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Abstract: Porous ultra-high-molecular-weight polyethylene (UHMWPE) self-lubricating materials
were designed and fabricated by a rotary sintering method, and the microstructure and properties
were evaluated. Results showed that the rotary molding could not only significantly improve the
molding efficiency but also formed uniform internal microstructures with high porosity, excellent
mechanical properties, and low friction coefficient. Under oil lubricating conditions, the friction
curve of samples quickly reached a steady state, the friction coefficient was reduced by 50%, and the
repeat utilization was up to 99%. The following optimum sintering conditions were shown: Sintering
temperature of 180 ◦C or 190 ◦C, sintering time determined as 10 min, and loading capacity of between
3.6 g and 3.8 g. Therefore, it is expected that this work will open a convenient and compatible strategy
for fabricating porous materials with good self-lubricating performance.

Keywords: rotary sintering; ultra-high molecular weight polyethylene (UHMWPE); porous materials;
self-lubricating

1. Introduction

With the wide application of intelligent robots, drones, etc., the requirements for rapid conversion
and motion transformation have been increased, and with reliability and tribological performance
requirements of the corresponding friction pairs, joint connections have been gradually improved [1,2].
Aiming at the problems of friction and lubrication under special conditions, porous self-lubricating
materials are attracting more and more attention due to their unique advantages such as good mechanical
properties and excellent self-lubrication. To improve the friction properties, most porous materials
have solid lubricants such as graphite [3], PTFE [4,5], and boron nitride (BN) [6]. However, under
special conditions, the tribological properties of these materials are reduced and the service life is
shortened. Therefore, porous polymer self-lubricating materials have emerged. They can realize
the storage and transport of grease through the inter-connected hole structure inside the material.
The use of porous self-lubricating materials in robot joints, drones, etc., can achieve a recirculating oil
supply without the need for additional lubricating oil, achieving continuous lubrication and avoiding
lubricant contamination. Some materials laden with lubricating oil are used for self-lubrication such as
organogels [7], polyurethane [8], and diatomite [9]. The porous structure of these materials has a large
specific surface area and a strong oil absorption capacity, which can achieve a good oil storage effect.
However, they are not conducive to the preparation and application of mechanical parts, because of
their poor mechanical properties.
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In the manufacture of machine parts, the materials with high strength, low friction coefficient,
and good chemical stability, such as polyimide (PI) [10–12], polyether ether ketone (PEEK) [13–15],
and ultra-high-molecular-weight polyethylene (UHMWPE), have been widely utilized as porous
materials. However, the high price of PI and PEEK limits their large-scale production/application [16–18].
Compared to other polymer porous materials, UHMWPE porous material products have the advantages
of light weight, high specific strength, and good permeability [19–21]. Nowadays, research on the
UHMWPE porous self-lubricating material is rare. Xiong et al. [22] improved the wear resistance of
UHMWPE by filling carbon fibers in UHMWPE materials. Wu et al. [23] used NaCl as a pore-forming
agent to prepare UHMWPE porous self-lubricating materials, and the wear of the material was reduced
by 43%. Wang et al. [24] prepared a composite coating combined with a porous TiO2 layer, UHMWPE,
and DMMPPS, achieving super-lubrication on the surface of the Ti6Al4V alloy. Chen et al. [25]
cross-linked the PVA/ HA composite hydrogel on the surface of UHMWPE and obtained artificial
articular cartilage with a low friction coefficient. However, most of them mainly focus on how to
improve the wear resistance of the material.

Due to the high viscosity and poor fluidity of UHMWPE, conventional mechanical processing
methods are difficult to process, and they are usually formed by special methods, such as thermally
induced phase separation (TIPS) [26–28], thermally induced phase separation stretching (TIPS-S) [29],
melt extrusion stretching [30,31], the nuclear track method [32], and powder sintering method [33–35].
Nevertheless, these methods have their deficiencies such as complicated operations, long molding
times, and less choice of shape and size of the products. Moreover, due to the poor thermal conductivity
of UHMWPE, uneven heating often occurs, which affects the subsequent use of porous products.
Therefore, it is necessary to explore a new simple and efficient molding method to improve the heat
conduction efficiency and optimize the microstructure of porous materials.

This investigation proposed a novel rotary sintering method based on the conventional sintering
method to self-lubricating porous UHMWPE materials. A centrifugal force was applied to the material
by the rotation of the mold to achieve the effect of pre-pressing. The influence of the different process
parameters on the porous structure and mechanical properties of UHMWPE porous materials, as well
as the tribological properties, was investigated in depth. This study verified the versatility of rotary
sintering of a more uniform porous structure, and the tribological properties were improved, which
is closer to special engineering materials such as PI and PEEK [36]. Meanwhile, it could simplify
the conditions and eliminate the pre-pressing process to achieve economical and environmentally
friendly effects.

2. Experiment

2.1. Materials

UHMWPE (XM220, Tm = 143 ◦C) with a particle size of about 10–30 µm and a molecular weight
of 2 × 106 g·mol−1 was purchased from Mitsui Chemicals, Inc. (Tokyo, Japan). Lubricating oil
(VACTRA OLL NO.2, Mobil Vectra 2) was purchased from Exxon Mobil (Tianjin) Petroleum Co., Ltd.
(Tianjin, China).

2.2. Fabrication Process of UHMWPE Porous Specimens

A sintering device, shown in Figure 1, was specially designed and prepared for sintering
samples, mainly including a forming mold whose cavity was a regular cuboid shape with sizes of
50 × 25 × 5 mm3, an electric heating jacket heating system (including a temperature control cabinet
(TCC) and a sensor), and a circuit control system (CCS). During the sintering process, the forming
mold was completely covered by the heating sleeve (HS) to achieve a more uniform heating mode.
The heating system monitored the temperature of the heating jacket in real-time through a thermocouple.
In addition, the circuit control system controlled the motor to realize rotation. When the motor started,
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the mold rotated 270◦ back and forth at a speed of 40 r/min under the action of the motor to realize
rotary sintering.Polymers 2018, 10, x FOR PEER REVIEW  3 of 14 
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Figure 1. Schematic diagrams of the dynamic rotary sintering device and the fabrication procedure of
the ultra-high-molecular-weight polyethylene (UHMWPE) porous materials using the device.

Figure 1 shows an illustration of the sintering process. First, the mold was cleaned before the
material was filled into the mold, and a layer of release agent was sprayed to facilitate demolding.
Then, the UHMWPE powder was loaded into the mold and clamped the mold. Next, the mold was
completely covered by an electric heating sleeve and sintered in accordance with the predetermined
experimental parameters for heating sintering. In this process, it was divided into static sintering and
dynamic sintering. The difference between these two methods was that the mold filled with materials
was fixed on a rotating support, and the entire sintering process was completed in stable vibration.
When the temperature controller reached the specified sintering temperature and remained stable,
it was timed for 10 min. After that, the sintering process was completed and the circuit was turned
off. Finally, the sample was rapidly cooled to room temperature with water and then taken out for
further analysis.

The interior of the open-type UHMWPE porous material was built up from a series of nearly
spherical polymer particles, similar to the most densely packed face-centered cubic structure model in
the crystal structure [37,38]. According to the maximum volume utilization of the face-centered cubic
model and the volume and logistics density of the mold cavity, the maximum charging amount was
4.0 g, so our initial charging amount started from 4.0 g and decreased gradually.

Considering the effects of sintering time and temperature, the experimental process parameters
were determined as shown in Table 1.

Table 1. The sintering conditions of the examined samples.

Sintering Method Time
(min)

Temperature
(◦C)

Charging Amount
(g)

static 10 170, 180, 190, 200 3, 3.2, 3.4, 3.6, 3.8, 4.0
dynamic 10 170, 180, 190, 200 3, 3.2, 3.4, 3.6, 3.8, 4.0

2.3. Characterization

Macroscopic statistical analysis was used to analyze dimensional stability. The experimental
measurement used a Vernier caliper with a measurement accuracy of 0.02 mm. The geometric
dimensions of all samples were measured and statistical fitting analyzed, and the size distribution
interval was observed to determine the appropriate process conditions and molding methods.

Porosity is an important parameter to characterize the open-type porous material. In this
experiment, the porosity of porous materials was indirectly characterized by the oil absorption rate
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through the vacuum oil absorption experiment. The weight difference ratio of sintered products before
and after vacuum oil absorption was used to calculate the oil absorption rate according to Equation (1).

ω =
m1 −m0

m0
× 100% (1)

where m0 is the weight of the sample before oil absorption and m1 is the weight of the sample after
oil absorption.

The morphology of the surface and cross-section of the samples were observed by an emission
scanning electron microscope (QUANTA FEG 250, FEI Company, Hillsboro, Oregon, USA). First, the
sintered specimens were immersed in liquid nitrogen and then subjected to brittle fracture. The surface
and cross-sections were sputtered with Au in a vacuum, and then examined.

Mechanical properties were evaluated on a universal material testing machine (Instron5566,
Shenzhen, China) with the standard of GB/T 104-92, including compressive strength and bending
strength. The compression experiment was carried out under the conditions of a compression
displacement of 3.0 mm and a compression speed of 1.0 mm/min. As for the bending strength test,
the experiment was carried out under the conditions of a span of 40.0 mm and 20.0 mm bending
displacement with a speed of 2.0 mm/min. Five samples were tested in each group and averaged.

The tribological properties of the samples were investigated using ball-disk friction and a wear
meter (SFT-2M, Zhongke Kaihua Technology Development Co. Ltd., Lanzhou, China) by sliding them
against a GCr15 steel ball of 4 mm in diameter in a circular path of 8 mm in radius for 1 h at a sliding
speed of 200 r/min under a normal load of 10 N. The experiment was carried out at room temperature
(~22–25 ◦C) in an atmospheric environment.

The regeneration and long-term stability of the samples are extremely significant in practice.
Adsorption/desorption cycles of samples were implemented by a successively high-speed centrifuge
and vacuum oil absorption. Under the centrifugal force of 3000 r/min, the oil in the porous structure
could be completely removed in 20 min. Then, the sample was re-immersed in the lubricating oil to
vacuum-absorb oil and compare the oil absorption rate before and after. The operation was repeated
5 times.

3. Results and Discussion

3.1. Macroscopic Size of UHMWPE Porous Specimens

Figure 2 shows the macroscopic size dimension of sintered UHMWPE porous samples. The average
sizes of samples obtained by the rotary sintering were higher than the static methods with a smaller
deviation. Among the samples of static sintering, the length variation interval was from 48.50 to
48.80 mm, the width was between 24.20 and 24.50 mm, the thickness was between 4.75 and 5.00 mm,
and the total range of variation was approximately 0.30 mm, while the size deviation of the samples
obtained by dynamic sintering was relatively stable and uniform compared to that static sintered.
They were 0.11, 0.10, and 0.08 mm, and the total range of variation was about 0.10 mm. Besides, the
ratio between the sample size and the mold cavity size was used to characterize the difference between
the actual size of the samples and the theoretical value, among which the ratio of the rotated sintered
sample was 0.978–0.982, higher than that of static molding. In static sintering, the sizes of the sample
were affected by gravity and uneven heating. The dynamic sintering mold was in a stable mechanical
vibration state so that the powder particles were subject to forces from all directions to achieve uniform
distribution. Furthermore, this state effectively eliminated the influence of gravity and improved
the uniformity of heat transfer, and the dimensional stability of the specimen can be ameliorated at
the same time. Thus, it was easy to realize product swap, ensure the durability and continuity of
mechanical products, and prolong the service life of products.
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3.2. Morphology of UHMWPE Porous Specimens

Figure 3 shows the microstructure of the sample under different sintering temperatures and
charging amounts. Figure 3a,b compared the melting of particles on the sample surface at different
temperatures. The arrow in Figure 3a shows partial melting of the particle surface at a lower temperature
(170 ◦C), while the arrow in Figure 3b shows that at 200 ◦C, the adjacent particles stuck together and the
porosity decreased. Figure 3c–f compares the melting of particles on the sample cross-section between
170 ◦C and 200 ◦C. Arrows in Figure 3c,e show that at 170 ◦C, the particle surfaces were partially melted,
similar to point contact between adjacent particles. At the higher temperature of 200 ◦C in Figure 3d,f,
the surface melting of the particles increased, and the adjacent particles were similar to the surface
contact. Higher sintering temperatures promoted the heat absorption of the product, leading to a more
thorough melting condition; the greater the fluidity of each section, the greater the interpenetration
between each section. In addition, the partially molten material filled the gap between the particles,
and the porosity of the surface and cross-section of sintered products was reduced. In Figure 3d,f, the
arrow in Figure 3d shows uneven stacking of particles; large holes appear, in part, at lower charging
amounts (3 g); and in Figure 3f, the particles had a fine-grain arrangement and the porosity decreased.
As the charging amount increased, the degree of particle accumulation in dynamic and static sintering
increased, the indirect contact of the particles increased, and the probability of occurrence of the larger
pores decreased. Therefore, increasing the charging amount was beneficial to controlling the pore size
distribution of the porous structure and preparing a porous material with good performance.

Figure 4 compares different molding states on the surface and cross-sectional microstructure of
the samples. In Figure 4a,b, one can see that the micro-surface of the specimen obtained by dynamic
sintering was smooth, while the morphology of static sintering was uneven. In Figure 4c,d, the
internal structure of the static sintered samples also had significant differences. Some areas were
closely accumulated, while in some areas, there were large holes, which were adverse for the samples
to maintain uniform and stable performance. Due to the influence of their gravity factors and the
difference in the filling process, there were particles partially packed or large holes in the static sintering
process. By contrast, dynamic molding effectively avoided this influence by supplying a stable
mechanical vibration to the mold in the process of sintering, which caused the powder particles to
oscillate from all directions, leading to a more even dispersion structure inside the product and a more
regular arrangement of particles. Thus, dynamic molding significantly improved the uniformity of the
internal structure of the product and ensured uniformity and stability of the product in actual use.
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Figure 3. The microstructure of the sample under different sintering temperatures: (a,b) Surface
microstructure of sample under the molding condition of rotary sintering at 170 ◦C and 200 ◦C,
respectively, where the arrows indicate the melting of samples; (c,d) cross-sectional microstructure of
sample under the molding condition of static sintering at 170 ◦C and 200 ◦C, respectively, with the
charging amount of 3 g; (e,f) cross-sectional microstructure of sample under the molding condition of
rotary sintering at 170 ◦C and 200 ◦C, respectively, with the charging amount of 4 g. Arrows in (c–f)
indicate the melting and the contact mode between the particles and the difference in porous structure
of samples obtained by rotary and static sintering methods.

3.3. Porosity of UHMWPE Porous Specimens

Figure 5 shows the oil absorption rate of sintered products under different sintering process
parameters. It can be seen that as the sintering temperature increased, the oil absorption rate of the
product gradually decreased, reflecting that the porosity of the products gradually decreased. As the
sintering temperature was closely related to the molten state of the particles, the heat absorbed by the
powder particles increased as the sintering temperature increased, the chain movement ability was
enhanced, the long chains of the particle surface were intertwined and entangled, and the gap of some
porous structures was filled by molten particles, so the porosity of the products decreased [39].

Additionally, Figure 5 also presents the oil absorption rate of the products obtained at different
charging amounts. With the decrease in the charging amount from 4.0 g to 3.0 g, the height of the
column gradually increased, and the oil absorption rate of the product increased from 45% to 89%,
which indicates that a 25% change in the amount of filling can double the porosity. The color change of
the samples in Figure 5b could also clearly reflect the specific gravity of the adsorbed oil. From left to
right, the more oil content the sample absorbed, the darker the color of the sample. As the volume of
the mold cavity was constant, as the charging amount of UHMWPE powder decreased, the powder
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particles were loosely accumulated, the gap between the particles increased, and the porosity of the
sample increased.Polymers 2018, 10, x FOR PEER REVIEW  7 of 14 
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Figure 4. Microstructure of the sample under different forming states: (a,b) Surface microstructure of
the sample under the molding condition of static sintering and rotary sintering, respectively. Arrows in
(c) indicate the bulges and dents in the surface; (c,d) cross-sectional microstructure of sample under the
molding condition of static sintering and rotary sintering. Arrows in (c) indicate the closely packed
and large holes of the porous microstructure.

Polymers 2018, 10, x FOR PEER REVIEW  7 of 14 

 

 
Figure 4. Microstructure of the sample under different forming states: (a,b) Surface microstructure of 
the sample under the molding condition of static sintering and rotary sintering, respectively. Arrows 
in (c) indicate the bulges and dents in the surface; (c,d) cross-sectional microstructure of sample under 
the molding condition of static sintering and rotary sintering. Arrows in (c) indicate the closely packed 
and large holes of the porous microstructure. 

3.3. Porosity of UHMWPE Porous Specimens 

Figure 5 shows the oil absorption rate of sintered products under different sintering process 
parameters. It can be seen that as the sintering temperature increased, the oil absorption rate of the 
product gradually decreased, reflecting that the porosity of the products gradually decreased. As the 
sintering temperature was closely related to the molten state of the particles, the heat absorbed by the 
powder particles increased as the sintering temperature increased, the chain movement ability was 
enhanced, the long chains of the particle surface were intertwined and entangled, and the gap of 
some porous structures was filled by molten particles, so the porosity of the products decreased [39]. 

 
Figure 5. (a) The oil absorption rate of the specimen under different process conditions. (b) The color 
change of different samples reflects the amount of oil absorption, where the one on the left is the 
control group, and the oil absorption rate of samples increases from left to right. (c) Comparing the 

Figure 5. (a) The oil absorption rate of the specimen under different process conditions. (b) The color
change of different samples reflects the amount of oil absorption, where the one on the left is the
control group, and the oil absorption rate of samples increases from left to right. (c) Comparing the oil
absorption rate of the samples obtained by different molding methods, where the left side is the control
group, the middle is the rotary sintered sample, and the right is the static sintered sample.
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Different molding states also influenced the porosity of the sintered products. In Figure 5a, the
oil absorption rate of the prepared samples was generally higher than that of static sintering under
dynamic sintering conditions at different temperatures and charging amounts. Moreover, it can be
directly observed in Figure 5c that a few white unabsorbed parts still remained inside the product after
the static molded product was sucked, the dynamic molded product had a transparent appearance
after oil absorption, and no concentrated agglomeration occurred. It was fully proved that the stable
mechanical vibration promoted the uniform distribution of materials and improved the effectiveness
of heat transfer, which reduced the accumulation and agglomeration of materials to some extent.

3.4. Mechanical Properties of UHMWPE Porous Specimens

Figures 6 and 7 show a comparative analysis of the compressive strength and bending strength
of the samples obtained in different sintering processes. As the sintering temperature increased,
the compressive strength and bending strength of the obtained sample gradually increased, and the
change in charging amount had a greater influence on the mechanical properties. With the increase in
temperature and the influence of polymer particle crystallization and long-chain inter-diffusion, the
interfacial bonding strength of the sample and, correspondingly, the mechanical strength improved [40].
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The compressive strength of the sintered samples with different process parameters is shown in
Table S1. The compressive strengths of the obtained samples were between 20 and 38 MPa. It can
be confirmed that the pore distribution of the porous structure was reasonable from the mechanical
properties. It was also closely related to the particle size of the material. The original constituent particles
of XM220 powder were uniform particles with a particle size of 10–30 µm. The size of the particles
was fine and uniform, which facilitated contact between the particles. Therefore, the obtained porous
structure was more compact and had strong mechanical strength. With the increase in temperature, the
compressive strength of the sample prepared by dynamic molding was steadily increasing and tended
to increase linearly, while the static molded sample had an overall increase in compressive strength.
However, there was a special case; as shown in Table S1, the individual compressive strength decreased
from 26.63 to 25.46 MPa, which was related to gravity effects and uneven charging. Figure 6 shows the
compressive stress–strain curve of different samples, characterizing the compressive capacity of the
samples at 60% thickness. As a porous material, the sample first underwent a compaction stage and
the modulus was relatively small; then, it was equivalent to the compression of the compacted sample,
the modulus became larger, and, after the yield point, the curve continued to rise until the end of the
experiment. Figure 6a shows the compressive strength of samples with different sintering temperatures
and sintering conditions at 4 g. When the temperature rose and the porosity decreased, the porous
structure was compact and the ability to resist external axial stress increased, so the compressive
strength correspondingly increased. The effect of the charging amount on the compressive strength of
the sample was similar to the temperature and was more pronounced than temperature. As shown
in Figure 6b, as the charging amount increased from 3.2 g to 4 g, the compressive strength of the
sample increased about 11 MPa, and the compression strength of the samples improved uniformly by
dynamic molding.

The bending strength can comprehensively reflect the bearing capacity of the porous structure.
In Table S2, the obtained samples had a wide range of bending strengths between 6 and 18 MPa. As the
temperature increased from 170 ◦C to 200 ◦C, the bending strength of the dynamically sintered samples
increased linearly and was higher than that of static sintering. It further demonstrated that dynamic
sintering was more conducive to obtaining a more stable and uniform porous structure and improving
the mechanical strength of the sample. As revealed in Figure 7a, the bending stress increased as
the porosity was lowered, while the temperature rose and the porous structure was more compact.
In Figure 7b, as the mass of the charging amount increased, the bending stress had the same trend as
the change in temperature. An additional amount of 0.8 g could produce a bending strength change of
about 10 MPa. The overall performance of the dynamically sintered sample was better than that of the
static sintered sample.

Thus, the compressive strength and bending strength of the samples obtained by dynamic sintering
were improved compared to static sintering. The dynamic sintering process mold had been in a stable
state of vibration, and the probability of contact between each particle and the size of similar particles
through the contact between the formations of the gap was even more uniform, so the internal structure
of the product was more uniform and the mechanical properties enhanced.

3.5. Friction and Wear Performances of UHMWPE Porous Specimens

The previous experiments had shown that dynamic rotary sintering can obtain a uniform porous
structure. The following article discussed the tribological properties of the obtained samples and
verified their performance in practical applications. Figure 8a illustrates the friction coefficients of
the samples under dry friction and oil lubrication conditions. Among them, the friction curve of
samples quickly reached the peak and stayed in a steady state. Figure 8b shows that the coefficient of
friction of the samples increased from 0.17 to 0.22 as the porosity increased in dry friction, while it
decreased from 0.13 to 0.08 as the porosity increased in the oil lubrication condition. Figure 8c displays
the changes in the surface of the sample during friction and wear. At dry friction, as the porosity
increased, the surface porosity of the sample was larger, and the more pores on the surface increased
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the surface roughness, so the friction coefficient of the UHMWPE porous materials reached up to
0.22 [41]. Under oily conditions, changes in the porosity of the specimen resulted in changes in surface
roughness and in the storage and output of the porous sample. At the beginning of the friction test, the
oil stored in the porous sample was squeezed to the surface of the friction pair to remove some of the
heat and lubrication. At this point, for the porous UHMWPE sample, the effect of oil on the friction
coefficient was dominant, while the effect of surface roughness was relatively small. Therefore, the
friction coefficient of the sample can reach as low as 0.08, reducing by about 56%.
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Figure 8. The friction and wear performance comparison of the samples: (a) The friction curve of
the sample under different porosity and working conditions when the charging amount was 3.2 g,
(b) coefficient of friction of samples under different porosity and working conditions, and (c) schematic
diagram of friction and wear under different working conditions.

For UHMWPE porous samples of the same porosity, the coefficient of friction under oil-lubricated
conditions was lower than that under dry friction. The possible reason was that under dry friction
conditions, due to the continuous action of the contact stress between the friction pairs, the temperature
of the friction pair surface increased with the generation of wear debris, which made the friction
condition between the friction pairs worse [15]. Under oil-lubricated conditions, the oil stored inside
the porous UHMWPE sample was continuously squeezed out, and the oil could take away part of the
heat and played a role in secondary lubrication, improving the lubrication condition of the friction
pair surface [42,43]. Therefore, the friction coefficient of porous UHMWPE was about 0.1 under oil
lubrication. Considering the porosity, mechanical properties, and friction coefficient, the optimal
process parameters of the UHMWPE porous material were as follows: The sintering temperature was
180 ◦C or 190 ◦C, and the charging amount was between 3.6 g and 3.8 g.

The surface morphologies of the wear scar obtained by the friction and wear test are displayed
in Figure 9. In the early stage of the experiment, the oil adsorbed by the samples was removed with
cyclohexane and the samples were then dried at 80 ◦C to volatilize the cyclohexane; then, they were
subjected to brittle fracture, where the surface microtopography was observed. Figure 9a,b show
an obvious wear scar. In the case of no oil lubrication, the friction between the pairs was exposed,
and the porous structure was subjected to large compressive stress, resulting in a more obvious wear
scar. However, the porous structure was not subject to significant damage and maintained a relatively
complete microscopic morphology, which was closely related to the excellent mechanical properties
of UHMWPE. In Figure 9c,d, the porous structure was squeezed to a certain extent, but there were
no obvious scratches. This was because the lubricating oil formed a continuous phase between the



Polymers 2020, 12, 1335 11 of 14

friction pairs, avoiding the direct contact between the two, and acted as secondary lubrication, thereby
improving the lubrication condition of the friction pair surface and reducing the wear rate [44].
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The open-type UHMWPE porous material passed through the connected porous structure to
save oil. Under the condition of no external force at room temperature, the oil content of the sample
did not change substantially in the observation time of one year and had a good oil retention effect.
The repeated use of the obtained sample is shown in Figure 10. It can be found that the sample repeat
utilization was as high as 99%, which can achieve the purpose of recycling, and was beneficial to
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4. Conclusions

In this paper, UHMWPE porous self-lubricating materials had been successfully fabricated via a
rotary sintering technique. The mold in the entire sintering process was in a stable state of mechanical
vibration, which can effectively improve the loading process caused by the phenomenon of local
material density accumulation and improve the material in all directions of the movement probability,
increasing the material contact point. Under the same sintering process parameters, the dynamic
molding can be used to prepare the UHMWPE porous materials with good stability, uniform porosity,
excellent mechanical properties, and high forming efficiency. The following optimum sintering
conditions were shown: Sintering temperature of 180 ◦C or 190 ◦C, sintering time determined as
10 min, and loading capacity of between 3.6 g and 3.8 g. The friction and wear experiments show that
the obtained porous material had a relatively stable and small friction coefficient, and the friction curve
was relatively stable. Moreover, the friction coefficient of porous UHMWPE under oil lubrication was
about 0.1 and the wear rate was lowered. It can be used in oil-containing self-lubricating materials
and had a recycling rate of up to 99%, which is in line with the requirements of recycling production.
Therefore, this method provides a new idea for the preparation of porous self-lubrication materials for
robot joints and drones applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/6/1335/s1,
Table S1: The compressive strength (MPa) of the samples under different process conditions, Table S2: The bending
strength (MPa) of the samples under different process conditions.
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