Scheme 1B), activated by modified
methylalymoxane MMAO-12 and perfluoroalkyl borate [PhNMe2H][B(C6F5)4] (NBF) with and without
organoaluminium components and molecular hydrogen. The express purpose of the study was to
compare the impact of different activators (MMAO-12 or NBF), trialkylaluminium (TIBA), R2AlCl,
and H2 on the reaction rate, oligomer distribution, and molecular structure of the reaction products.
In addition, we tried to interpret and visualize the results of the oligomerization experiments using
the density functional theory (DFT) modeling of the possible reaction pathways to extend the
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mechanistic insights of single-site polymerization mechanism within and beyond the commonly
accepted Cossee–Arlman coordination–insertion mechanism.

2. Materials and Methods

2.1. General Experimentsl Remarks

TIBA (1 M solution in hexane, Merck, Kenilworth, NJ, USA), MMAO-12 (1.52 M solution in
toluene, Merck, NJ, USA), (η5-C5H5)2ZrCl2 (Merck, NJ, USA), [PhNMe2H][B(C6F5)4] (Fischer Scientific,
Waltham, MA, USA), d-solvents C6D6 and CDCl3 (99.8% 2H, Cambridge Isotope Laboratories, Inc.,
Tewksbury, MA, USA) were used as purchased. Further, 1-Octene (Merck, NJ, USA) was stored
over Na wire and distilled under argon. SiOSi-bridged zirconocene dichloro complex 2 [42] and
(η5-C5H5)2ZrMe2 1′ [43] (Scheme 1) were synthesized according to previously reported procedures.

The 1H NMR spectra were recorded on a Bruker AVANCE 400 spectrometer (400 MHz, Bruker,
Billerica, MA, USA) at 20 ◦C. The chemical shifts are reported in ppm relative to the solvent
residual peaks (7.26 ppm). Elemental analysis was performed on a Perkin Elmer Series II CHNS/O
Analyzer 2400 (Perkin Elmer, Inc., Waltham, MA, USA). The distribution of oligomers produced in
zirconocene-catalyzed reactions was measured by the gas chromatography (GC) method. GC analysis
was carried out with a KRISTALL-2000M gas chromatograph (Meta-chrom Ltd., Yoshkar-Ola, Russia)
equipped with a SolGel-1ms (60 m × 0.25 mm × 0.25 µm) column and a flame ionization detector.
Helium was used as a carrier gas at a rate of 1.364 cc/min and with a split ratio of 73.3:1. The injection
temperature was 320 ◦C, and the column temperature was 200 ◦C within 5 min and then increased
from 200 to 300 ◦C at a rate of 10 ◦C/min.

2.2. Synthesis of Zirconocene 2′

Zirconocene dichloro complex 2 (2.12 g, 5 mmol) was suspended in 50 mL of ether, cooled to
−40 ◦C, and LiMe (11 mL of 1M solution in ether, 1 mmol) was added dropwise. The mixture was
allowed to warm to the room temperature, the solution was filtered off and evaporated. The residue
was recrystallized from n-hexane, the colorless crystals of 2′ were dried in vacuo. The yield was
3.13 g (82%). For C16H26OSi2Zr calculated C, 50.34; H, 6.86; O, 4.19. Found: C, 50.38; H, 6.89; O, 4.21.
1H NMR (C6D6, 20 ◦C) δ: 6.27 (dd, 3J = 6.06 & 6.32 Hz, 4H); 6.01 (dd, 3J = 6.06 & 6.32 Hz, 4H); 0.22
(s, 12H); −0.05 (s, 6H). 13C NMR (C6D6, 20 ◦C) δ: 117.53; 117.22; 112.97; 30.41; 0.97. For NMR spectra,
see Section S2 in the Supporting Information.

2.3. Oligomerization Experiments

Briefly, 1-Octene (15.7 mL, 100 mmol), n-decane (internal standard, 1 mL), and TIBA (1 mL of 1M
solution in hexane, 1 mmol) were placed in three-necked flask, prefilled with argon. Then zirconocene
precatalyst (0.05 mmol) was added. After maintaining the external bath at 60 ◦C for 5 min, the given
volume of MMAO-12 (1.2M solution in toluene) or NBF (40 mg, 0.05 mmol) was added. After 2 h
of stirring, the mixture was cooled, and 2 mL of saturated aqueous solution of Na2CO3 was added.
The sample of the organic fraction was analyzed by NMR spectroscopy and GC.

2.4. DFT Calculations

The initial cartesian coordinates of the stationary points had been found by PRIRODA program
(version 4.0, Moscow, Russia) [44] using the 3ζ basis. The final optimization and determination of the
thermodynamic parameters for stationary points and transition states were carried out using Gaussian
09 program [45] for gas phase at 298.15 K. The M-06x functional [46] and DGDZVP basis [47,48]
were used in the optimizations. As demonstrated earlier, M-06x functional is one of the most correct
for calculations of the free energies in the DFT modeling of zirconocene-catalyzed reactions [49].
Transition states were found by energy scanning with sequential changing of key geometric parameters



Polymers 2020, 12, 1590 4 of 21

with a step of 0.01 Å followed by Berny optimization. DFT calculations data are provided in the
Supporting Information.

3. Results and Discussion

3.1. Oligomerization Experiments and End-Group Analysis

To compare the catalytic activities and mechanisms of the chain termination events, we studied
four types of pre-catalysts, namely, zirconocene dichloride 1, its dimethyl derivative 1′, SiOSi-bridged
dichloro 2, and dimethyl 2′ ansa-complexes (Scheme 1B). MMAO-12 and NBF were used as activators.
TIBA was added as an additional activator in most of the experiments (Table 1). The reactions were
carried out in liquid 1-octene media (see Section 2.3 for experimental details), and the low values
of the degree of oligomerization DPn simplified the end-group identification by the analysis of 1H
NMR spectra of the reaction mixtures and oligomer fractions. The basic principles of the similar
end-group analysis were summarized in our recent publication [50], based on previous research of
α-olefin polymerization [51–56]. NMR spectra were accompanied by the results of GC analysis and
compared with the recent results of Kissin [10]. The weight distribution of the reaction products taking
into account unreacted 1-octene is presented in Figure 1.

Table 1. Results of 1-octene oligomerization experiments.

Run Pre-
cat.

TiBA/Zr
Ratio

Activator
[Act]/

[Precat]
Ratio

H2
Conv.

%

Dimer (C16), Trimer (C24), Tetramer
(C32) and Pentamer (C40) wt. % in

the Products

C16 C24 C32 C40

1 1 20 MMAO-12 10 – 85 88.8 9.2 2.1 –

2 1 20 MMAO-12 +1 eq.
Et2AlCl 10 – 74 90.3 7.8 1.9 –

3 1 20 MMAO-12 10 1 bar 84 92.0 6.7 1.3 –
4 1 20 MMAO-12 200 – 68 77.6 15.1 5.4 1.9
5 1 20 NBF 1 – 53 81.6 13.2 4.2 1.0
6 1 20 NBF 1 1 bar 70 84.6 11.6 3.3 0.5
7 1′ – MMAO-12 10 – 47 88.7 8.6 2.6 –

8 1′ – MMAO-12 +1 eq.
Et2AlCl 10 – 60 93.4 5.6 1.0 –

9 1′ – NBF 1 – 14 78.2 17.7 4.0 –
10 1′ 20 NBF 1 – 8 75.2 18.9 5.8 –
11 1′ – NBF +1 eq. Et2AlCl 1 – 7 90.7 8.2 1.0 –
12 1′ 20 NBF 1 1 bar 18 72.3 16.8 9.2 1.7
13 2 20 MMAO-12 10 – 82 92.4 7.1 0.5 –

14 2 20 MMAO-12 +1 eq.
Et2AlCl 10 – 79 96.3 3.5 0.2 –

15 2 20 MMAO-12 10 1 bar 86 92.3 7.2 0.5 –
16 2 20 MMAO-12 200 – 70 78.1 15.8 5.7 0.4
17 2 20 NBF 1 – 68 67.7 23.3 7.6 1.4
18 2 20 NBF 1 1 bar 85 82.2 13.6 3.4 0.8
19 2′ – MMAO-12 10 – 65 58.4 25.1 11.5 5.0

20 2′ – MMAO-12 +1 eq.
Et2AlCl 10 – 57 87.6 11.2 1.2 –

21 2′ – NBF 1 – 60 25.2 25.2 22.9 26.7
22 2′ 20 NBF 1 – 13 47.4 21.7 15.6 15.2
23 2′ – NBF +1 eq. Et2AlCl 1 – 38 70.3 22.1 6.3 1.3
24 2′ – NBF 1 1 bar 73 48.3 26.0 14.6 11.1

The first experiment (Table 1, Run 1) was performed using 1-octene after activation of zirconocene
dichloride 1 by 20 eq. TIBA and 10 eq. MMAO-12. The results of the experiment were in good
agreement with the results of Christoffers and Bergman [28,29], and previously reported data for
oligomerization of 1-hexene in the presence of 1, activated by TIBA and 10 eq. MAO [36,40]. The main
product of the reaction was 7-methylenepentadecane, and the C16 fraction contained ~3% each of
the products with –CH = CH– and >C = CH– structural fragments. The first fragment represents
linear hexadecenes formed by the secondary 1-octene insertion to Cp2Zr–n–C8H17 species followed by



Polymers 2020, 12, 1590 5 of 21

β-hydride elimination or β-hydride transfer. The formation of the products with >C = CH– fragment
can be attributed to intermediate formation of allyl intermediates [55] or to 1,2-rearrangement of the
primary alkyl intermediate proposed by Crowther et al. [51,56]. In view of the fact that this reaction
was carried out in the absence of molecular hydrogen, the latter explanation appeared to be more
realistic, and we evaluated its feasibility by the DFT calculations (see Section 3.2.1).
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In the presence of Et2AlCl (Table 1, Run 2), the selectivity of the formation of
7-methylenepentadecane increased, with low decrease in catalytic activity. It is of critical importance
that the formation of the isomers of 7-methylenepentadecane containing >C = CH– fragment was
significantly reduced. In the presence of the molecular hydrogen (Table 1, Run 3), we detected an
increase of the selectivity of dimerization in comparison with Run 1 (Table 1), and the presence of
the side products with >C = CH– fragment was also negligible. When 200 eq. MMAO-12 was used
(Table 1, Run 4), the selectivity of the dimer formation was lower, and the content of the products with
–CH = CH– fragments was slightly increased.
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Replacement of MMAO-12 by NBF in experiments with zirconocene 1 pre-treated by TIBA (Table 1,
Runs 5 and 6) resulted in significant reduction of the catalytic activity. In terms of the selectivity of
dimer formation, the results of these experiments were closely related with the results of 1-octene
oligomerization in the presence of 200 eq. MMAO-12, but the formation of side products was lower.
Therefore, the use of NBF instead of MAO seems feasible in terms of the yield of structurally uniform
α-olefin oligomers. Note that it is this activation method that was used in prospective technologies of
the production of PAOs [57–64].

In experiments with dimethyl derivative 1′ activated by 10 eq. MMAO-12 in the absence and
in the presence of Et2AlCl (Table 1, Runs 7 and 8), the catalytic activity was lower, but the selectivity
of dimerization was substantially higher in comparison with Runs 1 and 2. The result of Rin 7 is
somewhat inconsistent with the prior assertion that the presence of chlorides is essential to provide the
selectivity of α-olefin dimerization [28,29,36,40].

Activation of 1′ by NBF (Table 1, Run 9) resulted in a slow formation of the mixture of oligomers.
The addition of TIBA (Table 1, Run 10) or Et2AlCl (Table 1, Run 11) slowed the reaction rate. Even so,
the presence of Et2AlCl provided the high selectivity of the dimer formation without any side reactions!
The presence of the molecular hydrogen (Table 1, Run 12) in experiment with NBF activation of 1′ did
not affect the product distribution, but slightly accelerated the reaction. However, it must be noted
that, in the presence of H2 the signals of >C = CH– were detected (these signals were fully absent for
Runs 10 and 11).

Being activated by 20 eq. TIBA and 10 eq. MMAO-12, zirconocene 2 catalyzed the selective
dimerization of 1-octene (Table 1, Run 13), and the addition of 1 eq. Et2AlCl increased the selectivity
of dimerization (Table 1, Run 14) in accordance with previously published results [36]. The reaction
mixtures contained minimal amounts of the product with internal –CH = CH– double bond, >C = CH–
fragments were absent. The presence of the molecular hydrogen (Table 1, Run 15) resulted in modest
acceleration of the reaction, with the appearance of the >C = CH– signals. In the presence of 200 eq.
MMAO-12 (Table 1, Run 16), we detected increasing of the higher oligomer content, lower amounts of
–CH = CH– products, and significant (~8%) formation of the products containing >C=CH– fragment.
When 2 was activated by TIBA and NBF (Table 1, Run 17), >C = CH– signals were not detected, this
signal appeared in the presence of the molecular hydrogen (Table 1, Run 18).

Dimethyl derivatives 1′ and 2′ demonstrated qualitatively different behavior being activated
by MMAO-12 (Table 1, Runs 7 and 19, respectively). SiOSi-bridged dimethyl complex turned out to
be the catalyst of the oligomerization in contrast with 1′ that was moderately selective dimerization
catalyst. The addition of Et2AlCl (Table 1, Run 20) led to increasing of the selectivity of dimerization.
The fundamental difference in catalytic behavior between 1′ and 2′ was detected in experiments with
NBF activator: 2′ in the presence of 1 eq. of perfuoroaryl borate (Table 1, Run 21) catalyzed the
formation of oligomers in parity by weight. The addition of 20 eq. TIBA (Table 1, Run 22) resulted
in a shift to the preference of the dimer formation with a slowing down of the reaction, and the
addition of Et2AlCl (Table 1, Run 23) slightly increased both reaction rate and dimerization selectivity.
The influence of the molecular hydrogen (Table 1, Run 24) was insignificant.

3.2. DFT Modeling of the Reaction Pathways for (η5-C5H5)2Zr-Based Catalytic Species

Despite the fact that complex 1 was historically the first pre-catalyst used in zirconocene
polymerization, only a few works devoted to the oligomerization of higher α-olefins in the presence
of 1, activated by MAO [27–31,36–40,65–67] or (perfluorophenyl)borates [68], have been published
to date. The recent investigation of Kissin [10] comprised a comprehensive analysis of the products
of 1-hexene oligomerization, catalyzed by 1/MAO at high Zr:Al ratios (~1:200). The use of a large
excess of MAO in the experiments of Kissin obviously resulted in the formation of significant amounts
of the C7, C13, and C19 products of 1-hexene oligomerization, initiated by Cp2ZrMe+ species. In our
experiments, the percentage of such products was expected as null and void. In addition, when
TIBA was used as an organoaluminium activator, C12 and C20 reaction products were not detected
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in the reaction mixtures. In experiments with dimethyl derivatives 1′ and 2′, the contribution of
C9, C17, and C25 reaction products was also negligible. All the above allowed us to stay focused
on the processes involving the hydride catalytic species formed after the activation of zirconocenes,
and C8, C16, and C24 derivatives that are the products of the insertion of 1-octene. In this section,
we discuss the reaction mechanism with the involvement of the results of the modeling using the
density functional theory (DFT) at M06-2X/DGDZVP [46–49] level. Optimized geometries, cartesian
coordinates, and energy parameters for all stationary points and transition states mentioned below are
presented in the Supporting Information.

3.2.1. Mononuclear Reaction Mechanism

In our calculations, we used 1-butene as a model olefin. In the framework of the
traditional mechanism of zirconocene-catalyzed polymerization of α-olefins, catalytic species
represent a Cp2Zr–alkyl cationic complexes. First, we optimized the different conformations
of [(η5-C5H5)2Zr–n-Bu]+ and [(η5-C5H5)2Zr–sec-Bu]+ and found that β-agostic n-butyl complex
I-2pβ (Scheme 2, here and below index p means “primary”) had the minimal free energy.
Additional stabilization of sec-alkyl complexes I-2sβ and I-2sββ (here and below s—“secondary”) by
hyperconjugation, proposed by Kissin [10], was not confirmed by our calculations. The free energy
of primary alkyl α-agostic I-2pα and γ-agostic I-2pγ complexes were 10 and 4 kcal/mol higher than
I-2sβ, which rules out these complexes from further consideration.
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the reactions in the absence of the second molecule of 1-butene. The values of calculated free energies
(kcal/mol) relative to I-2pβ are given.

The β-agostic alkyl complexes can be involved in different processes (Scheme 2). The first reaction
is β-hydride elimination resulting in zirconocene hydride cation with π-coordinated olefin molecule.
Depending on the type of the complex (primary or secondary) and position of β-agostic hydrogen in
butyl fragment, this reaction may result in different products via transition states that are also diverse
in their energy. For [(η5–C5H5)2Zr–sec-Bu]+, β-hydride elimination with a formation of (E)-2-butene
complex I-1i was found to be preferable in comparison with the formation of 1-butene complex I-1s.
The activation barrier for β-hydride elimination in I-2pβ with the formation of 1-butene complex
I-1p was the highest (Scheme 2). In view of the reversibility of the processes presented in Scheme 2,
the results of calculations contradicted the common concept that postulates the preference of the olefin
insertion with a formation of the primary alkyl complex. However, this claim is true for the insertion
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of α-olefin molecule in Zr–alkyl complexes (see below), and the reaction seems to be more complex at
the stage of the insertion of the first olefin molecule at Zr–H bond. First, the formation of I-1p and
I-1s via β-hydride elimination is energetically unfavorable, the formation of naked hydride cation
I-0 seems impossible. This allows us to exclude I-0, I-1, and TS-12 from the list of actual catalytic
species. However, in light of the study of the subsequent processes, the possibility of intramolecular
rearrangement between primary I-2p and secondary I-2s alkyl complexes should be considered.
We optimized the structure of the corresponding transition state TS-22ps (Scheme 2, Figure 2, left) and
found that ∆G, for this reaction is 35.5 kcal/mol. Such a value is too high for freely occurrence of
such rearrangement. Another possible process is a formation of allyl complex I-3 from I-1i via TS-13
(Scheme 2, Figure 2, right). The activation barrier for this reaction is only 13.4 kcal/mol. Therefore,
the formation of the allyl species should not be excluded in the detailed analysis of the chemical
behavior of cationic zirconocene alkyl complexes. Note that the formation of allyl complexes in
the zirconocene-catalyzed polymerization of α-olefins was proven experimentally in a number of
publications [55,69–75].
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Given the instability of cationic hydride complexes in the framework of a mononuclear mechanism,
we decided to focus on the processes involving alkyl zirconocene cations and 1-butene molecule.
At the first stage, π-complexes of different structures I-4 can be formed (Scheme 3). This process is
exergonic, the relative energies of π-complexes are dependent on the nature of Zr–alkyl (n-butyl or
sec-butyl) and orientation of the coordinated 1-butene molecule. Optimized geometries and energy
parameters of these structures are presented in the Supporting Information, the most stable structure
I-4pp corresponds to a “head to head” direction of the subsequent polymerization (1,2-insertion of the
monomer in primary alkyl complex) in line with the conventional reaction mechanism. The values
of the relative free energies (Scheme 3) of the corresponding transition states TS-45 (Figure 3) clearly
indicate the preference of the primary insertion. The experimental estimation of the rates of primary
and secondary insertions of 1-hexene made by Kissin (kprim/ksec ~2000) [10] is in line with the results
of our calculations (kprim/ksec ~3000 based on TS-45pp and TS-45ps values under equal Arrhenius
factors). Thus, the main pathway of the insertion of the second 1-butene molecule results in the
formation of branched primary alkyl complex I-5pp.

Another possible way of the transformations of I-4 is β-hydride transfer. The free activation
energies TS-44 (Scheme 3) for these processes were found to be substantially higher in comparison
with TS-45, the energy of degenerate process TS-44pp was only 3 kcal/mol lower in comparison with
TS-44ps resulting in the formation of π-complex of sec-butyl substituted zirconocene I-4sp (Scheme 3).
Isomeric TS-44sp results in the formation of 2-butene π-complex I-4pi. This relatively small difference
between TS-44pp and TS-44sp helps to explain the formation of 2-alkenes in the zirconocene-catalyzed
oligomerization of α-olefins.
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So, the main direction of the reaction of [(η5–C5H5)2Zr–n-Bu]+ with 1-butene was the formation of
the relatively stable β-agostic complex I-5ppβ. This intermediate can undergo β-hydride elimination
via TS-56pp, and coordination of the second 1-butene molecule with a formation of π-complex I-7ppβ.
The latter can undergo β-hydride transfer via TS-78ppp to form a more stable π-complex I-8ppβ or
coordination-insertion of the 1-butene molecule via transition state TS-89ppp with a formation of
branched alkyl complex I-9ppp (Scheme 4). These reactions are key processes for the estimation of the
selectivity of dimerization, the subject of our study. The values of the free activation energy for all
three possible processes are close, therefore in the frameworks of the mononuclear mechanism the
chain release (dimer formation) and chain propagation are possible. The question of the chain release
mechanism remains open, however. The free energy of alkyl π-complex I-8ppp is 15 kcal/mol lower in
comparison with hydride π-complex I-6pp, thus confirming the conventional wisdom that β-hydride
transfer is a main pathway of the chain release for mononuclear mechanism [10].
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The DFT modeling of the competition between chain release and chain propagation after the
second α-olefin insertion predicted the possibility of the formation of higher oligomers. However,
the experiments on 1-octene oligomerization under conditions providing a cationic mononuclear
mechanism (Table 1, Runs 4, 9) demonstrated the preference of the dimerization. In terms of the
analysis of the energy reaction profiles, this contradiction can be explained by the assumption of a
significant difference of the Arrhenius pre-exponential factors for chain termination (TS for β-hydride
elimination and β-hydride transfer are based on stable β-agostic complex) and chain propagation
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(TS based on high-energy α-agostic complex). Note that direct transformation of I-5ppβ to I-5ppα
without the participance of the α-olefin molecule (Scheme 4) requires more than 15 kcal/mol in G scale.Polymers 2020, 10, x FOR PEER REVIEW  10 of 21 
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3.2.2. The Effect of the Formation of Zr-Al1 Species on the Reaction Pathway

The formation of zirconium–aluminium heterometallic complexes in the reaction of zirconocenes
with organoaluminium compounds is a well-known and proven fact [76–87]. In our previous
works [36,40] we proposed that the increasing of the selectivity of dimerization of α-olefins can be
attributed to direct participance of R2AlCl in the formation of the Zr-Al1 species prone to β-hydride
elimination. The idea of such assistance was emerged by Hessen et al. for zwitterionic zirconocenes [88].
Very recently, we performed comparative DFT modeling of propylene dimerization catalyzed by
(η5-C5H5)2Zr(µ-H)(µ-X)AlR2 (X = H, Cl, Me) [65]. The results of our calculations predicted the
preference of β-hydride elimination after the second insertion of propylene molecule in these bimetallic
species for X = H and Cl. Such a preference was attributed to Zr-Al cooperative effect in binuclear
complexes (Scheme 5). The modeling of the reactions of higher α-olefins using propylene as a monomer
needed to be clarified, and in the present work we report the results of DFT calculations for the key
stage of 1-butene dimerization, namely Me2AlX-assisted β-hydride elimination (X = H, Cl) after the
insertion of the second molecule of 1-butene. Assuming that the coordination of Me2AlX (I-5ppβ-X,
I-5ppα-X) and 1-butene (I-7ppβ) are reversible and competing, we optimized the structures of the
key stationary points and transition states and compared the relative free energies of these species
(Scheme 5).

The significant difference between propylene [65] and 1-butene (this work) was detected. Our
calculations demonstrate the extremely high stability of theα-agostic complex I-5ppα-H (−5.6 kcal/mol)
in comparison with β-agostic I-5ppβ-H which is the stage preceding the transition state of the dimer
formation TS-56-H. Therefore, “pure” hydride Zr-Al complex should not be highly active. On the other
hand, for the complex formed with Me2AlCl, the relative stability of the intermediates I-5 was found
to be inverse: the difference in free energies between 5ppα-Cl and I-5ppβ-Cl was 1.2 kcal/mol. Thus,
the coordination of R2AlCl should promote β-hydride elimination via a low-energy intermediate and
lower energy transition state, the calculated difference of the free energies of TS-79ppp and TS-56-Cl
was 2.3 kcal/mol.
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To evaluate the thermodynamics of the further reaction, we calculated the free energies of the
π-complexes of (η5-C5H5)2Zr(µ-H)(µ-X)AlMe2 species with 1-butene (Scheme 5) and found that
replacement of 3-methyleneheptane (I-6pp-X) by 1-butene (I-1p-X) is energetically favorable process
for X = Cl (-2.2 kcal/mol).

At first sight, the simple model presented in Scheme 5 can explain the fact of the increasing of the
selectivity of dimerization in the presence of R2AlCl species (Table 1, Runs 1–6, 8, 11). However, cationic
binuclear Zr-Al1 species (except well-known and inert (η5-C5H5)2Zr(µ-Me)2AlMe2 [89–96]) were not
detected in significant amounts in the reaction mixtures obtained by the reaction of zirconocene with
AlR3 in the presence of MAO or perfluoroaryl borates. Moreover, NMR spectra indicated the presence
of Zr-Al2 complexes [97–99]. This does not mean that cationic Zr-Al1 species could not participate
zirconocene-catalyzed oligomerization. However, our theoretical research of the possible reaction
pathways would be incomplete without the analysis of the direct participation of Zr-Al2 species in
zircononcene-catalyzed dimerization and polymerization.
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3.2.3. Theoretical Analysis of the Possible Participation of Zr-Al2 Species

Trinuclear Zr-Al2 cationic complexes have been identified among the products of the reactions of
zirconocene dichlorides with an excess of TIBA or diisobutyl aluminum hyrdide (DIBAL-H) [97–99].
These species (Figure 3, Scheme 6a) represent resting states of the oligomerization which were seen
as unconducive to π-bonding with α-olefin molecules due to the coordination saturation of the Zr
atom [97]. At the first stage of the modeling, we analyzed the relative stability of the experimentally
detected stable species I-0-HX and hypothetically “opened” complexes that are capable of π-bonding
with α-olefin. The calculated differences in free energies of the “opened” complexes and I-0-HX
(Scheme 6a) exceeded the value of 15 kcal/mol. Coordination of 1-butene with a formation of I-1-HX
(Scheme 6a, Figure 3) was found to be endergonic process, thus confirming high stability of I-0-HX.

Another DFT probe of the evaluation of the possible role of Zr-Al2 species was in comparison
of the relative energies of the stationary points and transition states, formed by I-5ppβ and
Me2Al(µ-H)(µ-X)AlMe2 (Scheme 6b), with the energies of dinuclear Zr-Al1 and mononuclear species
(Scheme 5). Trinuclear transition states TS-56pp-HX are aesthetically beautiful (Figure 3, for animation
file see the Supporting Information), and it might be tempting to assume that these TS are involved
in dimerization. However, the results of our calculations demonstrate that the coordination of
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Me2Al(µ-H)(µ-X)AlMe2 is weak, and therefore, bearing in mind the difference of orders of magnitude
between the concentrations of α-olefin and organoaluminum component, the participance of such
species in the catalytic process is unlikely.Polymers 2020, 10, x FOR PEER REVIEW  12 of 21 
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3.3. DFT Modeling of the Reaction Pathways for O[SiMe2(η5-C5H4)]2Zr-Based Catalytic Species

The key factor of the difference between (η5-C5H5)]2Zr-and O[SiMe2(η5-C5H4)]2Zr-based
catalytic systems is the ability of the bridged oxygen to coordinate Zr atom. Additionally,
the non-symmetrical structure of the O[SiMe2(η5-C5H4)]2Zr implies greater variability of the ligand
environment, which made it difficult to perform exhaustive DFT modeling. In our research, we only
optimized the molecular structures of the most significant stationary points and transition states for
O[SiMe2(η5-C5H4)]2Zr-based species.

The energy gain due to Zr–O bonding can be estimated by the value of ~9 kcal/mol (the difference
of the free energies of I-2pβ-c-anti and I-2pβ, Scheme 7a. Such a significant difference inevitably affects
the energies of the stationary points and transition states for the key stage of the reaction (Scheme 7b).
The activation energy for β-hydride elimination, assisted by Zr–O coordination (TS-56pp-c-syn),
shown in Scheme 7b, is relatively low, but this process results in high-energy intermediate I-6pp-c-syn,
dissociation of this complex with a formation of hydride I-0 requires more than 32 kcal/mol and
therefore seems improbable. Our attempt to optimize the structure of the π-complex I-6pp-c-anti
failed, but we found that this complex transformed into I-5pp-c-anti spontaneously.

The coordination of the third 1-butene molecule (I-7ppp) is endergonic, but exothermic process
(∆G = 8.5 kcal/mol, ∆H = –1.3 kcal/mol), and the following chain propagation (TS-79ppp) is
preferable by the value of ~8 kcal/mol in comparison with chain termination via β-hydride transfer
(TS-78ppp). Note that the free activation energy of the chain propagation for SiOSi-bridged complex 2
(15.6 kcal/mol) is formally ~3 kcal/mol lower in comparison with zirconocene 1. Hence, in the absence
of organoaluminum compounds, the SiOSi-bridged ansa-complex should catalyze oligomerization of
α-olefins. Such chemical behavior was observed experimentally (Table 1, Run 22).
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given (b).

To compare the impact of R2AlX on the course of oligomerization, we optimized the key stationary
points and transition states involved in the transformations of branched alkyl complex I-5pp (Scheme 8).
Organoaluminum fragment can occupy one of the two positions towards SiMe2OSiMe2 bridge and
alkyl fragment, but the difference of the free energies of I-5pp-syn and I-5pp-anti was found to be
~ 1 kcal/mol. Coordination of R2AlX was energetically favorable in comparison with 1-butene even
though such coordination results in the loss of Zr-O bonding, and Zr-Al1 complexes I-5pp-X were
readily subjected by β-hydride elimination similarly to zirconocene 1. The substantial difference
between Zr-Al1 species formed by zirconocenes 1 and 2 is in the formation of low-energy complexes
I-5pp-c-X containing O–Al bond (Scheme 8) that also can eliminate the molecule of methylenealkane via
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transition states TS-56pp-c-X with comparable (X = H) or substantially lower (X = Cl, only 7.4 kcal/mol)
activation barriers. In all cases, the coordination of Me2AlX greatly facilitates the formation of α-olefin
dimer via β-hydride elimination. However, precisely for SiOSi-bridged zirconocene and X = Cl,
dual coordination of R2AlCl (Figure 4c) provides the fast dimer formation.
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4. Conclusions

Numerous theoretical studies of the polymerization mechanisms of zirconocene-catalyzed
polymerization were limited by ethylene and propylene as substrates. In the present work, we refused
to the use of propylene as a model of α-olefin molecule, and 1-butene looked more adequate. In the
framework of the mononuclear mechanism of zirconocene-catalyzed oligomerization, DFT modeling
predicted that oligomerization is preferred over dimerization, both for (η5-C5H5)]2Zr- (1/1′) and
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O[SiMe2(η5-C5H4)]2Zr-based (2/2′) catalytic systems. In practice, in the absence of organoaluminum
compounds, the complex 1′ catalyzed oligomerization (although mostly producing dimer), while
zirconocene 2′ catalyzed the formation of the oligomer mixture in an equal mass ratio. These results
correlate with the differences of the free energies of the isomeric transition states of chain propagation
and chain release via β-hydride transfer for zirconocenes 1 and 2.

In the presence of TIBA, MMAO-12, or both organoaluminum components, the selectivity of the
dimerization increased. The presence of Al-Cl heightened the dimerization selectivity in all cases,
the effect of R2AlCl was most pronounced for 2/2′. This experimental observation is consistent with
the results of the modeling that predicted the facilitation of β-hydride elimination due to the Zr–Al
cooperative effect in Zr–Al1 bimetallic complexes. On the other hand, for (η5-C5H5)]2Zr-based catalyst
our calculations predicted the minimal activation barriers of the elimination for Zr-Al hydride species.
The activation barriers for chloro complexes were found to be substantially higher. We can only assume
that the formation of Zr-Al1 hydrides is hampered by additional factors, namely by the higher stability
of R2AlH dimer and trimer (see Appendix A) as well as Zr–Al2 trihydride complexes in comparison
with chloro complexes.

The results of both oligomerization experiments and DFT calculations demonstrate the qualitative
difference between (η5-C5H5) 2Zr- and O[SiMe2(η5-C5H4)]2Zr-based catalytic systems that can be
attributed to the ability of the bridged oxygen to coordinate the metal atoms, both Zr and Al.
Such coordination plays a crucial role in combination with R2AlCl coordination that results in dramatic
lowering of the activation barrier of β-hydride elimination with a formation of methylenealkanes.
SiOSi-bridged zirconocenes have long been known, but this structural aspect of their reactivity
is undervalued. We expect that the –SiOSi– bridge, and potentially also –SiOR substituents in
cyclopentadienyl rings, can be used in the design of novel efficient metallocene catalysts for α-olefin
oligomerization and polymerization.
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Appendix A

The relative stability of R2AlX dimers and trimers (X = H, Cl) is of direct relevance to the process
of reversible and competetive bonding of R2AlX with zirconocene cations. We optimized the structures
of Me2AlX monomers, dimers, and trimers and calculated the relative free energies and free enthalpies
of dimer and trimer formation. The results are presented below in kcal/mol.
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