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Abstract: In this study, a mixture of thermoplastic polybutylene succinate (PBS), tapioca starch, glycerol
and empty fruit bunch fiber was prepared by a melt compounding method using an industrial extruder.
Generally, insertion of starch/glycerol has provided better strength performance, but worse thermal and
water uptake to all specimens. The effect of fiber loading on mechanical, morphological, thermal and
physical properties was studied in focus. Low interfacial bonding between fiber and matrix revealed a
poor mechanical performance. However, higher fiber loadings have improved the strength values. This is
because fibers regulate good load transfer mechanisms, as confirmed from SEM micrographs. Tensile and
flexural strengths have increased 6.0% and 12.2%, respectively, for 20 wt% empty fruit bunch (EFB) fiber
reinforcements. There was a slightly higher mass loss for early stage thermal decomposition, whereas
regardless of EFB contents, insignificant changes on decomposition temperature were recorded. A higher
lignin constituent in the composite (for high natural fiber volume) resulted in a higher mass residue,
which would turn into char at high temperature. This observation indirectly proves the dimensional
integrity of the composite. However, as expected, with higher EFB fiber contents in the composite, higher
values in both the moisture uptake and moisture loss analyses were found. The hydroxyl groups in the
EFB absorbed water moisture through formation of hydrogen bonding.

Keywords: empty fruit bunch fiber (EFB); polybutylene succinate (PBS); starch; glycerol; characterizations;
biocomposite; polymer Blends

1. Introduction

The development of biodegradable materials has attracted much research interest by scientists
on worldwide. Aliphatic polyesters are among the most promising materials for the production of
high-performance biodegradable plastics. One of the polyesters, polybutylene succinate (PBS) which
is commercially available in the market, has very high fame as a high-performed bioplastic [1]. Many
recent studies have selected PBS as the composite matrix for various applications and purposes [2–4].

PBS is synthesized from succinic acid and 1,4-butanediol (BDO) via a polycondensation process, and
exhibits balanced performance in thermal and mechanical properties as well as processability [5]. It is
more thermally stable than PLA polymer [6]. PBS is able to undergo biodegradation and even disposal
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in compost, moist soil, fresh water (by activated sludge), or sea water. It also can be composted by
microorganism activities to convert it into CO2, H2O, and inorganic products under aerobic conditions,
or CH4, CO2, and inorganic products under anaerobic conditions. The biodegradability of PBS depends
mainly on its chemical structure and especially on its hydrolysable ester bond in the main chain, which is
susceptible to microbial attack [7,8]. One study prepared a reactive-PBS polymer (RPBS) with insertion of
toluene-2,4,diisocyanate (TDI) chemical in different ratios and blends with starch. The properties of the
blended specimens were found to be significantly improved, even with only 10 wt% of RPBS. The TDI
chemical insertion smoothened the PBS/starch polymer blend’s surface, showing better miscibility of the
two phases [9]. However, PBS has some negative properties such as slow crystallization rate, low melt
viscosity, and softness. These have restricted its processing condition and potential applications. Polymer
mixing with other materials is commonly used, to develop new blend materials that are suitable for
specific working environments or specific purposes. However, most of the polymers are not miscible
with each other and tend to phase-separate in a melt state [10]. Besides, although a fast crystallization
reaction can happen when mixing with other materials, this may cause deterioration of PBS composite’s
strength [11]. Therefore, plasticizers such as glycerol were added to overcome and improve the flexibility
of PBS polymer [12]. The council of the IUPAC (International Union of Pure and Applied Chemistry) has
defined a plasticizer as “a substance or material incorporated in a material (usually a plastic or elastomer)
to increase its flexibility, and workability by lowering glass transition temperature (Tg)” [13]. Glycerol
is a pure anhydrous structure and has a specific gravity of 1.261 g·mL−1, melting point of 18.2 ◦C and
boiling point of 290 ◦C under normal atmospheric pressure [14]. On the other hand, grafting is another
method to improve a compatibilizer between two materials. Suchao-in et al., 2013, have grafted PBS on
tapioca starch blends. Results revealed a strong interfacial adhesion of the blend and enhanced modulus
properties, as evidenced from SEM micrographs [15].

Starch is one of the materials that is readily available, low cost and one of the important bioresources
used in the food industry, e.g., as a thickener and gelling agent. It also possesses good physical, mechanical
and oxygen barrier properties, that give it potential to become active film [6,16]. It is much more reliable
and chemically stable than other spacers [17]. Starch is a natural polymeric product and is found in almost
every plant. Usually the main sources of starch come from tapioca, potato, maize, rice and wheat [18].
Starch contains two different molecular structures, linear (1,4)-linked α-d-glucan amylose and highly
(1,6)-branched α-d-glucan amylopectin. The starch molecules are tied by van der Waals bonds and
strong intermolecular hydrogen bonds. Common native starch granules have a semi-crystalline, radially
oriented spherulitic structure. They contain water on different structural levels [19]. Amylopectin consist
of a branching chain that forms double helices and produce crystalline structure of the granules, whereas
amylose is amorphous and interspersed among amylopectin molecules [20]. Some starch polymers form
helical structures due to the existence of α linkages, which contribute to its extraordinary properties and
enzyme digestibility [21]. The relative amounts of amylose and amylopectin depend upon the plant
source. Corn starch granules typically contain approximately 70% amylopectin and 30% amylose [22].
However, native starch itself cannot be satisfactorily used due to its hydrophilicity and brittleness which
lead to the poor mechanical properties, so it requires some chemical modification to overcome this
drawback [23]. Blending thermoplastic starch with PBS is one of the frequently selected options by
researchers. Higher water resistance, good processability, fully biodegradable, and superior mechanical
properties were being claimed for PBS/corn starch blend with glycerol plasticizers [24].

On the other hand, extensive investigation has been carried out to study the effects of natural fiber
reinforcement on polymer composites [25–27]. The majority of outcomes have agreed that reinforced
natural fiber has a better performing load transfer mechanism, and results in higher mechanical
properties [28,29]. Empty fruit bunch (EFB) fibers have shown comparable quality to high strength
kenaf bast fibers [30]. However, the hydrophilic nature of the EFB fiber is found to be incompatible with
the hydrophobic polymer matrix. This caused poor interfacial adhesion between the fiber and matrix,
leading to lower performances. Chemically treated EFB fibers had greater thermal and morphologies
properties [31]. Moreover, it consists of wood-like constituents (cellulose, hemicellulose and lignin),
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showing lower thermal stability towards high heat environments, yet producing high residue at
high temperature [32]. Furthermore, the hydrophilic behavior is expected to have higher moisture
absorption, leading to swelling of the EFB fiber. Nevertheless, the extremely low cost of EFB fiber as a
byproduct and its 100% biodegradable properties have created a high interest in it [33].

This study is a continuation of previous study, which investigated the characterization of high
volume contents of EFB fiber reinforced in PBS/tapioca starch composite [34]. The high volume of fiber
reinforcement found deterioration of mechanical properties due to poor interfacial bonding, evidenced
from SEM micrograph and this is not accepted by the market, and similar findings were reported
that show a lower tensile strength when alkaline treated-sugarcane fibers were inserted without
any plasticizers [35]. Hence, in the present study, a lower volume of EFB fiber was added into the
PBS/starch composite sheet with glycerol plasticizers to improve compatibility. This study has filled the
knowledge-of-gap on low EFB fiber reinforcement in PBS/starch composite sheet with plasticizer fillers.
The outcomes of this investigation (mechanical, morphological and thermal characterization) could
serve as valuable knowledge for future developments on EFB fiber reinforcement in polymer composite.

2. Experimental

2.1. Materials

PBS in the form of pallets were bought from PTT Public Company Limited in Thailand. Density of
PBS is 1.26 g/cm3. Tapioca starch in form of powder was obtained from PT Starch solution in Indonesia.
Empty fruit bunch fiber (EFB) was used and obtained from Polycomposite Sdn Bhd in Negeri Sembilan.
The EFB were chopped using a grinder machine and sieved to get an average 300–600µ in size. Meanwhile,
glycerol was purchased from Duro Kimia Sdn Bhd in Selangor. The properties of materials as tabulated
in Table 1.

Table 1. Properties of polybutylene succinate (PBS), starch and empty fruit bunch (EFB) fiber.

Properties PBS Starch Properties EFB Fiber

Density (g/cm3) 1.26 g/cm3 0.63 Density 0.98 g/cm3

MFR 5 g/10 min None Cellulose (%) 45
Color White White Lignin (%) 23
Odor No Odor No Odor Hemicellulose (%) 21

Melting Point 115 ◦C None Size Mesh (µ) 300–600
Molecular Weight 65,000 g/mol 692.7 g/mol Moisture (%) 9.41

2.2. PBS Composite Preparation

The PBS pallets and EFB fiber was first dried in an oven at 80 ◦C to prevent excessive hydrolysis
which can compromise physical properties of the polymer. Starch, glycerol and EFB were dry mixed
in an industrial mixer machine and sieved to remove excessive lumps during the mixing process.
Then, PBS and the mixed compound of starch/EFB/glycerol were added into an industrial counter
rotating extruder feeder for a total of 300 kg per processing. After that, the compound was melted in
an industrial extruder machine comprising 10 heat zones, which were set temperatures in between
115–145 ◦C with rotation speed of 80 RPM. As a result of the shear stress imposed on fibers during
compounding, homogenization of PBS/starch/fiber/glycerol was carried out by cycling the mixture
in the extruder for 15 min and then extruded through a 2 mm gauge strand die at a rate of 10 mm/s.
The melted compound was then passed through a calendaring machine before producing a sheet.
Then, the sheets were cut into shapes according to specific characterization testing. The image of the
extruded compound is shown in Figure 1.
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Figure 1. Sheet extrusion process.

2.2.1. Mechanical Properties (Tensile Properties)

The tensile testing of the composite was conducted using a 5 kN Bluehill INSTRON Universal
Testing Machine. The test was carried out according to ASTM standard D-638. The specimens were cut
into dog bone shape by a plastic molder machine with the specifications of 120 × 120 × 2 mm3 of length,
width and thickness respectively. The composites were gripped at a 30 mm gauge length and the
crosshead speed was set at 2.0 mm/min. All specimens were kept in a conditioning room and the test
was run at 22 ◦C and relative humidity (RH) at 55%. Seven specimens were tested per test condition.

2.2.2. Mechanical Properties (Flexural Properties)

Flexural test of the composite was performed using 5 kN Bluehill INSTRON Universal Testing
Machine. Test samples were cut to the dimension of 70 × 15 × 2 mm3 and three-point bending tests
were performed according to ASTM D790 standard. The crosshead speed was set at 2 mm/min with a
support span-to-depth ratio of 16:1. All specimens were kept in a conditioning room and the test was
run at 22 ◦C with the relative humidity (RH) at 55%. Seven specimens were tested per test condition.

2.2.3. Morphological Analysis

Morphology of the samples was observed using Hitachi S-3400N scanning electron microscope
(SEM) equipped with energy dispersive X-ray (EDX) under an accelerating voltage of 15 kV and at an
emission current of 58 µA. The tensile-tested-samples were gold sputtered before observation to avoid
the charging effect during sample examination. SEM helps to analyze the microscopic structure and
characterization of the compound on the basis morphology and structural changes.

2.2.4. Thermal Analysis

The thermal stability of the samples was characterized using a TA Instruments Q500
thermogravimetric analyzer, TGA. About 6 mg of the sample was scanned from 30 to 700 ◦C at
a heating rate of 20 ◦C min−1 under a nitrogen gas atmosphere.

2.2.5. Moisture Absorption and Moisture Loss Analysis

Sample sheets of rectangular shape with dimensions of 15 × 15 × 0.5 mm3 were dried in a vacuum
oven at 60 ◦C for 24 h and weighed prior to testing. The vacuum dried rectangular sheets were immersed
in distilled water at 20 ◦C to determine the water absorption and soluble ratio. The sample was taken
out to measure the water absorption and soluble ratio in a certain time, and then the same sample was
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vacuum dried to measure the weight loss of the sample. The weights of the original sample and the
sample after water absorption were designated as W0 and W1, and the dry weight of the water extracted
sample was designated as W2. The value of moisture absorption was obtained by Equation (1):

Moisture uptake =
W1 −W2

W2
× 100% (1)

with the value of the soluble ratio derived from Equation (2):

Soluble ratio =
W0 −W2

W0
× 100% (2)

Three measurements were performed for each sample, and the result was reported as the average
value. This procedure followed the short-term immersion standard method ASTM D570-98.

On the other hand, seven samples were prepared for the moisture content evaluation. The samples
were placed in normal climatic conditions at room temperature (27 ± 2 ◦C) with 65% relative humidity
of air for 24 h before being weighed. Percentages of moisture content were determined by using
Equation (3). The samples were heated in the oven for 24 h at 105 ◦C. Before heating the samples were
measured as M0. After 24 h in the oven, the fiber was weighed again as M1. Therefore:

Moisture content (%)
M1 −M0

M0
× 100% (3)

3. Result and Discussion

3.1. Mechanical Testing

Filler reinforcement is an important factor in determining mechanical properties of the composite.
The most crucial factor that affects the mechanical properties of the fiber reinforced materials is its
fiber/matrix interfacial adhesion. The strength of the interfacial bonding was determined by several
factors, such as the nature of the fiber and polymer components, fiber aspect ratio and processing
procedure [36,37]. The mechanical properties of the PBS composite are presented and illustrated in Table 2
and Figures 2 and 3, respectively. It was clearly shown that the tensile and flexural strength of specimens
were decreased for fiber reinforcement up to 8 wt%. This is due to poor dispersion and incompatibility
between fillers and the PBS matrix according to previous studies [38,39]. Fibers are unable to disperse
evenly in the PBS matrix, creating high stress concentration spots, resulting in a dramatic reduction in
tensile strength [40]. However, increments in tensile and flexural strength were observed, indicating that
the reinforcing ability of the natural fibers has overcome the shortage from the interfacial adhesion factor.
A previous study reported the same trend, that higher fiber contents led to an improvement in the tensile
strength of the matrix due to the interaction related to the fiber contents [41].

On the contrary, there were relatively higher mechanical properties for a 0% EFB specimen (which
contained 30 wt% of starch/glycerol with a 2:1 ratio) in a current study, when compared to a previous
study, which only gave 16.12 and 21.78 MPa for tensile and flexural strength, respectively, for pure PBS
polymer [34]. The insertion of starch supposedly reduces the composite’s strength performance due to
low compatibility [6]. However, the addition of glycerol has the adverse effect of strength deterioration
by localization of a compatibilizer at the interface for a stable morphology from a SEM micrographic [42].

Accoding to Thirmizir et al., the flexural strength of PBS composites was higher than neat PBS
polymer. [8]. Higher fiber loadings have improved the flexural strength due to mechanical interlocks
found between fiber and matrix. The fiber/matrix mechanical interlocking was expected to act as a
mechanism to withstand the bending force in flexural testing. On the other hand, flexural strength was
reduced by 6% for 8 wt% EFB fiber reinforcement composites. This may be attributed to interruption
of the continuous long polymer chain by the presence of hydrophilic lignocellulose. Similarly, higher
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flexural strength values were recorded for higher EFB fiber reinforcement specimens. EFB fibers work
as a carrier of loads in the matrix, synchronized with the tensile performance.

Table 2. Mechanical properties of PBS/starch/glycerol and EFB blends.

Formulation a Specimen Tensile
Strength (MPa)

Tensile
Modulus (MPa)

Flexural
Strength (MPa)

Flexural
Modulus (MPa)

PBS 70%
Starch/Glycerol 30% 0% EFB 19.04 ± 1.27 392.76 ± 28.16 29.08 ± 0.64 1049.13 ± 67.15

PBS 70%, EFB 8%,
Starch/Glycerol 22% 8% EFB 15.96 ± 0.63 360.40 ± 26.17 27.17 ± 1.21 872.10 ± 42.36

PBS 70%, EFB 12%,
Starch/Glycerol 18% 12% EFB 17.38 ± 1.29 376.33 ± 31.06 27.19 ± 0.56 845.17 ± 41.17

PBS 70%, EFB 16%,
Starch/Glycerol 14% 16% EFB 19.19 ± 1.08 466.84 ± 29.14 29.20 ± 1.05 954.35 ± 51.25

PBS 70%, EFB 20%,
Starch/Glycerol 10% 20% EFB 20.18 ± 0.72 497.95 ± 30.17 32.63 ± 1.14 1029.15 ± 54.15

a Starch/Glycerol in 2:1 ratio.
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3.2. Morphological Analysis

Figure 4 shows SEM images for specimens’ surface morphology, under 500× magnification.
The strength performances of the composites are directly affected by morphology status. Figure 4a shows a
smooth and regular PBS surface, while Figure 4b shows the image of modified tapioca starch granules
on the surface. Figure 4c,d shows the presence of EFB fiber, which consists of long fibers surrounded on
the PBS/starch matrix. The poor adhesion of fibers on the matrix shows correlation with the reduction of
mechanical properties for “8 wt% EFB” specimens. The poor impregnation makes it easier for the fiber to
be pulled out, and causes a lower strength performance for the composite. This trend was also reported
by a previous researcher [36]. For Figure 4e,f, it can be observed that the fibers are adhered to the matrix.
The longitudinal fibrous shapes of the fibers were evenly mixed and evenly distributed on the matrix
surface. The fibers mix homogenously with the matrix and are not clearly seen on the surface morphology
analysis. This indicates the good fiber/matrix adhesion. On the other hand, the void between the EFB
fiber and matrix is less, which gives a better fiber/matrix bonding and increased mechanical strength to
the composite.
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3.3. Thermal Analysis

Thermogravimetric analysis (TGA) is a useful method for quantitative determination of the
degradation behavior, thermal stability and mass change in a composite. The appearance of starch and
glycerol in the PBS polymer composite has reduced the thermal stability of the specimen in generally.
Excess amounts of glycerol have taken part in the reaction with hydroxyl groups of the PBS polymer,
which promoted a lower thermal stability [43]. However, with more starch/glycerol contents replaced
by EFB fibers, the effects of glycerol are lesser and gradually dominated by EFB fibers.

Figure 5 shows the TGA profiles of the EFB composites, while Table 3 lists the mass loss in every stage
with peak temperature until sample reach 600 ◦C. There is a small but noticeable step between 75–95 ◦C,
which was due to the presence of free water in the composite. Other researchers also have reported that
this is due to water removal, as starch has a higher tendency to absorb moisture [6]. It also was reported
that at the initial stage weight loss may be ascribed to the evaporation of water in the fiber [32,44,45]. Sharp
transitions at peak 2 and 3 between 200–265 ◦C is due to decomposition of polysaccharide components in the
starches. At higher temperatures, hemicellulose degradation occurs, followed by cellulose degradation [46].
Both degradation processes involve complex reactions (dehydration, decarboxylation, among others) as
well as breakage of C-H, CO and C-C bonds [47]. Apart from this, lignin starts to degrade at a temperature
range between 250–450 ◦C. Lignin degradation generates water, methanol, carbon monoxide and carbon
dioxide [48,49]. PBS matrix is a thermally stable biopolymer and it begins to degrade near 300 ◦C with
high degradation rates, as similarly found by Lee et al. [50]. In this analysis, there was slightly higher mass
loss for early stage thermal decomposition whereas insignificant changes on decomposition temperature,
regardless of EFB contents. However, with the higher lignin constituent in the composite there was a higher
mass residue, which would turn into char at high temperature. This observation indirectly proves the
dimensional integrity of the composite. Besides, the better mechanical performance for the high natural
fiber reinforcement could offer wider the applications for this composite material.
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Table 3. A summary of peak temperatures for EFB composites.

Specimens Peak 1,
◦C

Mass
loss, %

Peak 2,
◦C

Mass
loss, %

Peak 3,
◦C

Mass
loss, %

Peak 4,
◦C

Mass
loss, %

Mass
Residue, %

0% EFB 78.13 7.161 214.45 3.404 261.43 12.19 362.05 71.22 5.995
8% EFB 95.13 8.086 209.19 6.774 262.82 16.63 358.92 59.95 8.492

12% EFB 87.89 9.534 209.61 6.129 262.12 16.42 358.85 59.63 8.176
16% EFB 88.50 9.885 - - 254.79 25.07 357.29 55.38 9.568
20% EFB 84.87 5.940 201.68 6.634 260.63 21.82 357.93 55.32 10.16

3.4. Moisture Uptake and Average Loss of Moisture Contents

The amount of water absorbed in the composite was calculated by weight difference between
before and after samples exposed to water. Figure 6 shows moisture uptake over the time and average
loss of moisture contents for EFB composites. The moisture uptake test was conducted to identify the
amount of water absorbed by the composites while the average loss of moisture content is to measure
the mass loss after being subjected to heat. Generally, the moisture uptake was depending on several
factors such as volume fraction of fiber, voids, viscosity of matrix, humidity and temperature [51].
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Figure 6. Moisture uptake analysis and average loss of moisture contents for EFB composites.

Water absorption is one of the disadvantages of applying lignocellulosic materials. Insertion of
starch components into PBS polymer (0% EFB), comes with expected higher water absorption [52,53],
as the starch component may take up to 300% of water absorption, as reported previously [9]. However,
when a portion of the starch/glycerol is replaced by EFB fiber, higher values are found in both moisture
uptake and loss analyses. This is because of the hydrophilic properties of the natural fibers in the poor
interfacial bonding, leading to higher increments of moisture uptake, due to the presence of hydroxyl
groups. Hence, it was observed that 20% EFB composite has the highest moisture uptake. The hydroxyl
groups absorbed water moisture through formation of hydrogen bonding. The higher moisture content
of the natural fiber may result in a weak interfacial bonding between the fiber and matrix [54]. The water
molecules were absorbed in the inter-fibrillar space of the cellulosic structure that exists in the fiber and
causes cracks and micro voids in the composite surface [55]. During immersion of the samples in water,
capillarity action conducts water molecules to fill the voids, causing cracks and dimensional change.
Swelling of fiber also leads to interfacial debonding and thereby reduction of mechanical strength [56,57].
In this study, at 6 to 8 h immersion, samples reached stable moisture contents, showing a saturation point,



Polymers 2020, 12, 1571 10 of 13

where no more water was absorbed. Similarly, when subjected to heat, the high EFB loadings composite
loses a higher amount of water content. This shows that fiber reinforcement improves strength profiles,
yet may cause higher susceptibility to moisture attack, thereby reducing overall composite properties.

4. Conclusions

In this study, the effect of fiber content on the mechanical and thermal properties of polybutylene
succinate (PBS) composites were mainly evaluated. The control specimen (0% EFB) was compared
with PBS polymer to discuss the changes affected by the appearance of starch/glycerol components.
Generally, insertion of starch/glycerol provided better strength performance, but worse thermal and
water uptake to all specimens.

On the other hand, it was found that there was poor interfacial adhesion between the EFB and
PBS matrix, leading to lower mechanical properties. Fortunately, this was overcome and improved by
higher fiber reinforcement, that regulated a better load transfer mechanism. Higher fiber loadings
have improved the flexural strength due to mechanical interlocks found between the fiber and matrix.
As a result, the tensile and flexural strength had increases of 6.0% and 12.2%, respectively, for 20 wt%
EFB reinforcements.

In the SEM micrographic, it shows a smooth surface for PBS, while appearances of the EFB fiber
show poor adhesion on the matrix, and was found to correlate with the mechanical properties analysis.
On the other hand, the void between the EFB fiber and matrix was less and gave better fiber/matrix for
a high fiber volume content composite.

A total of four thermal degradation peaks were recorded in the TGA analysis. The first peak was
observed at 75–95 ◦C, due to the presence of free water in the composite. Sharp transitions at peak 2
and 3 between 200–265 ◦C were due to decomposition of the polysaccharide components in the starches
and natural fibers. The last thermal decomposition peak was recorded at around 350 ◦C, which was
responsible for the degradation of the PBS matrix. In this analysis, there was a slightly higher mass loss
for early stage thermal decomposition, whereas insignificant changes on decomposition temperature
were recorded, regardless of EFB contents. However, the higher lignin constituent in the composite had
a higher mass residue, which would turn into char at high temperature. This observation indirectly
proves the dimensional integrity of the composite. Moreover, the better mechanical performance of the
high natural fiber reinforcement could offer wider applications for this composite material.

The moisture uptake over time and average loss of moisture contents for EFB composites were
analyzed in this study. The higher the EFB fiber content in the composite, the higher values in both
moisture uptake and loss data were found. This is expected due to the hydrophilic properties of the
natural fibers that lead to higher increments of moisture uptake, due to the presence of hydroxyl
groups. Hence, it was observed that 20% EFB composite has the highest moisture uptake. In this study,
at 6 to 8 h immersion, samples reached a stable moisture content, showing a saturation point, where no
more water was absorbed. Similarly, when subjected to heat, the high EFB loadings composite loses a
higher amount of water content. This shows that fiber reinforcement improves the strength profile yet
may cause higher susceptibility to moisture attack, thereby reducing overall composite properties.

As concluding remarks, the present results suggest that the use of 20% EFB fiber contents in the
composite may be a potential candidate for effectively improving the properties and performances
of the composite for future application. Nevertheless, the content of starch/glycerol may need to
strategically planned to obtain a balance between performance and costing.
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