Graphene Oxide Composite for Selective Recognition, Capturing, Photothermal Killing of Bacteria Over Mammalian Cells

Gang Ma¹, Junjie Qi^{1,*}, Qifan Cui², Xueying Bao², Dong Gao² and Chengfen Xing^{2,*}

- ¹ National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P.R. China; magang0629@163.com (G.M.); qijunjie@hebut.edu.cn (J.Q.)
- ² Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China; cuiqifan1228@163.com (Q.C.); XueyingBao2017@163.com (X.B.); gaodong@iccas.ac.cn (D.G.); xingc@hebut.edu.cn (C.X.)
- * Correspondence: xingc@hebut.edu.cn; Tel/Fax: 86-22-60435642 (C.X.); qijunjie@hebut.edu.cn (J.Q.)

Figure S1. Standard curve of GO-PEG-NH2 in PBS.

Figure S2. (a) AFM image of GO deposited on mica substrate. (b) The height profile of the AFM image. (c) Hydrodynamic diameter of GO measured by DLS. (d) Hydrodynamic diameter of GO-PEG-NH₂ measured by DLS. (e) Photograph of GO-PEG-NH₂ dispersed in different culture media for 24 h. (f) SEM image of GO-PEG-NH₂.

Figure S3. CLSM images of (a, b) E. coli, (c, d) CCRF-CEM.

Figure S4. Gel imaging of *E. coli* and *S. aureus* colonies. (**a**, **e**) Plate photographs of the *E. coli* and *S. aureus* LB agar plate without GO-PEG-NH² under dark. (**b**, **f**) Plate photographs for *E. coli* and *S. aureus* LB agar plate supplemented with GO-PEG-NH² (50 µg/mL) under dark. (**c**, **g**) Plate photographs for *E. coli* and *S. aureus* LB agar plate upon 808 nm laser irradiation (1.5 W/cm² for 5 min). (**d**, **h**) Plate photographs for *E. coli* and *S. aureus* LB agar plate supplemented with GO-PEG-NH² upon 808 nm laser irradiation.

Table S1. Evaluation of *E. coli* colonies by plate counting method (The power density of the 808 nm laser is 1.5 W/cm², the irradiation time is 5 min, and the concentration of GO-PEG-NH₂ is 50 µg/mL).

Experimental Condition	Number of Colonies
Control/Non-Laser	734 ± 1
Control/Laser	676 ± 23
GO-PEG-NH ₂ /Non-Laser	611 ± 15
GO-PEG-NH2/Laser	9 ± 7

Table S2. Evaluation of *S. aureus* colonies by plate counting method (The power density of the 808 nm laser is 1.5 W/cm², the irradiation time is 5 min, and the concentration of GO-PEG-NH₂ is 50 μ g/mL).

Experimental Condition	Number of Colonies
Control/Non-Laser	776 ± 31
Control/Laser	767 ± 34
GO-PEG-NH2/Non-Laser	714 ± 22
GO-PEG-NH ₂ /Laser	6 ± 5

Table S3. Evaluation of *S. aureus* and *E. coli* colonies by plate counting method (The power density of the 808 nm laser is 1.5 W/cm^2 , and the irradiation time is 5 min).

Concentration (µg/mL)	Number of Colonies (E. coli)	Number of Colonies (S.
		aureus)
Control	734 ± 1	776 ± 31
10	258 ± 46	279 ± 47
30	69 ± 30	66 ± 35
50	9 ± 7	6 ± 5
70	3 ± 2	1 ± 1