ELECTRONIC SUPPLEMENTARY MATERIAL

Hydrophobically functionalized poly(acrylic acid) comprising the ester-type labile spacer: Synthesis and self-organization in water

Łukasz Lamch*a, Sylwia Ronka b, Izabela Moszyńska a, Piotr Warszyńskic, Kazimiera A. Wilk*a

^{a)} Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

b) Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

c) Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences,
Niezapominajek 8, 30-239 Kraków, Poland

* To whom correspondence should be addressed

phone: +48 71 3202828, fax: +48 71 3203678

email: lukasz.lamch@pwr.edu.pl (Łukasz Lamch), kazimiera.wilk@pwr.edu.pl (Kazimiera A. Wilk)

1. FT-IR, etc and ¹H NMR spectra

Figure 1S. FT-IR spectrum of the synthesized hydrophobically functionalized poly(acrylic acid) in comparison to poly(acrylic acid).

Figure 2S. FT-IR spectrum of the synthesized hydrophobically functionalized poly(acrylic acid) with marked signals attributed to the main bonds.

Figure 3S. 1 H NMR spectra of the synthesized hydrophobically functionalized poly(acrylic acid) (0 - 8 ppm range)

Figure 4S. 1 H NMR spectra of the synthesized hydrophobically functionalized poly(acrylic acid) (0.5 – 3.5 ppm range).

2. Determination of diffusion coefficients by fitting to triexponential functions

Table 1S. Determination of diffusion coefficients (D) and hydrodynamic diameters (D_H) by fitting data to appropriate triexponentional models: G^1 (intensity versus linear gradient) or G^2 (intensity versus square gradient).

c [mg/mL]	Model (G ¹ or G ²)	PAA-g-C ₁₂ OH(15%)			PAA-g-C ₁₆ OH(40%)		
		D [m ² /s]	D _H [nm]	\mathbb{R}^2	D [m ² /s]	D _H [nm]	\mathbb{R}^2
10	G ¹ (3 coefficients)	5.502*10-10	0.7	0.99967	5.368*10 ⁻¹⁰	0.7	0.99986
		5.502*10 ⁻¹⁰	0.7		5.368*10 ⁻¹⁰	0.7	
		5.502*10-10	0.7		5.368*10-10	0.7	
		5.498*10 ⁻¹⁰	0.7		5.356*10 ⁻¹⁰	0.7	
	G ² (3 coefficients)	5.498*10 ⁻¹⁰	0.7	0.99967	5.356*10 ⁻¹⁰	0.7	0.99986
		5.498*10 ⁻¹⁰	0.7	_	5.356*10 ⁻¹⁰	0.7	_
45		4.228*10 ⁻¹⁰	1.0		3.814*10 ⁻¹⁰	1.0	
	G1 (3 coefficients)	4.228*10 ⁻¹⁰	1.0	0.99996	3.814*10 ⁻¹⁰	1.0	0.99983
		6.953*10 ⁻¹¹	5.8		7.810*10 ⁻¹¹	5.1	_
		4.230*10-10	1.0		3.813*10-10	1.0	
	G ² (3 coefficients)	4.229*10 ⁻¹⁰	1.0	0.99996	3.813*10 ⁻¹⁰	1.0	0.99983
		1.248*10-11	32.1	_	7.810*10 ⁻¹¹	5.1	_
100		4.041*10 ⁻¹⁰	1.0		3.229*10 ⁻¹⁰	1.2	
	G1 (3 coefficients)	2.007*10-9	0.2	0.99988	3.229*10 ⁻¹⁰	1.2	0.99992
		3.332*10 ⁻¹²²	1.2*10112		3.229*10 ⁻¹⁰	1.2	_
		3.492*10 ⁻¹⁰	1.1		3.236*10 ⁻¹⁰	1.2	
	G ² (3 coefficients)	1.367*10-9	0.3	0.99988	3.236*10 ⁻¹⁰	1.2	0.99992
		-4.327*10-10	-0.9	_	3.236*10-10	1.2	

3. Molecular modeling studies

Figure 5S. Initial conformation of hydrophobically modified PAA molecule used for the molecular dynamics simulations.

Figure 6S. Snapshots from the molecular dynamics simulations of PAA-g-C₁₂OH(15%) with various degree of charging (marked in the Figure) taken after 1ns, 5 ns, 10 ns and 25 ns of the simulation run.