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Abstract: An integrated approach, based on quantitative transmission mode powder X-ray diffraction
(PXRD) combined with multivariate statistical analysis, has been applied to cellulose obtained from
three different sources to correlate the mercerization degree and crystallinity with the cellulose type,
temperature, and reaction time. The effects of the experimental conditions on the two outcomes
were studied by design of experiments (DoE) and surface responding analysis (SRA) combined with
principal component analysis (PCA). SRA showed a marked influence of the type of cellulose (wood
cellulose from the kraft vs. sulfite process, WCK vs. WCS) on the conversion of cellulose I to cellulose
II (CII%) during mercerization. A counterintuitive simultaneous effect of temperature and cellulose
type was also highlighted. The data elaboration in the form of response surface plots provided an
easy predictive tool for the optimum conditions to maximize the conversion. The simulation reported
for WCK showed maximum conversion (96%) at 70 ◦C in 24 h with 18%wt NaOH.
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1. Introduction

Cellulose, the most abundant polysaccharide in nature, is formed of anhydroglucopyranose (AGU)
repeat units linked by β(1→4) glyosidic bonds. Cellulose can be obtained from several plant fibres
and through the delignification of woody plants [1]. It is characterized by a complex supramolecular
structure that is known to affect both the reactivity and macroscopic properties of the cellulose
polymer [2]. Native cellulose is a mixture of two crystalline forms, Iα and Iβ. Cellulose Iα has a triclinic
unit cell containing one chain (P1 space group) and is present in algae and bacteria, while cellulose Iβ
has a two-chain monoclinic cell (P21 space group) and is found in higher plants [3].

Cellulose is considered the main renewable source of C atoms as an alternative to fossil fuels.
Cellulose is also the starting material for several classes of derivatives, which are mainly produced
from dissolving-grade wood pulps (hardwood and softwood) containing hemicellulose and small
amounts of lignin. To a lesser extent, cotton linters are used when a refined pure raw material
is required with high cellulose content, low hemicellulose and lignin contents, and homogeneous
molecular weight distribution [4–6]. According to the literature [7], cotton and wood cellulose contain
predominantly the Iβ form, which, for clarity, will be referred to hereafter as cellulose I (CI). In addition
to CI, crystalline modification cellulose II (CII) is important industrially because it is the starting
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material for the preparation of many cellulose derivatives, such as viscose [8] and cellulose ethers and
esters [9]. The most important contributions to the global production of cellulose derivatives come
from cellulose acetate, used in coatings and membranes [10], cellulose xanthate, used in textiles [11]
and carboxymethylcellulose [12], used in coatings, paint, and pharmaceuticals [13,14].

Cellulose chains tend to aggregate by forming an ordinate network of intermolecular hydrogen
bonds, as Figure 1 (green and red lines). Additionally, each cellulose chain of both CI and CII has limited
conformational flexibility for the presence of two types of intramolecular hydrogen bonds: (i) those
connecting O2–H hydroxyl groups to the O atom of the primary OH groups of the neighbouring AGU
(Figure 1, yellow lines) and ii) those connecting O3–H to the pyranosidic O atom (O6) of neighbouring
AGU (Figure 1, blue lines) [15].
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Figure 1. Intermolecular and intramolecular hydrogen bonds in structures CI and CII: Intramolecular
2(OH) . . . O-6 (yellow dashes), intramolecular O(3)H–O pyranosidic (blue dots), intermolecular
O(6)H–O(3′) (green dashes and dots), and intermolecular O(2)H–O(2) and O(6)H–O(2′) (red lines).

These structural motives provide CI with a compact structure that makes cellulose, in its native
form, recalcitrant to reactions. To convert native cellulose into cellulose derivatives, good cellulose
accessibility and reactivity are desired [16]. The accessibility of CI, namely, the possibility for reactants
to reach and react with free OH groups on the polysaccharide backbone, leading to cellulose derivatives,
depends on: (i) surface area, as determined by the size of the accessible cellulose fibril aggregates, (ii)
cellulose macromolecular structure, which determines the hydroxyl groups that are accessible and
(iii) size and type of reagent used during derivatisation. The accessibility of the fibril surface or fibril
aggregates is limited by the compact structure of CI, which is determined by the presence of highly
ordered regions formed by strong hydrogen bond networks [17] (Figure 2). The reactivity of cellulose
can refer to its capacity to undergo diverse chemical reactions. Accordingly, accessibility is a necessary,
but not sufficient, condition for efficient cellulose derivatization. Each AGU in a cellulose chain has
three different types of hydroxyl groups (Figure 1), with hydroxyl groups O(2)H and O(6)H as the main
reactive groups that are susceptible to chemical attack and functionalization [18].
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Several studies have attempted to overcome the problem of cellulose recalcitrance to chemical
modifications. However, due to the complexity of the cellulose structure, many aspects remain to be
considered altogether, such as wood species, morphology and pulping process [19]. The unambiguous
and quantitative evaluation of cellulose accessibility is difficult because it depends on several factors,
such as particle size, degree of polymerization (DP), crystallinity and cellulose purity (presence
of hemicellulose or lignin). Alkali treatment is a well-known approach to cellulose activation,
and is commonly referred to as mercerization [20–24]: in this process, the more reactive and
thermodynamically stable CII is formed from CI. When cellulose interacts with NaOH, Na+ cations
penetrate intracrystalline spaces, causing the cellulose to swell. Consequently, intermolecular hydrogen
bonds (Figure 1) are broken. After washing, neutralizing and drying, cellulose undergoes an irreversible
morphological and structural change to CII that is characterized by an antiparallel chain motif. This
latter structural detail was confirmed by Langan et al. at 1 Å resolution [25]. This structure is stabilized
by a network of intermolecular hydrogen bonds of type O2-H—O6, O6-H—O6, and O2-H—O2
(Figure 1) [26,27]. Some hydroxyl groups that are inaccessible in the CI crystalline form become
accessible in the more amorphous CII form. The number of available hydroxyl groups in CII is increased
by around 25% compared with CI, [28,29] making mercerization a fundamental step for cellulose
activation toward further transformations. As previously reported, the polymorphic transformation
of CI into CII is initiated at a sodium hydroxide concentration greater than 7–8 wt% [30–33], but
mercerization probably already starts at low NaOH concentration (between 5–7 wt%) and low
temperatures (near 0 ◦C) depending on the cellulose source [34,35].

The mercerization process has a non-negligible environmental impact [36,37], as treating cellulose
with strong alkali produces a large volume of dilute sodium hydroxide solution waste. This is
toxic to wildlife and cannot be discharged into groundwater for economic and ecological reasons.
An important approach to sustainability involves reducing the energy and chemicals used in this
process. In principle, this could be achieved by optimizing the mercerization process parameters. This
study aims to develop a general model based on analytical and statistical data to select the optimum
mercerization parameters. The present work does not aim to estimate the best mercerization conditions
that are already widely studied in the literature, nor the thorough characterization of the interplay
of CI and CII in the merceritazione process, recently investigated via both PXRD and solid state 13C
NMR spectroscopy [38,39]. Rather, the purpose of the work is to provide analytical and predictive
tools that allow to optimize the mercerization reaction in the range of time and temperature mimicking
that of the actual industrial production carried out in real plants. To this end, we report on lab scale
mercerization tests done on different types of cellulose and exploring the time and temperature range
compatible with that used in typical cellulose derivative production [40].

Three commercially- and industrially-relevant cellulose types were considered, namely, cotton
linters cellulose (CLC), wood cellulose obtained from the kraft process (WCK) and wood cellulose
obtained from the sulfite process (WCS). Mercerization is strongly dependent on the reaction conditions,
such as temperature, NaOH concentration, and reaction time [41–43]. Cellulose samples were treated
on a laboratory scale by using 18 wt% NaOH solution at different mercerization times and temperatures.
Morphological and structural changes were studied by scanning electron microscopy (SEM) and



Polymers 2020, 12, 1559 4 of 16

transmission-mode powder X-ray diffraction (PXRD), respectively. For the latter measurements,
tailored and novel sample preparation is presented herein. The proposed protocol has two main
advantages: (i) Pellet sample preparation significantly improves the quality of transmission mode
data by reducing the effect of air scattering, which is known to lead to spectral noise or problems with
the baseline due to a diffuse background; [44] and (ii) the spectrum obtained in transmission mode
shows more defined peaks in the region of 2θ = 25–40◦ due to the preferred orientation, generally
referred to as texture, of well-oriented cellulose fibrils. In particular, we showed that the reflection due
to the 004 crystalline plane at 2θ = 34.8◦ can be conveniently exploited (vide ultra) as an experimental
descriptor of CI conversion to CII. Notably, this diffraction peak was hardly detected in reflection mode.

Cellulose reactivity was also evaluated by multivariate analysis (principal component analysis,
PCA) of the PXRD data. The effects of temperature and time on different celluloses were evaluated
using a statistical approach by DoE analysis. The results of the present work provide information
on the influence of reaction parameters on the quality of the treated cellulose. This represents
the starting point for both process optimization strategies and the formulation of new strategies.
Furthermore, the method presented was conceptualized and set up to avoid incomplete or excessive
mercerization, which result in unwanted insoluble fractions and wasted time, energy and reagents
(NaOH and cellulose). From this standpoint, and considering the scenario of a real-time quality control
in the production line, it is important to stress that PXR diffraction represents an ideal source of input
data for both multivariate analysis and DoE, for the accuracy of the data, the running costs of a standard
powder diffractometer for routine analysis and the measurement time per sample.

2. Materials and Methods

2.1. Materials

Cellulose samples (WCS, CLC, and WCK) were supplied by Akzo Nobel Chemicals S.p.A. Novara
(Novara, Italy) and milled to a maximum particle size of 500 µm.

The reported composition of celluloses was provided by Innovhub (Milano, Italy) according to
the National Renewable Energy Laboratory protocol (NREL/TP-510-42618 2008) [45]. The relative error
on mass determination was in the range 2–4%.

The mass values were then converted in%wt leading to the following compositions:

WCS from softwood: 88.7% glucose, 8.6% mannose.
WCK from softwood: 80.9% glucose, 5.8% xylose, 4.1% arabinose, 9.2% mannose.
CLC from cotton linters: glucose ≥99%.

2.2. Mercerization Protocol

Cellulose mercerization was performed in a 50-mL Erlenmeyer flask. Powder milled cellulose
(200 mg) was completely soaked with NaOH solution (4 mL, 18 wt%) and allowed to react at different
temperatures (rt, 40 ◦C, 60 ◦C, and 80 ◦C) for different contact times (15 min, 30 min, 1 h and 48 h).
After 48 h, mercerization was considered complete, with the sample taken as the reference for totally
mercerized cellulose. After treatment, the mercerized samples were washed to neutral pH with
deionized water. The sample was then filtered using a Buchner funnel and the residue was air-dried
overnight. An example of morphological analysis of cotton linters cellulose is discussed in Section 3.3.

2.3. Wide-Angle X-Ray Diffraction: Sample Preparation and Data Collection

A novel, simple and efficient method for the characterization of cellulose and evaluation of CI
conversion to CII is proposed herein. Our approach was based on innovative sample preparation for
PXRD and the use of X-ray diffraction data collected in both reflection and transmission mode. PXRD
samples were prepared as compact pellets of compressed cellulose powder. The pellets, mounted onto
tailored sample holders, were then examined in both transmission and reflection geometry. Reflection
mode is commonly used for PXRD data collection, [46–48], while data collection in transmission
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mode is less common [49,50], although it has already been used for cellulose characterization [51].
Cellulose pellets were prepared by pressing milled cellulose (150 mg) with a KBr die set usually used to
prepare KBr pellet samples for FT-IR analysis. The pellet was used for transmission mode PXRD data
collection instead of the usual powder sample by placing in the sample holder of the diffractometer.
This procedure improved XRD sensitivity by providing PXRD spectra with better signal-to-noise (S/N)
ratios. The pressure applied did not alter the crystal structure of the cellulose sample.

Cellulose Iβ and II reflections were indexed according to French [52]. Data analysis was performed
with Fityk 0.9.8 [53]. Fityk is an open-source software developed by Marcin Wojdyr for nonlinear
fitting of analytical functions (especially peak-shaped) to data (usually experimental data). It is used in
crystallography, chromatography, photoluminescence and photoelectron spectroscopy and infrared
and Raman spectroscopy. Peak deconvolution was carried out with the following method: the baseline
points were added manually, Gaussian peaks were added in the positions corresponding to the most
prominent reflections and to the amorphous region in order to optimize the total fitting curve. The main
crystalline reflections (−110, 110, 102, 200, 004) were fitted with five different Gaussian curves.

The crystallinity index (C.I.%) was evaluated from PXRD diffractograms obtained in reflection
geometry using a peak-fitting procedure [54–56] as performed by Fityk 0.9.8 software. The C.I.% was
calculated as the ratio of the area of crystalline peaks to the total area. Some examples of deconvolution
are reported in Figures S1 and S2.

PXRD data collection was performed on a Bruker D2 Phaser X-ray powder diffractometer using
CuKα radiation. Data were collected in the 2θ range of 4.7–40◦ using the following parameters: Step
size, 0.02◦; counting time, 0.4 s per step; primary slit module, 0.6 mm; air scatter screen module, 1 mm;
and secondary slit module, 8 mm.

2.4. Principal Component Analysis

PXRD diffractograms obtained in transmission mode were subjected to principal component
analysis (PCA). The two main advantages of this technique were that no calculations needed to be
performed on the spectra and the full PXRD diffractogram could be used as the input for PCA analysis
without any manipulation (known as binning). PCA was performed using the entire spectral region of
2θ = 4–40◦. Normalization and Pareto scaling were applied. Spectral data in the ASCII format were
imported into online tool Metaboanalyst 3.0. [57].

2.5. Design of Experiments

Data acquired through PXRD collection were subjected to multivariate analysis employing
a two-level full factorial nk model (n = 2 and K = 3) [58]. Three independent variables k, namely,
the specific process (type of cellulose used), temperature and time, were optimized to study the response
“conversion”, which corresponded to the degree of mercerization. Statgraphics Centurion v15.1.02
software (Statpoint Technologies Inc., The Plains, VA, USA) was used for experimental design
data analysis and to develop the response surface. All statistical analyses were performed by
comparing data with the unpaired Student’s t-test. The normal distribution of the data was checked by
the Kolmogorov–Smirnov and Shapiro tests. p < 0.5 was considered to be statistically significant.

2.6. Scanning Electron Microscopy

The morphology of cellulose before and after mercerization treatment was examined by Cambridge
stereoscan SEM S-360. The following instrumental parameters were used: high voltage: 10 kV, tilt:
0.00. The powdered samples were coated with a thin layer of palladium/gold and carbon cement was
used as adhesive.
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3. Results and Discussion

3.1. Structural Characterization

Structural characterization was performed by wide-angle X-ray diffraction of the powder samples.
After data collection, the peak deconvolution routine was applied to the entire spectrum. An example of
deconvolution is shown in Figure 3. The inclusion of further gaussian functions corresponding to minor
reflections (e.g., 211, 013, −113, −112) resulted in unrealistic fitting characterized by overemphasis
of the amorphous halo and physically meaningless negative Gaussian contributions in the 22–35◦

2θ region. A graphic representation is present in the Supplementary Information as Example 1 and
Example 2. Peak parameters were then exported.
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The conversion of CI to CII (CII%) was evaluated from the experimental PXRD profiles [25,52,59,60].
Cellulose samples were treated with 18 wt% NaOH for 15 min, 30 min, 1 h and 48 h. The stacked
PXRD profiles of cellulose obtained in transmission mode are shown in Figure 4.

The diffractograms showed changes in intensities of different peaks and a polymorphic
transformation with increasing mercerization time. In particular, a decrease in the intensity of
characteristic peaks of CI (14.7, 16.8, 22.7 and 34.8◦) was observed after 15 and 30 min. Meanwhile,
an increase in the intensity of peaks belonging to CII (12.1, 20.1 and 21.9◦) was clearly detected [61]
(Figure 4).The XRD diffractograms of CI and CII are reported in the Figure S3.
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Figure 4. PXRD profiles of CLC at different mercerization times with constant NaOH concentration.
Top trace is the reference for complete mercerization (see text). For clarity, the main peaks of CI
[(1–10), (110), (102), (020) and (004)] and CII [(1–10), (110) and (020)] are indicated with blue and red
lines, respectively.

After 1 h, the typical peaks of CI had disappeared almost completely, and the resulting spectrum
was similar to that of the sample mercerized for 48 h. This suggested that the mercerization process
of cellulose was almost complete after 1 h, with the optimal reactivity of cellulose almost reached.
When using transmission-mode data collection, the peak corresponding to the 004 plane at 34.8◦ was
clearly visible and isolated, and could be used as a descriptor of the conversion of CI to CII [62].
During mercerization, the intensity of this peak decreased, indicating a different chains packing.
The conversion from CI to CII was evaluated by quantifying the decrease in the area of this peak (A004)
with respect to the starting cellulose (A004cel) according to Equation (1):

CII% =
A004

A004cel
·100 (1)

The degree of crystallinity and CII% values of the three celluloses as a function of the mercerization
time and at different temperatures are reported in Figure 5. The C.I.% of the examined cellulose
samples show a trend in line with what reported by Revol [63], i.e., the C.I% depression is dependent
on the cellulose source.

The data of Figure 5, in particular, indicate a marked loss of crystallinity in the case of CLC, which
takes place in the first 15 min of contact with NaOH. This effect was amplified at high temperatures
(60 and 80 ◦C), where the crystallinity reached values close to those typical of wood cellulose WCS
and WCK. Conversely, at 25 and 40 ◦C, CLC maintained a high degree of crystallinity (>55%). Similar
behaviour was observed for WCS and WCK. Again, a major loss in crystallinity was observed in
the first 15 min, which was more evident with increasing temperature. However, the maximum
crystallinity loss detected for WCS and WCK was 15%, compared with 25% for CLC.
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The three types of cellulose showed different trends in the CII% value (Figure 5). This indicated
a difference in reactivity, which was attributed to the characteristics of cellulose studied, summarized
in Table 1. The data reported in Table 1 indicate that: (i) Cellulose from cotton linters (CLC) is
characterized by high purity, high DP, and high C.I.%; (ii) WCS obtained from wood via a sulfite process
results in a higher crystallinity with respect to other wood celluloses, higher purity, and a relatively
low DP; and (iii) WCK obtained from wood cellulose by the kraft process has a low DP, low C.I.% and
contains approx. 16% hemicellulose.

Table 1. Main parameters of the studied cellulose.

Cellulose C.I.% DP a Hemicellulose
Content% Particle Size (m)

WCK 58 500–700 19 500
WCS 54 1000–1300 9 500
CLC 73 1000–5000 - 500

a DP values were obtained from supplier.

The comparison of the curves in Figure 5 (bottom row) showed that WCS conversion during
mercerization was hardly affected by changes in temperature, while the CLC conversion gradually
increased with increasing temperature. WCK conversion was sensitive to temperature in the range
of 25–60 ◦C, with no further improvement in conversion observed above 60 ◦C. All C.I.% and CII%
values are reported in the SI (Tables S1–S3).

As mentioned previously, the reactivity of cellulose resulted from the correlation of several
parameters. This makes studying cellulose reactivity using a one-factor-at-a-time approach difficult.
Furthermore, effects related to the concomitant variation of more than one parameter on the system
cannot be analysed using classic 2D plots. Accordingly, multivariate statistical approaches, namely,
PCA and DoE, were used to evaluate the effect of multiple variations of different parameters on the type
of process, conversion, and loss of crystallinity.
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3.2. Morphological Characterization

The SEM images reported in Figure 6 report the evolution of the morphology of the CLC
fibres before and after mercerization [64,65]. The morphological changes after NaOH treatment
can be summarized as follows: before the treatment, the fibres resulted thin and straight, and
showed the typical ribbon-like of native cellulose (Figure 6a).The fibres have an average diameters of
8–15 µm [62] and a finer network of microfibres 1–2 µm in diameter was found among fibres. These
finer fibres are no longer visible after mercerization (Figure 6b) probably because of a re-aggregation of
the larger fibres during the alkaline treatment [62]. After mercerization, cellulose fibres were slightly
thicker and twisted (Figure 6b, red arrow). The diameter of the fibre are larger than the fibres before
the treatment (15–20 µm). The changes observed by SEM confirm the swelling of the fibres in alkali
and the shrinkage due to the rearrangement of the fibres. At a larger magnification (1000×) differences
in the fibres’ surfaces can be also detected. The native cellulose presents a smooth surface (Figure 6c),
while mercerization shows a rough surface (Figure 6d, green arrow) [48,66]. These differences in
morphological structure and fibre surface were observed also in WCK and WCS samples.
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3.3. Principal Component Analysis

To achieve a fast and unbiased classification of samples in terms of reactivity, PCA was applied to
the PXRD diffractograms in transmission mode [67,68]. The score plot of mercerized cellulose samples
at different mercerization times (15 min, 30 min, 1 h, and 48 h) is shown in Figure 7. Each data point in
the score plot represents a spectrum. As the proximity of points indicates similarity, scores closer to
the mercerized samples (blue ellipse) were related to samples with higher reactivity. The distances
between scores and the ellipse allowed the sample reactivity to be discriminated.



Polymers 2020, 12, 1559 10 of 16

Polymers 2020, 12, x FOR PEER REVIEW 9 of 15 

 

while mercerization shows a rough surface (Figure 6d, green arrow) [48,66]. These differences in 
morphological structure and fibre surface were observed also in WCK and WCS samples. 

 

Figure 6. SEM images of CLC sample before mercerization treatment at 400× magnification (a), 1000X 
magnification (c) and after mercerization treatment at 400× magnification (b) and 1000× magnification 
(d). 

3.3. Principal Component Analysis 

To achieve a fast and unbiased classification of samples in terms of reactivity, PCA was applied 
to the PXRD diffractograms in transmission mode [67,68]. The score plot of mercerized cellulose 
samples at different mercerization times (15 min, 30 min, 1 h, and 48 h) is shown in Figure 7. Each 
data point in the score plot represents a spectrum. As the proximity of points indicates similarity, 
scores closer to the mercerized samples (blue ellipse) were related to samples with higher reactivity. 
The distances between scores and the ellipse allowed the sample reactivity to be discriminated. 

 
Figure 7. 3D PCA scores plot of mercerization at 80 °C. 

Notably, the samples allowed to react for 1 h were very close to the mercerized samples (blue 
ellipse), while those subjected to reaction times of 15 and 30 min differed considerably, allowing 
better discrimination of the sample reactivity. Scores representing reaction times of 15 and 30 min 
showed that, at 80 °C, the order of conversion was WCK > WCS, CLC. The scores for CLC were the 
most distant from the blue ellipse, indicating that the conversion after 15 and 30 min was low. 

Figure 7. 3D PCA scores plot of mercerization at 80 ◦C.

Notably, the samples allowed to react for 1 h were very close to the mercerized samples (blue
ellipse), while those subjected to reaction times of 15 and 30 min differed considerably, allowing better
discrimination of the sample reactivity. Scores representing reaction times of 15 and 30 min showed
that, at 80 ◦C, the order of conversion was WCK > WCS, CLC. The scores for CLC were the most
distant from the blue ellipse, indicating that the conversion after 15 and 30 min was low. Different
cellulose samples clearly required different mercerization conditions. From this perspective, this study
aids the prediction and adjustment of process parameters for mercerization. Although PCA analysis
showed the similarity among the samples, it was difficult in this case to integrate all variables in
a single score plot. Therefore, different conditions influencing cellulose reactivity should be studied
simultaneously and correlated to each other. For this reason, design of experiments was performed.

3.4. Design of Experiments

PCA of the PXRD data showed that the CII% value at a fixed temperature was influenced by
the specific treatment and processing time. By performing multivariate analysis, the simultaneous
influence of temperature (T) and time (t) on the process could be assessed and used to optimize
the mercerization conditions and enhance the process efficiency. This approach has already been
successful employed to improve industrial processes, such as wastewater treatment [69], grinding
optimization [70] and biological processes [71] in the production of biolubricants [72] and other areas
of industrial interest [73].

Each of the three mercerization procedures discussed above were subjected to multivariate
analysis. To demonstrate the power of the multivariate approach, we have reported the analysis of
mercerization involving only wood celluloses WCK and WCS. The temperature range considered
was 25 ◦C < T < 80 ◦C, while the reaction time range was 15 min < t < 48 h. Multivariate analysis of
the factors, as summarized in the Pareto chart in Figure 8, showed that temperature, process, time, and
the combination of process and temperature (AB in Figure 8) had relevant effects (p < 0.05). For clarity,
“process” in the DoE section refers to the type of cellulose tested (WCK and WCS).
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Figure 8. Pareto chart for conversion related to the WCK and WCS processes.

The relevant effects of temperature and time were also obtained from the PCA data, while
the important effect of the process was not evident. In this respect, the WCK and WCS processes
are usually described as very similar because both derive from the same raw cellulose (wood pulp
cellulose). Furthermore, the relevant combined effect of process and temperature was only noted by
multivariate analysis.

The specific effects of each factor are better highlighted in the main effect plot shown in Figure 9.
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From the main factors plot, the WCK process evidently allowed a higher cellulose conversion to be
reached compared with the sulfite treatment. From analysis of the slope of each curve, the magnitude
of the effects of each factor on the conversion could be compared. Temperature had the greatest impact
on the conversion, followed by the process and reaction time, which showed similar slopes.

To optimize these parameters and increase the efficiency of the two processes, response surface
analysis was performed (Figure 10). The response surface model was implemented to maximize the CII%
value. This target was expressed as a function of desirability, which ranged from 0 (corresponding to
the minimum desirability and a conversion of 60%) to 1 (corresponding to a conversion of 96%).

By employing the statistical model developed and presented herein, many working conditions
could be simulated and the process of choice optimized for the mercerization of wood cellulose. By
setting the process temperature to 80 ◦C and mercerizing for at least 10 h, high conversions (96%) could
only be reached for cellulose from the WCK process (Figure 10, top left) while, for WCS, the maximum
desirability reached was about 60%, corresponding to 79% conversion, even after mercerization for
48 h at 80 ◦C. The response surface model implemented showed that the maximum desirability could
be reached by the WCK process at 70 ◦C (Figure 9, top right). In fact, 70 ◦C was the minimum
temperature that led to the maximum possible conversion (96%). Furthermore, the model allowed
the mercerization time to be optimized. The simulation reported in Figure 10 (below left) showed that
24 h was the minimum process time needed to reach the maximum conversion.

Further simulations based on the present model are reported in the Supporting Information
(Figures S4–S13 and Tables S4–S10).
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4. Conclusions

A set of analytical tools for estimating and improving the efficiency of the mercerization process
applied to industrial cellulose samples was presented. Three industrial celluloses were mercerized under
different conditions, and the conversion from CI to CII (CII%) and crystallinity (CI%) were determined
by PXRD. The combination of tablet sample preparation and high-quality X-ray data acquisition in
transmission mode was conveniently exploited as the input for PCA and multivariate analysis of
the PXRD data by DoE. This approach allowed all relevant parameters influencing the conversion in
industrial mercerization processes to be determined. Furthermore, by combining the statistical results
with an implemented desirability function, a suitable model for the optimization of mercerization
efficiency was formulated by performing response surface analysis. In particular, a specific tool for
tuning the conversion of different wood celluloses by properly modifying the temperature, reaction
time, and specific process was presented and discussed. The multivariate model proposed allowed
relevant hidden differences between celluloses, which apparently have similar characteristics, to
be determined.
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