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Abstract: Transparent polyimides (PI) films with outstanding overall performance are attractive for
next generation optoelectronic and microelectronic applications. Semi-alicyclic PIs derived from
alicyclic dianhydrides and aromatic diamines have proved effective to prepare transparent PIs with
high transmittance. To optimize the combined properties of semi-alicyclic PIs, incorporating bulky
trifluoromethyl groups into the backbones is regarded as a powerful tool. However, the lack of
fundamental understanding of structure–property relationships of fluorinated semi-alicyclic PIs
constrains the design and engineering of advanced films for such challenging applications. Herein,
a series of semi-alicyclic PIs derived from alicyclic dianhydrides and trifluoromethyl-containing
aromatic diamines was synthesized by solution polycondensation at high temperature. The effects of
alicyclic structures and bulky trifluoromethyl groups on thermal, dielectric and optical properties of
PIs were investigated systematically. These PI films had excellent solubility, low water absorption
and good mechanical property. They showed high heat resistance with Tg in the range of 294–390 ◦C.
It is noted that tensile strength and thermal stability were greatly affected by the rigid linkages
and alicyclic moieties, respectively. These films exhibited obviously low refractive indices and
significantly reduced dielectric constants from 2.61 to 2.76, together with low optical birefringence
and dielectric anisotropy. Highly transparent films exhibited cutoff wavelength even as low as 298 nm
and transmittance at 500 nm over 85%, displaying almost colorless appearance with yellowness
index (b*) below 4.2. The remarkable optical improvement should be mainly ascribed to both weak
electron-accepting alicyclic units and bulky electron-withdrawing trifluoromethyl or sulfone groups.
The present work provides an effective strategy to design molecular structures of optically transparent
PIs for a trade-off between solution-processability, low water uptake, good toughness, high heat
resistance, low dielectric constant and excellent optical transparency.

Keywords: polyimide; alicyclic structure; trifluoromethyl; transparency; structure–property
relationship

1. Introduction

With the development of electronics, microelectronics and large-scale integrated circuits, flexible
substrates have attracted considerable interest due to their promising applications in next-generation
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displays, diverse flexible electronic devices and aerospace industry [1–3]. The plastic substrates
have been tried to build light-weight and conveniently portable devices, foldable phones or roll-up
displays, flexible printed circuit board. As one of key components in devices, the plastic substrate has
great influence on the performance and reliability of devices. Whereas traditional organic polymer
materials are difficult to meet the required demands of flexible substrates. There is an urgent need for
high-performance polymers available for the advanced manufacturing. Polyimides (PI) are a class
of engineering plastics widely applied in electronics, microelectronics, aerospace and energy fields,
due to their outstanding thermal, mechanical, chemical resistance and electrical properties [4–8]. Thus,
PIs are regarded as the best choice for substrate materials used for flexible optoelectronic applications
such as organic electroluminescent displays, flexible thin film solar cells, flexible printed circuits boards
with multilayers, etc [9–12]. However, it is difficult for conventional PIs with fully-aromatic repeating
units to meet the harsh requirements when applied for different situations. Most of PIs have so poor
solution processability in common organic solvents that their films can be only prepared by thermal
imidization using the precursor solutions. In addition, fully-aromatic PI films are well known to show
yellow or brown coloration and high dielectric constant, which are unsuitable for various applications
required optical transparency or low permittivity [13,14]. These obstacles greatly limit the widespread
use of PIs in the advanced optoelectronic and microelectronics fields. Therefore, developing PIs with
good processability while simultaneously maintaining outstanding overall performance such as high
heat resistance, excellent optical transparency and low dielectric features is still a great challenge.

For fully-aromatic PIs, their intense coloration and high absorption in the ultraviolet-visible
region have proved to be a consequence of easily formed charge transfer complexes (CTC) in their
highly conjugated molecular chains. Ando and coworkers have systematically investigated the
relationship between molecular structures and coloration of PIs [15–17]. In general, the electron-
deficient dianhydride units and electron-rich diamine units act as the electron donor and acceptor,
respectively. The charge interactions between them are the main reason for the formation of inter-
and/or intra-molecular CTC. It is further reported that optical property of PIs is dominated by
the electron-donation abilities of diamines when the dianhydride structure is fixed. In order to
obtain transparent or even colorless PIs, various effective strategies have been reported to suppress
or eliminate the charge transfer interactions. Researchers, respectively, introduce bulky pendant
substituents, flexible linkages, noncoplanar or asymmetric units, non-aromatic structures or electron-
withdrawing functional groups into polymer backbone [18–21]. Among these strategies, the adoption
of alicyclic dianhydrides with weak electron-accepting abilities or alicyclic/aliphatic diamines with
weak electron-donating abilities can effectively suppress the formation of CTC. Those PIs with
non-aromatic units exhibit high transparency and meantime low coloration compared to fully-aromatic
PIs. Especially, semi-alicyclic PIs derived from alicyclic dianhydrides and aromatic diamines are
taken as the best choice to obtain transparent PIs with high transmittance because their reactions
can proceed smoothly without salt formation [22–25]. In the previous work [26], semi-alicyclic PIs
based on 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA, also named CHDA) and various
aromatic diamines were prepared and showed considerably improved optical transparency with
entirely colorless appearance. Whereas, it is also found the steric structures of H-PMDA have a
significant influence on the polymerizability and thermal expansion of resultant PIs.

As is well known, high molecular weight of semi-alicyclic PIs is very important because it is
directly connected to the ductility of resulting film. However, most cycloaliphatic tetracarboxylic
dianhydrides do not have sufficient reactivity with aromatic diamines, and they have also problems
of low-cost mass productivity. As a representative alicyclic dianhydride, H-PMDA does not have
sufficient polymerizability due to its steric structures containing three isomers. Hasegawa systematically
investigated the steric effect on reactivity of isomers, including two boat-forms and one chair-from [11].
For commercially available H-PMDA product, it contains three isomers with different proportions that
are difficult to separate and thus greatly limit its polymerizability. More importantly, the steric structures
also have a major impact on the extended PI chain forms. It has been found that these semi-alicyclic
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PIs based on H-PMDA with mixed isomers generally have inferior thermal dimensional stability.
Furthermore, in theory, alicyclic units in the molecular structures can also contribute to the improved
solubility owing to the decreased content of conjugated backbone and weakened molecular interaction.
It has been already found that alicyclic dianhydrides can remarkably improve optical transparency,
but it may be not helpful to increase the solubility as expected if the diamine structural design is not
reasonable. For example, semi-alicyclic PI derived from 1,2,3,4-cyclobutanetetracarboxylic dianhydride
(CBDA) and 2,2’-bis(trifluoromethyl)-4,4’-diamino biphenyl (TFMB) can obtain outstanding optical
properties and relatively low thermal expansion coefficients (CTE) around 21 ppm/◦C [27,28].
However, this PI is not compatible with chemical imidization method and cannot be processed
by common organic solvents even if it has a high fluorine content. CBDA-based PIs also tend
to result in other undesirable properties. Furthermore, Liu and coworkers prepared fluorinated
semi-alicyclic transparent PI films for optocommunication applications, which were based on CBDA
and aromatic diamines including 1,4-bis(4-amino-2-trifluoromethyl-phenoxy) benzene (6FAPB) and
4,4’-bis(4-amino-2-trifluoromethylphenoxy) biphenyl (6FBAB) [29]. However, these CBDA-based
PIs showed much low heat resistance with glass transition temperatures (Tg) below 245 ◦C. In brief,
determining how to effectively balance optical transmittance and other desired properties is very
crucial for those semi-alicyclic PIs using alicyclic dianhydrides and aromatic diamines.

A large number of studies have shown that semi-alicyclic PIs, together with modification of
aromatic diamine moieties, can achieve high combined performance without sacrificing optical
properties. It is reported that these transparent PIs showed excellent solubility and low dielectric
constants when bulky electron-withdrawing trifluoromethyl (–CF3) and sulfonyl groups (–SO2–) were
incorporated in diamine moieties [11]. Besides, in order to improve chemical resistance of transparent
films, semi-alicyclic PIs based on bicycle [2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BODA)
and aromatic diamines containing ortho-substituted groups were developed [26]. It is found that
these semi-alicyclic PIs with fluorine content lower than 10 wt% (by introducing fluorine atoms
(-F)) have outstanding solubility and high heat resistance, but they also show inferior toughness
and relatively higher yellow indices. These results indicated that incorporating trifluoromethyl
groups into diamine moieties is a more effective design strategy to improve the transparency and
coloration of semi-alicyclic PIs. Moreover, in terms of molecular design of intrinsic low dielectric
PIs, increasing inherent free volume or incorporating groups with low electronic polarization was
proved to be effective to reduce dielectric constant [30–32]. Bulky trifluoromethyl groups undoubtedly
increased free volume in the molecular structures that can dilute the polar molecular concentration,
and weaken electronic interaction between polymer chains [33,34]. This means incorporating bulky
trifluoromethyl groups into backbones provides a powerful tool to optimize the combined properties
of semi-alicyclic PIs. Many different semi-alicyclic PI systems have been developed, however, the
structure–property relationship of CF3-containing semi-alicyclic PIs is not completely clear, and the
trade-off between solution-processability, water uptake, toughness, heat resistance, dielectric property
and optical transparency needs further elaboration.

In the present study, we prepared a series of semi-alicyclic PIs with different rigid or flexible
linkages by solution polycondensation at high temperature, using two alicyclic dianhydrides and
five aromatic diamines containing trifluoromethyl groups. In view of the effect of steric structures
on polymerizability and properties, cycloaliphatic dianhydride of H-PMDA containing three isomers
was not used. Instead, BODA and CBDA with good chemical reactivity and cost advantage of mass
production were adopted as the representative alicyclic dianhydrides. Especially, cycloaliphatic BODA,
without the problem of different isomer reactivity has been proved to have good reactivity with
aromatic diamines, and the resultant BODA-based PIs also exhibited excellent optical transparency
and high Tg values [26]. Lu and other researchers also obtained similar results by using BODA
and other aromatic diamine with bulky pendant groups [35]. Tg value of reported BODA-based PI
was determined to exceed 420 ◦C, and this transparent film showed high transmittance over 86%
in the visible region. In addition, considering that cycloaliphatic PIs often yield brittle films that
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cannot meet the toughness requirement for practical use, we introduce flexible ether bonds (–O–)
into diamines to enhance flexibility except the biphenyl-based TFMB. Considering the poor solubility
of PI derived from CBDA and TFMB, diamine containing trifluoromethyl and sulfonyl groups i.e.,
2,2’-bis[4-(4-amino-2-trifluoromethyl-phenoxy) phenyl]sulfone (6FBAS) was chosen to polymerize
with CBDA in order to ensure both the solubility and transparency of PI film. In the previous work, the
sulfonyl and trifluoromethyl groups in the 6FBAS have been demonstrated to result in highly distorted
molecular chains and strong electron-withdrawing effect, which can effectively suppress the formation
of inter- and intra-molecular CTC [36,37]. Furthermore, the nonconjugated alicyclic structures and
bulky electron-withdrawing trifluoromethyl groups are simultaneously introduced into backbones to
inhibit charge transfer interactions. The synergistic effects of alicyclic structures and fluorinated groups
on the performance of semi-alicyclic PIs, together with solubility, mechanical, thermal, dielectric, optical
transparency and other properties were investigated systematically. Their aggregation of polymer
chains was also evaluated by Wide angle X–ray diffractometry, and molecular orbital energies of model
compounds were determined by density functional theory (DFT) calculations to clarify the effects of
molecular structures on charge transfer interactions. Fundamental insights into structure–property
relationships of semi-alicyclic PIs containing trifluoromethyl groups observed in this study offer
guidance for the design of flexible transparent PIs for next-generation optoelectronic applications.

2. Materials and Methods

2.1. Materials

2,2’-Bis(trifluoromethyl)-4,4’-diamino biphenyl (TFMB), bicyclo[2.2.2]oct-7-ene-2,3,5,6-
tetracarboxylic dianhydride (BODA) and 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) were
purchased from TCI Shanghai Co., Ltd. (Shanghai, China). 1,4-Bis(4-amino-2-trifluoromethyl-phenoxy)
benzene (6FAPB) and 4,4’-bis(4-amino-2-trifluoromethylphenoxy) biphenyl (6FBAB) were purchased
from Changzhou Sunlight Pharmaceutical Co., Ltd. (Changzhou, China). 2,2’-Bis[4-(4-amino-2-
trifluoromethyl-phenoxy)phenyl]sulfone (6FBAS) was synthesized according to the literature [36,37].
All the diamines and dianhydrides were dried at 80–120 ◦C for 12 h under vacuum prior to use,
respectively. Anhydrous N-methylpyrrolidone (NMP), isoquinoline and toluene were obtained from
Sinopharm Chemical Reagent Co., Ltd. (Beijng, China). The solvent NMP was purified by distillation
under reduced pressure before use, and other regents were used as received.

2.2. Characterization

The number and weight of the average molecular weights (Mn and Mw) test were based on
tandem gel permeation chromatography (GPC system, Waters, Milford, MA, USA) with solvent DMF
containing 0.02 M LiBr as the eluent, detecting by multiangle laser light scattering system (Wyatt,
Santa Barbara, CA, USA). The molecular weight distribution of polymers was calculated by Mw/Mn.
Infrared spectroscopy was measured by a Fourier transform spectrophotometer (782, PerkinElmer,
Waltham, MA, USA) using attenuated total reflection mode. 1H spectra were recorded on a nuclear
magnetic resonance (NMR) spectrometer (DD2, Agilent, Santa Clara, CA, USA). Water absorption rate
(WA) of PI films was measured according to the standard of GB/T 1034–2008, testing five specimens with
dimension of 50 mm × 50 mm before immersion in the deionized water at 25 ◦C for 24 h. Static contact
angle tests were performed with the optical contact angle system (OCA25, Dataphysics Instruments,
Filderstadt, Germany) at room temperature. The surface of specimen was wiped with ethanol and dried
before testing. Distilled water was used and at least three measurements were taken for each sample.

Tensile properties of films were measured by a universal tensile apparatus (3365, Instron,
Norwood, MA, USA) with five specimens prepared according to the standard of GB/T 1040.3–2006
recommendations at a drawing rate of 5 mm/min. Thermal diffusivities measurements along the
out-of-plane direction of PI films were conducted on a laser flash apparatus (LFA447, Netzsch, Selb,
Germany). Each sample was around 50 µm and at least three specimens of each sample were examined.
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Glass transition temperature (Tg) was obtained by dynamic mechanical analysis at a heating rate of
5 ◦C/min in nitrogen (242E, Netzsch, Selb, Germany), and the peak temperature of loss tangent (tan δ)
curves was regarded as the Tg values. The film specimens (6 mm wide, 12 mm long, 50 µm thick) were
measured with a frequency of 1 Hz and amplitude of 15 µm using tension mode. Thermal stability
of PI films was evaluated by thermogravimetric analysis (STA449F5, Netzsch, Selb, Germany) with
a heating rate of 10 ◦C/min under nitrogen. Linear thermal expansion coefficients (CTE) in the film
plane were determined with thermomechanical analysis (DIL 402SE, Netzsch, Selb, Germany) at a
heating rate of 5 ◦C/min in nitrogen. The average CTE values were calculated in the 50–200 ◦C range
with data collected from the second heating.

The in-plane (n‖) and out-of-plane (n⊥) refractive indices measurements were performed on a
prism coupler (2010, Metricon, Pennington, NJ, USA) at the wavelength of 632.8 nm. The average
refractive index (nav) and birefringence (∆n) were calculated by the equations nav = (2n‖ + n⊥)/3,
∆n = n‖ − n⊥. Optical dielectric constant (εopt) of PI film was estimated from the empirical relationship
with average refractive indices by Maxwell’s equation εopt = 1.1nav

2. Anisotropy of in-plane and
out-of-plane dielectric constant was defined as ∆ε = ε‖ − ε⊥ = 1.1(n‖2 − n⊥2). UV–Vis spectra of PI films
was measured by the spectrophotometer (U3900, Hitachi, Tokyo, Japan) with samples thickness around
25 ± 3 µm. Color intensity of about 50 ± 3 µm thick films was evaluated by color spectrophotometer
(i7, Xrite, Grand Rapids, MI, USA), and the color parameters were calculated according to the CIE LAB
color difference equation. Wide angle X–ray diffractometry (WAXD) measurements was performed by
a X–ray diffractometer (D/max 2500, Rigaku, Tokyo, Japan) using Cu/Kα radiation (λ = 1.54 Å) at room
temperature. Density functional theory (DFT) with a three-parameter Becke-style hybrid functional
(B3LYP) was used to calculate the molecular orbital energies for model compounds of semi-alicyclic
PIs, using the 6-311++G(d,p) basis set. The highest occupied molecular orbital energy (EHOMO) and
the lowest unoccupied molecular orbital energy (ELUMO) were obtained, and their difference energies
i.e., energy band gap (EGAP) were calculated by the equation EGAP = ELUMO − EHOMO.

2.3. Synthesis of Semi-Alicyclic Polyimides and Preparation of Films

Semi-alicyclic PIs were prepared by solution polycondensation at high temperature using two
alicyclic dianhydrides and four aromatic diamines containing trifluoromethyl groups, respectively.
As shown in Scheme 1, poly(amic acid)s (PAA) as precursor solutions were firstly synthesized by
polymerization of dianhydrides and diamines with equimolar amounts. PAA solutions were thermally
cyclodehydrated at high temperatures to give corresponding semi-alicyclic PIs. As a typical experiment,
PI-1 (BODA/TFMB) was synthesized and the film was accordingly prepared in the following procedure.
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The dried diamine TFMB (32.02 g, 0.1 mol) was completely dissolved in anhydrous NMP (170 mL).
Then, alicyclic dianhydride BODA (24.82 g, 0.1 mol) and isoquinoline (0.5 g) were added to the
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dissolved solution and stirred at 30–40 ◦C for 24 h under nitrogen. The homogeneous PAA solution was
obtained and followed by imidization procedure. Toluene (35 mL) was added, and the reaction solution
was gradually heated to 160–180 ◦C maintained for 24 h with continuous stirring. Water as a byproduct
of polycondensation was appropriately removed by azeotropic distillation. Finally, the viscous solution
was cooled down to room temperature and slowly poured into methanol to give a fiber-like precipitate.
After filtration and drying, the PI precipitate was successfully obtained.

To prepare PI film, dried precipitate was dissolved in NMP with a solid content of 25 wt.%.
The homogeneous PI solution was filtered and deaerated. Subsequently, the solution was uniformly
casted on a clean glass plate by the automatic film applicator (4340, Elcometer, Manchester, UK),
and thermally baked according to the elevated temperature procedure: 60 ◦C for 2 h, 150 ◦C for 1
h and 300 ◦C for 1 h, successively. Finally, robust PI film was obtained after it was immersed in
water and peeled off from glass substrate. Other semi-alicyclic PI films, i.e., PI-2 (BODA/6FAPB),
PI-3 (BODA/6FBAB), PI-4 (BODA/6FBAS) and PAI-5 (CBDA/6FBAS) were prepared according to the
above procedure. The thickness of PI films was controlled around 25 ± 3 µm or 50 ± 3 µm for different
specific measurements, which can be adjusted by the solid content and viscosity of PI solution, the
type of coating spreader. Film thickness was measured by a thickness tester (C640, Labthink, Ji’nan,
China) using a mechanical contact method with high precision.

3. Results and Discussion

3.1. Synthesis and Characterization of Semi-Alicyclic Polyimides

As shown in Scheme 1, five soluble semi-alicyclic PIs were prepared by solution polycondensation
with equimolar alicyclic dianhydrides and aromatic diamines containing trifluoromethyl. PAA solutions
were synthesized in the strong polar solvent of NMP at 30–40 ◦C, followed by the cyclodehydration
reaction at elevated temperature. In view of relatively low chemical reactivity of alicyclic dianhydride,
the polymerization from PAA to PI is generally recommended at high temperature to synthesize
semi-alicyclic PIs with high molecular weight [38,39]. Correspondingly, PIs were gradually thermally
imidized at 160–180 ◦C using base catalyst and azeotropic distillation with toluene to remove water
produced as a byproduct during condensation reaction. The molecular weights and polydispersities of
PIs were measured through GPC, and their results are summarized in Table 1.

Table 1. Physical properties of semi-alicyclic polyimides a.

PIs

Molecular Weight
Fluorine

Content (%)
WA
(%)

CA
(◦)Mn ×

104(g/mol)
Mw × 104

(g/mol)
Mw/Mn

PI-1 5.84 8.35 1.43 21.4 0.78 93.7
PI-2 5.86 8.32 1.42 17.8 0.92 92.8
PI-3 5.08 7.54 1.48 15.9 1.08 89.7
PI-4 6.77 9.23 1.36 14.6 0.77 89.2
PI-5 6.91 8.76 1.27 15.6 1.05 89.4

a Mn and Mw: the number and weight average molecular weight, measured in N,N-dimethylformamide (DMF) by
gel permeation chromatography (GPC) with multiangle laser light scattering system; WA: water absorption rate at
25 ◦C for 24 h; CA: water contact angle.

The Mn and Mw of these PIs were in the range of 5.08–6.91 × 104 g/mol and 7.54–9.23 × 104 g/mol,
respectively. All the semi-alicyclic PIs showed high molecular weight and narrow molecular weight
distribution (Mw/Mn) below 1.50, which can reach the molecular weight level of fully-aromatic PIs and
is better than most semi-alicyclic systems reported in the literatures [22,35]. This ensured their thermal
and mechanical properties of corresponding films. In addition, it is also noted thatsemi-alicyclic PIs
have excellent solubility, which can be dissolved in the strong and even weak polar solvents including
NMP, N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), tetrahydrofuran (THF) and
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dioxane. The improved solubility of these PIs is thought to be the presence of alicyclic structures and
relatively high fluorine content derived from the trifluoromethyl groups in diamine moiety. In addition,
semi-alicyclic PI-5 derived from CBDA and 6FBAS showed much better solubility than CBDA-based
PI with TFMB reported in the literature [28]. This is mainly because the incorporation of ether linkages
and sulfonyl groups in diamine moiety. Thus, these soluble semi-alicyclic PIs can be easily processed
by common organic solvents, which is very convenient for a variety of applications.

The imidization degree and chemical structures of semi-alicyclic PIs were characterized by
Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and 1H-nuclear
magnetic resonance (NMR) spectra, respectively. Figure 1 gives the ATR-FTIR and 1H NMR spectra of
representative PI-1 film, and other ATR-FTIR spectra of semi-alicyclic PI films are shown in Figure S1
(shown in Supporting Information). The characteristic peaks of amide and carboxyl linkage around
3200–3400 cm−1 (N–H and COOH) and 1660 cm−1 (CO–NH) were not found, which qualitatively
indicated that PAAs have been converted to PIs. Meanwhile, the absorption peaks assigned to the
symmetric and asymmetric stretching vibration of carbonyl group (C=O) in imide ring, as well as
imide C–N were observed at about 1780, 1715 and 1370 cm−1, respectively. The results also proved the
successful imide conversion from amic acid groups. The degree of imidization can be quantitatively
determined by the ratio of absorbance of imide C–N at 1370 cm−1 to that of C=C stretching at
1513 cm−1 [40]. All the values calculated by I1370/I1513 were more than 99% for these semi-alicyclic PIs.
It is indicated that the precursor PAAs were successfully converted to corresponding PIs with a nearly
complete imidization. Besides, the specific absorptions of C–F stretching vibration were detected
around 1250 and 1135 cm−1 due to trifluoromethyl groups in the structure.

Polymers 2020, 12, 1532 7 of 20 

 

polar solvents including NMP, N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), 
tetrahydrofuran (THF) and dioxane. The improved solubility of these PIs is thought to be the 
presence of alicyclic structures and relatively high fluorine content derived from the trifluoromethyl 
groups in diamine moiety. In addition, semi-alicyclic PI-5 derived from CBDA and 6FBAS showed 
much better solubility than CBDA-based PI with TFMB reported in the literature [28]. This is mainly 
because the incorporation of ether linkages and sulfonyl groups in diamine moiety. Thus, these 
soluble semi-alicyclic PIs can be easily processed by common organic solvents, which is very 
convenient for a variety of applications.  

The imidization degree and chemical structures of semi-alicyclic PIs were characterized by 
Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and 1H-nuclear 
magnetic resonance (NMR) spectra, respectively. Figure 1 gives the ATR-FTIR and 1H NMR spectra 
of representative PI-1 film, and other ATR-FTIR spectra of semi-alicyclic PI films are shown in Figure 
S1 (shown in Supporting Information). The characteristic peaks of amide and carboxyl linkage 
around 3200–3400 cm−1 (N–H and COOH) and 1660 cm−1 (CO–NH) were not found, which 
qualitatively indicated that PAAs have been converted to PIs. Meanwhile, the absorption peaks 
assigned to the symmetric and asymmetric stretching vibration of carbonyl group (C═O) in imide 
ring, as well as imide C–N were observed at about 1780, 1715 and 1370 cm−1, respectively. The results 
also proved the successful imide conversion from amic acid groups. The degree of imidization can 
be quantitatively determined by the ratio of absorbance of imide C–N at 1370 cm−1 to that of C=C 
stretching at 1513 cm−1 [40]. All the values calculated by I1370/I1513 were more than 99% for these 
semi-alicyclic PIs. It is indicated that the precursor PAAs were successfully converted to 
corresponding PIs with a nearly complete imidization. Besides, the specific absorptions of C–F 
stretching vibration were detected around 1250 and 1135 cm−1 due to trifluoromethyl groups in the 
structure. 

 

Figure 1. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and 
1H-nuclear magnetic resonance (1H NMR) spectra of representative PI-1 film. 

Chemical structures of semi-alicyclic PIs can be further identified by 1H NMR measurement. As 
depicted in Figure S2 (shown in Supporting Information), all the hydrogen protons can be clearly 
clarified in the 1H-NMR spectra. The characterization results demonstrate that semi-alicyclic PIs 
with expected chemical structures were successfully prepared through high temperature solution 
polycondensation. Besides, the surface and internal morphology of PI films were analyzed by 
scanning electron microscopy (SEM). SEM images of surface and cross-sectional fracture of 
representative PI-1 film are given in Figure S3 (shown in Supporting Information). It is observed that 
the film surface is smooth and flat, and there are no defects found inside such as bubbles or cracks. 

Figure 1. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and
1H-nuclear magnetic resonance (1H NMR) spectra of representative PI-1 film.

Chemical structures of semi-alicyclic PIs can be further identified by 1H NMR measurement.
As depicted in Figure S2 (shown in Supporting Information), all the hydrogen protons can be clearly
clarified in the 1H-NMR spectra. The characterization results demonstrate that semi-alicyclic PIs
with expected chemical structures were successfully prepared through high temperature solution
polycondensation. Besides, the surface and internal morphology of PI films were analyzed by scanning
electron microscopy (SEM). SEM images of surface and cross-sectional fracture of representative PI-1
film are given in Figure S3 (shown in Supporting Information). It is observed that the film surface is
smooth and flat, and there are no defects found inside such as bubbles or cracks.

Water absorption (WA) of PI films is an important factor for application in manufacturing
flexible optoelectronic devices. As summarized in Table 1, WA values of semi-alicyclic PI films were
quantitatively evaluated. These PI films with fluorine content above 14.6% showed significantly low
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WA values ranging from 0.77% to 1.08%, whereas the typical commercial PI film Kapton derived from
pyromellitic dianhydride (PMDA) and 4,4’-diaminodiphenyl ether (4,4’-ODA) had a high WA value
around 2.65%. It is indicated that hydrophobic trifluoromethyl groups and nonpolar alicyclic moieties
in the mainchain can effectively inhibit the water adsorption on the film surface, and prevent water
molecules from further entering the internal structure of film. Moreover, water contact angle (CA)
measurements of semi-alicyclic PIs were performed to reflect their hydrophobicity that is important
for application as substrates. Water contact angle images are given in Figure S4 (shown in Supporting
Information) with the data listed in Table 1. The intrinsic CA values of these PIs ranged from 89.2◦

to 93.7◦, which were remarkably increased compared to Kapton film (79.3◦). These CA values were
positively correlated with fluorine content. It is indicated that hydrophobicity of semi-alicyclic PIs can
be enhanced due to the incorporation of trifluoromethyl. This inference is consistent with the above
water absorption results.

3.2. Mechanical Properties and Thermal Diffusivities of Semi-Alicyclic Polyimides

The mechanical properties of PI films are associated with their flexibility and rigidity of molecular
chains. Tensile strength (TS), modulus (TM) and elongation at the break (EB) for semi-alicyclic PIs were
evaluated, and the results are listed in Table 2. All the PI films exhibited high TS values in the range
of 77.1–97.9 MPa, combined with moderate TM values around 2.0–2.9 GPa and EB values from 5.1%
to 10.1%. It is noted that the TFMB-based PI-1 film showed the highest TS and the lowest EB values,
indicating that its molecular chain is linear and rigid. In contrast, the 6FBAB-based PI-3 film had the
lowest TS and the highest EB values due to the incorporation of a flexible ether bond. Besides, it is also
found that the sulfone-containing PIs i.e., PI-4 and PI-5 films displayed enhanced mechanical properties.
The result means that introducing polar groups into the mainchain can improve intermolecular
interactions and thus have a great influence on the mechanical performance of PIs. As comparing with
PIs based on different dianhydrides including BODA and CBDA, the films showed major differences
on their strength and modulus performance. The BODA-based PI-4 film exhibited higher TS and lower
TM values than CBDA-based PI-5 film. This could be ascribed to the combination effect of rigidity and
linearity of molecular chains. The dianhydride CBDA having relatively linear structure endowed PI
chain with more rigidity, thus obtaining higher modulus. As depicted above, these semi-alicyclic PI
films have adjustable and sufficient toughness for application as flexible substrates.

Table 2. Mechanical properties and thermal diffusivities of semi-alicyclic polyimide films a.

PIs TS (MPa) TM (GPa) EB (%) D⊥ (×10−8 m2/s)

PI-1 97.9 ± 2.1 2.7 ± 0.1 5.1 ± 0.4 4.7
PI-2 84.4 ± 3.5 2.1 ± 0.2 8.0 ± 0.4 6.0
PI-3 77.1 ± 2.8 2.0 ± 0.1 10.1 ± 0.4 5.0
PI-4 94.5 ± 2.0 2.3 ± 0.1 9.1 ± 0.6 5.9
PI-5 90.6 ± 3.0 2.9 ± 0.1 8.0 ± 0.5 5.0

a TS: tensile strength, TM: modulus, EB: elongation at break; D⊥: out-of-plane thermal diffusivities.

The out-of-plane thermal diffusivities (D⊥) of semi-alicyclic PI films are also given in Table 2.
It is reported that the intrinsic thermal conductivity of PIs depends on their molecular structure,
chain orientation and molecular packing [41,42]. Compared with the D⊥ value (11.5 × 10−8 m2/s) of
fully-aromatic Kapton film, semi-alicyclic PI films showed much lower D⊥ values below 6.0 × 10−8 m2/s.
Because of the directional dependence of average phonon velocity in PI films, thermal energy is
transferred more efficiently through covalent bonds and aromatic rings along the molecular chains,
compared to the weakly van der Waals interactions. Moreover, fully-aromatic PIs with linear and rigid
mainchains undoubtedly have higher degrees of molecular orientation along the out-of-plane direction,
which contribute to enhance the D⊥ values of films. Among these semi-alicyclic PI films, it is further
found that PI-1 and PI-3 exhibited relatively low D⊥ values due to the rigid biphenyl units at the
diamine moieties, while the PI-2 and PI-4 with bent and rotatable linkages (ether or sulfonyl groups)
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showed large values even having same dianhydride. Besides, the CBDA-based PI-5 exhibited lower
D⊥ value than BODA-based PI-4, although they had the same diamine. Just as explained previously,
CBDA moiety has relatively more linear and rigid molecular structure, which results in a preferred
chain orientation along the in-plane direction rather than out-of-plane direction.

3.3. Thermal Properties of Semi-Alicyclic Polyimides

The dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and thermomech-
anical analysis (TMA) were used to investigate the effect of alicyclic structures and trifluoromethyl
groups on thermal properties of semi-alicyclic PIs. All the thermal results of semi-alicyclic PIs
are summarized in Table 3. As shown in Figure S5 (shown in Supporting Information), the heat
resistance of PIs is reflected by Tg values recorded as the peak temperature of tan δ curves in DMA.
These PI films exhibited Tg values in the range of 285–390 ◦C, especially the TFMB-based PI-1 showing
the highest heat resistance. It was found that the Tg values decreased in the order of diamine
moieties: TFMB > 6FBAB > 6FBAS > 6FAPB. This phenomenon can be ascribed to the rigidity degree
of backbones. The rigid biphenyl unit is beneficial to the improved heat resistance, especially in the
absence of any other bent or rotatable linkages. PI-2 derived from 6FAPB has the highest amount
of flexible ether bonds in diamine moiety, consequently exhibiting the lowest Tg value. Besides,
different alicyclic dianhydride moieties had almost no influence on the glass transition. PI-4 and PI-5
based on different dianhydrides showed their Tg values around 295 ◦C. Compared with those similar
CBDA-based PIs with 6FAPB or 6FBAB reported in the literature [29], PI-5 displayed significantly
improved heat resistance with Tg increased by nearly 50 ◦C. This can be ascribed to the introduction of
sulfonyl groups and reduction of flexible ether bonds in backbones.

Table 3. Thermal properties of semi-alicyclic polyimide films a.

PIs Tg
(◦C)

Tonset
(◦C)

T5%
(◦C)

T10%
(◦C)

R700
(%)

CTE
(ppm/◦C)

PI-1 390 422 412 421 16.4 34
PI-2 285 411 405 412 18.5 62
PI-3 304 416 410 419 24.6 55
PI-4 294 418 405 417 28.1 63
PI-5 295 436 440 455 50.0 64

a Tg: the glass-transition temperature; Tonset, T5% and T10%: the onset, 5% and 10% weight loss decomposition
temperatures; R700: residual weight retention at 700 ◦C in nitrogen; CTE: in-plane coefficient of thermal expansion
in the 50–200 ◦C range.

TGA curves of semi-alicyclic PIs in nitrogen are illustrated in Figure 2, and the onset, 5 wt%
and 10 wt% weight loss decomposition temperatures (Tonset, T5% and T10%) are taken to evaluate
their thermal stabilities. For these semi-alicyclic PIs, there is no obvious weight loss below 350 ◦C,
suggesting PI films have been completely imidized and there is almost no solvent residue. This is in
accordance with the above analysis of infrared spectroscopy. Compared with fully-aromatic PIs with
decomposition temperatures over 500 ◦C, semi-alicyclic PI films exhibited moderate thermal endurance
property with Tonset and T5% values in the range of 411–436 ◦C and 405–440 ◦C, respectively. PI-5 film
displays the highest T10% value of 455 ◦C. In the previous work, it has been reported that semi-alicyclic
PIs based on alicyclic dianhydrides have inferior thermal stability compared to fully-aromatic PIs [37].
In contrast with 6FAPB-based PI-2, fully-aromatic PI derived from pyromellitic dianhydride (PMDA)
and 6FAPB exhibited T5% value around 541 ◦C, which is 136 ◦C higher than semi-alicyclic former [43].
It is revealed that thermal stabilities of semi-alicyclic PIs are greatly influenced by the alicyclic structures
of dianhydrides, which can significantly reduce the decomposition temperature. For the PIs derived
from dianhydride BODA with different aromatic diamines, there are no major changes between their
Tonset values from 411 ◦C to 422 ◦C. Among them, PI-1 and PI-2 respectively exhibited the highest and
the lowest values due to their rigid or flexible units in diamine moieties. Moreover, it is found that
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CBDA-based PI-5 showed Tonset value up to 436 ◦C and residual weight retention at 700 ◦C (R700)
around 50%, representing apparently better thermal stability with 14–25 ◦C and 22–34% higher than
thoseof BODA series. This is mainly related to the rigidity and linearity of dianhydride moiety.
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Thermal dimension stability is another key factor for PI films when applied as flexible substrates.
As shown in Figure S6 (shown in Supporting Information), thermal expansion behavior of semi-alicyclic
PIs was investigated, and in-plane CTE values in the temperature range of 50–200 ◦C are listed in
Table 3. The PI films exhibited moderate in-plane CTE values in the range of 55–64 ppm/◦C, except
for PI-1 derived from TFMB. It is notable that the CTE values of PI films are greatly affected by the
rigidity or linearity of molecular chain [44,45]. PI-1 film showed excellent dimension stability with
CTE below 35 ppm/◦C due to its rigid and linear biphenyl bond in the repeating unit. In summary, it is
demonstrated that there is an evident relationship between thermal properties of PIs and the rigidity
or linearity of structures. Although the glass transition, decomposition and dimension stabilities
of PI films are all reduced to some extent when introducing flexible or bent linkages, the overall
thermal properties of these semi-alicyclic PIs remain at a moderate level, which are sufficient for most
applications as flexible substrates.

3.4. Refractive and Dielectric Properties of Semi-Alicyclic Polyimides

The refractive performance of semi-alicyclic PIs was studied by prism coupling method.
The in-plane and out-of-plane refractive indices (n‖ and n⊥) were measured at 632.8 nm, and the
average refractive indices (nav) and birefringence (∆n) were also calculated. All the refractive results
are summarized in Table 4. The nav values of semi-alicyclic PIs ranged from 1.5418 to 1.5833, obviously
lower than that of typically fully-aromatic Kapton film (1.7108). It can be explained by the polarizability
of component atoms in polymer backbones. In general, higher polarizability provides a higher
refractive index because of the greater dipole moment under electromagnetic field. The fluorine
atom shows high electronegativity and small volume, thus resulting in a relatively low polarizability,
while the carbon atom presents large polarizability [46]. Therefore, the introduction of low polarizable
atoms or chemical bonds such as alicyclic structures and trifluoromethyl groups can significantly
reduce their refractive indices. Especially PI-1 film derived from TFMB diamine gave the lowest n‖,
n⊥ and nav value, which can be attributed to both the highest content of low polarizable fluorine atoms
and more loose chain arrangement due to bulky side groups.
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Table 4. Refractive indices and dielectric constant of semi-alicyclic polyimide films a.

PIs n
‖ n⊥ nav ∆n εopt ∆ε

PI-1 1.5491 1.5273 1.5418 0.0218 2.61 0.0738
PI-2 1.5641 1.5486 1.5589 0.0155 2.67 0.0531
PI-3 1.5909 1.5615 1.5811 0.0294 2.75 0.1019
PI-4 1.5829 1.5640 1.5766 0.0189 2.73 0.0654
PI-5 1.5916 1.5669 1.5833 0.0247 2.76 0.0858
Kapton 1.7270 1.6785 1.7108 0.0485 3.22 0.1817

an‖, n⊥ and nav: the in-plane, out-of-plane and average refractive indices respectively, nav = (2n‖ + n⊥)/3; ∆n:
birefringence, ∆n = n‖ − n⊥; εopt: optical dielectric constant estimated by average refractive index method, εopt =

1.1nav
2; ∆ε: the anisotropy between in-plane and out-of-plane dielectric constant, ∆ε = ε‖ − ε⊥= 1.1(n‖2 − n⊥2).

Optical birefringence (∆n) of polymer film is defined as the difference between the in-plane and
out-of-plane refractive indices. It is a significant parameter to reflect the anisotropy of refractive index
and generally used to estimate the orientation degree of polymer chains in the film plane [47,48].
As listed in Table 4, these semi-alicyclic PI films exhibited low ∆n values in the range of 0.0155–0.0247.
In contrast, fully-aromatic Kapton film showed high ∆n value of 0.0485. It is also found that there are
some differences for PIs with different diamine or dianhydride moieties. For instance, among the PI
films based on BODA dianhydride, PI-2 showed the lowest ∆n values with isotropic and random chain
orientation. This can be ascribed to the bent and flexible ether linkage in diamine moiety, resulting that
PI film tends to have a smaller fraction of oriented chains along the in-plane direction. Furthermore,
for PI films based on 6FBAS diamine, the CBDA-based PI-5 exhibited a remarkable ∆n value exceeding
0.024, higher than that of BODA-based PI-4. It can be assumed that the rigid-rod structure of CBDA
moiety causes the enhanced chain orientation in the film plane. The optical anisotropy of films is an
important factor for various optoelectronic applications such as flexible display. These semi-alicyclic
PI films with low optical anisotropy can prevent color distortion and leakage of light depending on the
viewing angle.

Based on the measured refractive indices, the optical dielectric constants (εopt) and the anisotropy
values (∆ε) of semi-alicyclic PIs were estimated by Maxwell equation and summarized in Table 4.
The εopt values obtained at the optical frequency were in the range of 2.61–2.76, which showed a
dependence on the backbones of PIs. With the increasing fluorine content, the εopt values of these films
are gradually reduced. TFMB-based PI-1 with the highest fluorine content of 21.4% exhibited the lowest
εopt value of about 2.61, while 6FBAS-based PI-4 with fluorine content of 14.6% possessed an increased
εopt value around 2.73. Furthermore, fully-aromatic Kapton film without any fluorine atom had a
relatively high εopt value up to 3.22. It is noteworthy that the dielectric property is mainly attributed
to electronic polarization and partly to atomic polarization. The dielectric constants of PIs can be
reduced both by incorporating low polarized atoms and further by increasing molecular free volume
via the bulky side groups. For these semi-alicyclic PIs, their dielectric constants were significantly
reduced by the combined effect of low polarizabilities and large bulkiness due to the presence of
nonpolar alicyclic units and trifluoromethyl groups. In addition, the ∆ε values are used to represent
the in-plane and out-of-plane dielectric constant differences of PI films. For the microelectronic
devices, the large anisotropy in the dielectric constant can cause near-coupled-noise problem due to
the unwanted crosstalk. Compared with Kapton film, these semi-alicyclic PI films showed obviously
low ∆ε values. PI-3 with the most flexible linkages in the mainchain exhibited the lowest dielectric
anisotropy. Moreover, it is found that there is no linear relationship between ∆ε and fluorine content,
which is different from the phenomenon of dielectric constant. With the low dielectric data and related
anisotropy, semi-alicyclic PIs can be good candidate materials for microelectronic devices.
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3.5. Optical Properties of Semi-Alicyclic Polyimides

The optical transparency of PI films is crucial in many optoelectronic applications that require
transparency, such as optical waveguide, flexible displays and transparent circuit. The optical properties
of semi-alicyclic PI films were respectively evaluated by UV–Vis spectra and color intensities. Figure 3
shows the UV–Vis spectra of these PI films at 25 ± 3 µm thickness, and the transmittance dataat
different wavelength are summarized in Table 5. It is noted that semi-alicyclic PI films were highly
transparent with cutoff wavelength (λ0) in the range of 298–313 nm and transmittance at 500 nm (T500)
above 85%. In contrast, fully-aromatic Kapton film with the same thickness showed a remarkably high
λ0 value up to 444 nm that dramatically lowered its optical transmittance below 500 nm. Compared
with 2% transmittance at 450 nm (T450) of Kapton film, these semi-alicyclic PI films exhibited extremely
optical improvement. In particular, PI films derived from TFMB or 6FBAS series showed better optical
transparency in the visible region no matter BODA or CBDA dianhydride.
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Table 5. Optical properties of semi-alicyclic polyimide films a.

PIs
Transmittance a Color Parameters b

λ0 (nm) T400 (%) T450 (%) T500 (%) L* a* b*

PI-1 298 83 86 93 89.4 −0.2 3.8
PI-2 303 74 82 88 91.0 −0.1 4.0
PI-3 313 68 80 85 91.7 −0.3 4.2
PI-4 299 87 95 98 92.3 −0.2 3.4
PI-5 301 84 92 95 91.2 −0.1 4.0
Kapton 444 0 2 58 79.6 6.3 107.7

a Film thickness: about 25 ± 3 µm; λ0: UV cutoff wavelength; T400, T450 and T500: transmittance at 400, 450 and
500 nm, respectively. b Film thickness: about 50 ± 3 µm; color parameters L*, a* and b*: calculated according to the
CIE LAB equation.

The difference of optical transparency among PI films was further evaluated by their color
intensities calculated according to the CIE LAB equation. Semi-alicyclic PI films with a unified
thickness of 50±3 µm were measured and the results are listed in Table 5. The parameters of color
intensities include the lightness (L*), redness (a*), and yellowness (b*) indices. The L* index varying
from 0 to 100 refers to lightness change from black to white. The positive or negative a* index indicates
red or green color. Likewise, the positive or negative b* index reflects yellow or blue color. All the
semi-alicyclic PI films exhibited higher lightness with L* values over 89.4 than Kapton film with L*
of 79.6. Meanwhile, these PI films showed a* values of nearly zero combined with much lower b*
values in the range of 3.4–4.2. It is indicated that semi-alicyclic PI films displayed not only excellent
transparence but also essentially colorless appearance, which can be seen from the appearance of
representative PI-1 film shown in Figure 3. In contrast, the Kapton film with deep yellow to brown
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coloration exhibited a high a* value of 6.3 and a very large b* value over 107. It is known that
optical transparency and coloration of PI films are mainly dependent on their molecular structures.
The improved optical transparency of these films can be ascribed to the incorporation of alicyclic
moieties and electron-withdrawing side groups. The combined effects are beneficial to suppress or
eliminate CTC between inter- and intra-molecular chains that result in the characteristic coloration of
fully-aromatic PIs.

To further clarify the effect of backbone structures and side groups on the optical transparency,
the aggregation structures of semi-alicyclic PI chains was investigated by WAXD based on the reflection
mode. WAXD patterns of PIs are illustrated in Figure 4, and the mean interchain distance (d) values
are calculated from the maxima of diffraction peaks by Bragg’s equation. Besides, molecular orbital
energies of model compounds for the repeating units of PIs were also determined by density functional
theory (DFT) calculations using a large basis-set function [49,50]. The model compound structures of
semi-alicyclic PIs are listed in Figure S7 (shown in Supporting Information).
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It is observed that all the semi-alicyclic PI films exhibited broad and featureless peaks like the
amorphous patterns with large full width at half peak maximum. This phenomenon reveals that
the linearity and rigidity of PI chains could be disturbed by the steric hindrance of bulky substitutes
or rotational ether bonds with twisted conformation. The interchain distance d values are used to
quantitatively present the packing of molecular chains. It is noticeable that PI-1 derived from TFMB
diamine showed the largest d value up to 5.7 Å, whereas PI-3 and PI-5 exhibited small d values around
5.0 Å similar with that of Kapton film. Among PIs based on the same BODA dianhydride, the d values
were in the decreasing order of TFMB>6FBAS>6FAPB>6FBAB. This order is basically consistent with
the optical transmittance of these PI films, suggesting that optical properties are affected by the packing
or aggregation of molecular chains to some extent. It is demonstrated that bulky trifluoromethyl
substituents effectively hinder the dense packing of chains and remarkably expand intermolecular
distances of PIs. This is obviously beneficial for the elimination of CTC to improve transparency and
reduce color of films.

According to the calculated molecular orbital energies of model compounds, the electron accepting
abilities of dianhydride moieties and donating abilities of diamine moieties in various PIs can be
obtained. These molecular orbital parameters including the lowest unoccupied molecular orbital
energy (ELUMO), the highest occupied molecular orbital energy (EHOMO) and energy band gap (EGAP)
are summarized in Table 6. Compared with fully-aromatic Kapton, all the semi-alicyclic PIs exhibited
much higher ELUMO values (from −1.89 eV to −1.42 eV), while having lower EHOMO values below
−6.41 eV. It is indicated that the electrophilicity of alicyclic dianhydride moieties is obviously reduced,
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and the donating ability of trifluoromethyl-containing aromatic diamine moieties is also not high.
Consequently, these semi-alicyclic PIs showed significantly large energy differences between ELUMO

and EHOMO compared to fully-aromatic PIs. Among these PIs, PI-1 and PI-3, respectively, exhibited the
largest and the lowest EGAP values of 5.43 eV and 4.92 eV. In contrast, the Kapton displayed much lower
EGAP value of 2.88 eV. It is known that a large EGAP value generally means a high electron excitation
energy. It is favorable to destroy the CTC formation and lead to weak absorption edge accompanied
with high optical transmittance. The results of molecular orbital energies are in accordance with
the optical transparency of semi-alicyclic PI films discussed above, suggesting that both inter- and
intra-molecular charge transfer interactions are effectively suppressed. That is the main reason why
the incorporation of alicyclic structures and trifluoromethyl groups can improve optical transmittance
and eliminate coloration of films.

Table 6. WAXD data and molecular orbital energies of semi-alicyclic polyimides.

Model Compounds 2θ (deg) d (Å) ELUMO (eV) EHOMO (eV) EGAP (eV)

BODA/TFMB (PI-1) 15.3 5.7 −1.55 −6.98 5.43
BODA/6FAPB (PI-2) 16.9 5.2 −1.42 −6.63 5.21
BODA/6FBAB (PI-3) 17.4 5.0 −1.49 −6.41 4.92
BODA/6FBAS (PI-4) 16.5 5.4 −1.77 −6.83 5.06
CBDA/6FBAS (PI-5) 17.8 5.0 −1.89 −6.87 4.98
PMDA/ODA (Kapton) 18.1 4.9 −3.42 −6.30 2.88

d: interchain distances, calculated by Bragg’s equation, d =λ/(2sinθ); ELUMO: the lowest unoccupied molecular orbital
energy, EHOMO: the highest occupied molecular orbital energy, EGAP: energy band gap, EGAP = ELUMO – EHOMO.

3.6. Structure–Property Relationships of Semi-Alicyclic Polyimides

Based on the systematic investigation of performance, we try to provide the structure–property
relationships for fluorinated semi-alicyclic PIs. The different effects of trifluoromethyl and fluorine
atoms on performance of semi-alicyclic PIs were also compared with results reported previously [26,37].
The representative structures and performance data of semi-alicyclic PIs for comparison are summarized
in Table S1 (shown in Supporting Information), including the systems prepared in the present work
and those systems with the same alicyclic BODA or the same fluorinated diamines reported in the
previous work. The correlation between fluorine content and water absorption for these different PIs
was depicted in Figure 5. As expected, semi-alicyclic PIs containing trifluoromethyl groups exhibit
much lower water absorption than those containing fluorine atoms, which is ascribed to the level
of fluorine content. Trifluoromethyl groups obviously contribute to higher fluorine content that is
very beneficial to reduce water absorption of films due to strong hydrophobicity. On the other hand,
although the low fluorine content is detrimental for lowering water absorption, it is effective to improve
chemical resistance of films. Those semi-alicyclic PIs with low fluorine content below 10% show good
chemical resistance to commonly used solvents in the process of devices manufacturing, such as
methyl ethyl ketone (MEK) and potassium hydroxide solution (10wt%). However, those semi-alicyclic
PIs containing trifluoromethyl groups display bad chemical resistance to MEK even though it is
no problem for potassium hydroxide solution. It is indicated that excessive fluorine content will
sacrifice chemical resistance of films. Thus, controlling fluorine content at an appropriate level is the
key to achieving balance between water absorption and chemical resistance for semi-alicyclic PIs.
Considering that the optical transparency of films must be guaranteed, it may be an effective method
to adjust fluorine content of semi-alicyclic PIs containing trifluoromethyl by copolymerization with
other fluorine-free diamines.
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As shown in Figure 6a, heat resistance (represented as Tg) of these PIs was not sacrificed in
the presence of alicyclic structures. In contrast, structures of diamines have a major impact on their
heat resistance. PIs with more linear and rigid backbones will have higher Tg values. It is proved
that flexible ether bond with highly distorted molecular conformation significantly affects the heat
resistance of PIs. Diamines containing ether linkages such as 6FAPB and 6FBAB result in lower Tg

values for semi-alicyclic PIs, regardless of the structures of cycloaliphatic dianhydrides. Meantime,
similar structure–performance laws also apply to thermal dimension stability (represented as CTE)
of semi-alicyclic PIs. Therefore, as long as linear and rigid structure is used in the design of diamine
moiety, highly heat-resistant semi-alicyclic PIs with outstanding thermal dimension stability can be
obtained. Particularly, BODA-based and TFMB-based PIs showed higher Tg and lower CTE values.

The intense electron-withdrawing characteristics of trifluoromethyl groups are also outstanding in
improving optical transparency and decreasing dielectric properties, which is illustrated in Figure 6b.
All the semi-alicyclic PIs exhibit high light transmittance and obviously low dielectric constants.
They are mainly ascribed to the synergistic effects of alicyclic structures and fluorinated groups. It is
further observed that structures of diamines have an effect on transparency or dielectric properties of
PIs. For instance, sulfone-containing diamine 6FBAS can contribute positively to the improved optical
transparency except for maintaining low dielectric constant. Besides, compared with fluorinated
semi-alicyclic PIs derived from BODA or H-PMDA series prepared in the present work and other
references [26,37], it can be found that diamine containing trifluoromethyl groups rather than fluorine
atoms or cycloaliphatic H-PMDA is more beneficial to obtain highly transparent films. The above
results also indicate that, for those fluorinated semi-alicyclic PIs, other desired performance can
be achieved through further structure design on the basis of intrinsic high transparency and low
dielectric properties.

In addition, in the reported literature, the toughness results of semi-alicyclic PIs have not always
been examined because cycloaliphatic structures often yield brittle films. It is not easy to overcome
the embrittlement problem for alicyclic-based PIs. From the mechanical performance shown in
Table S1, it can be seen that roughness of semi-alicyclic PIs can be effectively enhanced by introducing
flexible ether bonds in the diamine moiety. Compared with rigid PI-1 system, the elongation values
of those flexible PIs were nearly doubled. Thus, it is a facile way to adjust diamine structures to
improve roughness of semi-alicyclic PI films without sacrificing their polymerization activity or
process conditions.
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4. Conclusions

Based on alicyclic dianhydrides and trifluoromethyl-containing aromatic diamines, a series
of semi-alicyclic PIs with fluorine content above 14.6% was successfully prepared. All the PI
films exhibited remarkably low water absorption below 1.08% and good mechanical properties
with tensile strength up to 97.9 MPa. These PI films also showed high heat-resistance with Tg

from 294 ◦C to 390 ◦C, having moderate thermal stability with onset decomposition temperatures
above 411 ◦C. Especially, PI-1 derived from TFMB diamine simultaneously exhibited high Tg of
390 ◦C and low in-plane CTE around 34 ppm/◦C due to its linear and rigid backbone. It is
further found that these PIs showed obviously low refractive indices and optical birefringence.
The dielectric constants were significantly reduced to 2.61–2.76 because of the low polarizability of
alicyclic units and large volume effect of trifluoromethyl groups. Besides, the semi-alicyclic PI films
were highly transparent with cutoff wavelength in the range of 298–313 nm and transmittance at
500 nm above 85%. These films possessed essentially colorless appearance with b* values below 4.2.
The remarkable optical improvement is ascribed to the weak electron-accepting alicyclic moieties and
bulky electron-withdrawing trifluoromethyl or sulfone groups. The present work provides an effective
strategy to design molecular structures of optically transparent PIs with desired properties, including
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the outstanding solubility, high heat resistance, low refractive index and dielectric constant with almost
negligible anisotropy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/7/1532/s1,
Figure S1: ATR-FTIR spectra of semi-alicyclic polyimide films., Figure S2: 1H NMR spectra of the semi-alicyclic
polyimides in in DMSO-d6, Figure S3: Scanning electron microscopy (SEM) images of the surface and cross-sectional
fracture of PI-1 film, Figure S4: Water contact angle images of the semi-alicyclic polyimide films; Figure S5: DMA
curves of semi-alicyclic polyimide films in nitrogen, Figure S6: TMA curves of semi-alicyclic polyimide films in
nitrogen, Figure S7: Model compound structures of semi-alicyclic polyimides for the DFT calculations, Table S1:
Representative structures and performance comparison of different semi-alicyclic polyimides prepared in the
present and previous work.
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