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Abstract: This article discusses the rheological properties (stress relaxation and creep) of
polymer-aluminum composite specimens fabricated through the selective laser sintering (SLS)
from a commercially available powder called Alumide. The rheological data predicted using the
Maxwell–Wiechert and the Kelvin–Voigt models for stress relaxation and creep, respectively, were in
agreement with the experimental results. The elastic moduli and dynamic viscosities were determined
with high accuracy for both models. The findings of this study can be useful to designers and users of
SLS prints made from the material tested.
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1. Introduction

Three-dimensional printing or additive manufacturing, originally known as Rapid Prototyping, is
being increasingly used in various applications, including manufacturing, design, architecture and
medicine [1–3]. 3D Printing has become a common process to fabricate not only models, patterns
or prototypes, but also finished and semi-finished products. The latest developments in additive
manufacturing, especially its application to medical devices and pharmaceuticals, have been discussed,
for instance, in [4,5]. The articles analyze the current and future areas of use of 3D printing in
manufacturing as well as recent advances in materials and designs.

The most important factors affecting the development of additive manufacturing are:

− The ability to customize products according to individual needs and requirements.
− The ability to design and fabricate elements complex in shape, which are impossible or very

difficult to produce using conventional processes.
− The ability to combine many components into one single product to save assembly costs.

Additive manufacturing technologies are suitable to print geometrically intricate internal
structures, e.g., objects within objects, thin-walled products, or objects with a sponge, cellular
or honeycomb structure retaining sufficient strength. Fused deposition modelling (FDM) is the most
popular 3D printing process for quick and easy fabrication [6,7]. In medicine, for example, FDM
technology has been used for hip joint reconstruction. Pre-surgical modelling involves simulating
loads and calculating unit stresses, and developing a custom implant design [8].

In additive manufacturing, the layer-by-layer deposition considerably affects the material
mechanical properties [9–12]. This is crucial in the manufacture of consumer products, particularly
those subjected to external loads, where high material strength is required.
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The rheological properties of additively manufactured materials vary, depending on the build
direction. The problem has been investigated extensively by many researchers, e.g., [13]. The rheological
properties of materials are usually determined by comparing them to ideal solids. The stress relaxation
behavior can be predicted by means of the Maxwell model [14–18]. There are various forms of the
Maxwell model: simple and complex, for example, models based on Prony series or ones described
by fractional calculus [19]. In the case of creep, curves can be described using different forms of the
Kelvin and Kelvin–Voight models (models with two, three or more parameters) [20–22].

The application of plastics in additive manufacturing, especially Selective Laser Sintering (SLS),
goes back to the early 1990s. Since then, this technology has developed and a wide range of materials
differing in chemical composition and physical properties has been introduced. One of the strengths of
SLS is that elements are almost immediately cooled to ambient temperature and ready to use. Before
the method is applied on an industrial scale, extensive research into the physical properties of materials
is required.

A product created on the build tray of a printer is considered not only as a solid with a specific
geometry, but also as a new solid material with specific mechanical properties. The research in this
area has concentrated on:

− The characteristics of the input material (powders in the case of SLS).
− The geometries of 3D printed objects (including the dimensional tolerances and surface topology).
− The mechanical and rheological properties of 3D printed materials.

Additive manufacturing technologies, especially SLS, are thoroughly described in [23]. The details
include theoretical fundamentals, equipment, materials and experimental data. Results of static
uniaxial tensile tests for laser sintered polyamide 12 (LS–PA12) are discussed in [24]. The aim of
the study was to analyze the behavior of specimens fabricated in three different build directions.
The properties considered were Young’s modulus and Poisson’s ratio.

SLS technology has also been applied to create pharmaceutical prototypes, as described in [25].
This technology has been tested to assess its suitability to produce medicines. The article discusses two
thermoplastic pharmaceutical polymers: a polyethylene glycol–polyvinyl alcohol graft copolymer,
brand name Kollicoat IR, composed of 75% of polyvinyl alcohol and 25% of polyethylene glycol,
and a copolymer of methacrylic acid and ethyl acrylate (1:1 ratio), brand name Eudragit L100-55.
The medicines have immediate and modified release dosage, respectively. Both polymers were tested
with three different loadings of paracetamol (acetaminophen): 5%, 20% and 35%. The process of
sintering was facilitated by adding 3% Candurin® gold lustre to each of the acetaminophen powder
mixtures. A total of six materials were produced via SLS. The prints (3D printed tablets) were reported
to be solid. There was no evidence of drug degradation. These findings indicate that SLS is a universal
and practical technology with a potential to be used in the pharmaceutical industry to produce
state-of-the-art medicines. The study has largely contributed to the development of 3D printing.

This article focuses on the rheological properties of a polyamide P12-based composite material
containing a low percentage of aluminum. Details of the material properties are provided in [19,26,27].
The material is well suited to fabricating medical devices such as orthoses or biomodels. The study
involved describing the rheological test results and analyzing them mathematically. Two models were
used in the calculations: the five-parameter Maxwell–Wiechert model to determine the stress relaxation
of the material, and the five-parameter Kelvin–Voight model to predict its creep behavior. Selecting a
mathematical model and fitting it to experimental results is the most difficult part of any research into
the rheological behavior of materials.

2. Methods and Materials

The specimens to be tested were made from a blend of polyamide and aluminum powders,
commercially known as Alumide. The specimens were fabricated through SLS using an EOSINT P 760.
The light source was a laser with a nominal power of 50 W and a wavelength of 10.6 µm. Alumide
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is a metallic powder material applied to achieve high rigidity and fine finish. The specimens were
cylindrical in shape, with the nominal dimensions being D = 10 mm and H = 10 mm. The solid models
were designed in 3D CAD and saved in the * stl. format using the triangulation parameters in the
export option: resolution (adjusted), deviation (0.016 mm tolerance), and angle (50 tolerance). Then,
the specimen models were virtually oriented on the build tray of the printer, as illustrated in Figure 1.
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Figure 1. Specimens built in three directions, (a) orientation on the build tray, (b) arrangement in the
protective baskets.

A layer thickness of 0.12 mm was used to fabricate the cylindrical specimens. The process
parameters were selected in accordance with the recommendations of the manufacturer of the Alumide
powder. After printing was completed, the specimens and the powder remains were removed from
the build tray, and the specimens were prepared for the stress relaxation and creep tests.

The static compressive strength tests were carried out using an Inspekt mini 3 kN universal testing
machine produced by Hegewald and Peschke MPT GmbH (Nossen, Germany), equipped with flat
compression platens. After the measurement data were acquired, the test parameters were set using
Labmaster software incorporated in the Inspekt mini. The specimens, one by one, were placed centrally
on the lower platen in the vertical position. Then, the upper platen mounted in the crosshead grip was
moved down to be in contact with the flat surface of the specimen.

The first stage of the stress relaxation test involved applying a strain of 5%, with the rate of the
compression platen displacement v being 0.5 mm/s. In the second stage of the test, the crosshead
motion was stopped to apply a constant strain of 5% for a predefined period of time, i.e., 7200 s. There
was a decrease in the compressive load and, consequently, a decrease in compressive stresses (stress
relaxation), which was illustrated in the form of a curve. In the third stage of the test, the platen
returned to the initial (zero) position, which coincided with the unloading of the specimen. An example
curve illustrating the whole stress relaxation test is shown in Figure 2a.

The first stage of the creep test consisted in applying a load of 300 N, which corresponded to
a stress of approximately 3.82 MPa, with the rate of the compression platen displacement v being
0.5 mm/s. After the crosshead motion was stopped, a load of 300 N (a stress of 3.82 MPa) was
maintained constant for 7200 s. The gradient of the strain–creep curve was reported to increase slightly.
The third stage of the test involved unloading the specimen. The upper platen returned to the initial
(zero) position and the test was stopped. An example creep curve is shown in Figure 2b.
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Figure 2. Experimental curves for the specimens SLS fabricated from polyamide-aluminum powder: (a)
stress relaxation (1—loading represented by the quasi-step function, 2—relaxation, and 3—unloading),
(b) creep (1—loading represented by the quasi-step function, 2—creep, and 3—unloading).

The curves in Figure 2a,b are divided into three zones. The first zone or segment 1 represents a
rapid increase in load:

− to achieve a displacement of 0.5 mm in stress relaxation tests;
− to achieve a force of 300 N in creep tests.

The rapid increase in load applied to a specimen is represented by the unit step function
ε(t) = ε0H(t). In theory, the rapid increase in load occurs at an infinitely high rate. This, however,
is not possible in reality. In the experiments, load was applied at a relatively high rate; hence the
quasi-step function. The second zone of the curve (Segment 2) is the proper stress relaxation curve
(Figure 3a) or the proper creep curve (Figure 3b). Only these curves will be analyzed in this article.
The third zone (Segment 3) illustrates a decrease in load, a return of the upper platen to the output
(zero) or the end of test position.

Polymers 2020, 12, x FOR PEER REVIEW 4 of 15 

 

  
(a) (b) 

Figure 2. Experimental curves for the specimens SLS fabricated from polyamide-aluminum powder: 
(a) stress relaxation (1—loading represented by the quasi-step function, 2—relaxation, and 3—
unloading), (b) creep (1—loading represented by the quasi-step function, 2—creep, and 3—
unloading). 

The curves in Figure 2a,b are divided into three zones. The first zone or segment 1 represents a 
rapid increase in load: 

− to achieve a displacement of 0.5 mm in stress relaxation tests; 
− to achieve a force of 300 N in creep tests. 

The rapid increase in load applied to a specimen is represented by the unit step function 
ε ε= 0( ) ( )t H t . In theory, the rapid increase in load occurs at an infinitely high rate. This, however, is 
not possible in reality. In the experiments, load was applied at a relatively high rate; hence the quasi-
step function. The second zone of the curve (Segment 2) is the proper stress relaxation curve (Figure 
3a) or the proper creep curve (Figure 3b). Only these curves will be analyzed in this article. The third 
zone (Segment 3) illustrates a decrease in load, a return of the upper platen to the output (zero) or the 
end of test position. 

The stress relaxation tests were performed by placing a specimen between two platens of the 
universal testing machine and compressing it, as depicted in Figure 3a. The specimens after the tests 
are shown in Figure 3b. 

 
 

(a) (b) 

Figure 3. Specimens used in the stress relaxation tests; (a) specimen during the test (1—moving lower 
platen, 2—fixed upper platen, 3—strain gauge load cell, 4—specimen, 5—machine base); (b) 
specimens after the tests. 

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0

2

4

6

8

10

12

14

3

2

1

St
re

ss
 [M

Pa
]

Time [s]
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0,0

0,5

1,0

1,5

2,0

3

2

1

St
ra

in
 [%

]

Time [s]

Figure 3. Specimens used in the stress relaxation tests; (a) specimen during the test (1—moving lower
platen, 2—fixed upper platen, 3—strain gauge load cell, 4—specimen, 5—machine base); (b) specimens
after the tests.

The stress relaxation tests were performed by placing a specimen between two platens of the
universal testing machine and compressing it, as depicted in Figure 3a. The specimens after the tests
are shown in Figure 3b.
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The material of the prints was analyzed using a Nikon Eclipse MA200 microscope equipped with
NIS 4.40 AR elements imaging software. Top surfaces of the specimens were examined. The images of
the material structure are shown in Figure 4.
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Figure 4. Microscopic images of the specimen surface; (a–c)–80× magnification; (d–f)—100×
magnification; (g—i)—3D views, 100× magnification; (a,d,g)—X direction; (b,e,h)—Y direction;
(c,f,i)—Z direction; 1—sintered grains of the polyamide powder (P-12); 2—void; 3—aluminum
powder grain.

The microscopic images reveal that the build direction had no considerable effect on the material
structure. It can be seen, however, that the material has voids, with this suggesting that not all the
grains of the polyamide powder were fused and bonded. Some of the spherical grains were partially
bonded. Aluminum grains are irregular, but they are distributed relatively uniformly in the material
structure. The material tested is a typical polyamide-based composite.
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3. Mathematical Model

Materials able to respond elastically to a rapidly applied load and slowly increasing deformation
can be described mathematically by combining two properties: elasticity and viscosity.

This ability can be described linearly using the laws of a Hookean solid and a Newtonian liquid.
The elastic and viscous behaviors of a viscoelastic solid material are mechanically interpreted

using two simple single-parameter models: one for a spring and the other for a hydraulic damper.
The simple models are connected in series and/or in parallel to form a system—a mechanical

model—describing certain behaviors of a real solid body such as creep and relaxation.
The general equation of the condition describing the two phenomena is:

a0σ(t) + a1
.
σ(t) + a2

..
σ(t) + . . .+ anσ

n(t) = b0ε(t) + b1
.
ε(t) + b2

..
ε(t) + . . .+ bnε

n(t) (1)

Multi-parameter models may be difficult to use as they require determining a greater number of
parameters to calculate the material elasticity and viscosity constants. In this study, a five-parameter
model will be considered and Equation (1) will be used to analyze:

• stress relaxation
ar

0σ
r(t) + ar

1
.
σ

r
(t) + ar

2
..
σ

r
(t) = br

0ε
r(t) + br

1
.
ε

r
(t) + br

2
..
ε

r
(t) (2)

• and creep
bc

0ε
c(t) + bc

1
.
ε

c
(t) + bc

2
..
ε

c
(t) = ac

0σ
c(t) + ac

1
.
σ

c
(t) + ac

2
..
σ

c
(t) (3)

Since Equations (2) and (3) apply to two different phenomena, the stress, strain and relevant
coefficients are distinguished by the superscripts r and c for stress relaxation and creep, respectively.

Equations (2) and (3) can be solved analytically. The integral Laplace transform is used for this
purpose. The general form of this transform for the second and first-order derivatives can be written
by the formulas:

L
{
f ′′ (t)

}
= s2L[ f (t)] − s f

(
0+

)
− f ′

(
0+

)
(4)

L
{
f ′(t)

}
= sL[ f (t)] − f

(
0+

)
(5)

In this method, the problem is solved using the Heaviside function and the Dirac delta function:

H(t) =
{

1, t ≥ 0
0, t < 0

(6)

δ(t) =
{

+∞, t = 0
0, t , 0

(7)

The Laplace transforms of these functions are given by:

L
{
δ(t)

}
= 1 (8)

L
{
H(t)

}
=

1
s

(9)

L
{
δ′(t)

}
= s (10)

Solving this problem analytically will allow us to follow the calculation process and unify the
coefficients of Equation (1).

3.1. Maxwell–Wiechert Stress Relaxation Model

The system of springs and dampers used for the five-parameter Maxwell–Wiechert model is
illustrated in Figure 5.
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Equation (2) can be written as:
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r(t) (11)

Solving this ordinary differential equation requires defining the initial conditions. In the
experiment, the initial conditions were: σr(0) = εr

0Er
0 and d

dtσ
r(0) = 0.

The coefficients of Equation (11) are thus as follows:

ar
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where: εr(t) = εr
0 H(t), with H(t) being the Heaviside or unit step function. Transforming Equation

(11) we get:
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d
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0 br
2

d
dt
δ(t) + εr

0 br
1δ(t) + εr

0 br
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The Laplace transform of the other terms of Equation (12) yields:
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The solution of Equation (13) can be written as:
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) . (14)

After algebraic calculations, we have Ar = εr
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2.
Equation (14) is solved by using the inverse Laplace transform, which gives:

σr(t) = εr
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1 + Er
2e
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2
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(15)

or, in the general form:

σr(t) = εr
0
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i e
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2

 (16)

where: τr
1 =

µr
1

Er
1

and τr
2 =

µr
2

Er
2
.
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Equation (3) was solved for creep in a similar way.

3.2. Kelvin–Voight Creep Model

The configuration of the springs and dampers used for modelling the material creep is illustrated
in Figure 6. In the creep model, when σc = σc

0, then the stress is constant.
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For calculation purposes, Equation (3) is written as:

bc
2

d2

dt2 ε
c(t) + bc

1
d
dt
εc(t) + bc

0ε
c(t) = ac

2
d2

dt2 σ
c(t) + ac

1
d
dt
σc(t) + ac

0σ
c(t). (17)

With the initial conditions being εc(0) = 0 and d
dtε

c(0) = 0, the coefficients of Equation (17) are:

bc
2 = Ec

0µ
c
1µ

c
2

bc
1 = Ec

0

(
Ec

1µ
c
2 + Ec

2µ
c
1

)
bc

0 = Ec
0Ec

1Ec
2

ac
2 = µc

1µ
c
2

ac
1 =

(
Ec

1µ
c
2 + E2µc

1 + Ec
0µ

c
2 + Ec

0µ
c
1

)
ac

0 =
(
Ec

0Ec
1 + Ec

0Ec
2 + Ec

1Ec
2

)
For the case of simple creep loading, σc(t) = σc

0H(t). Algebraically, the integral Laplace transform
gives:

L[εc(t)] = εc(s) =
σc

0

(
ac

2s + ac
1 + ac

0
1
s

)
bc

2s2 + bc
1s + bc

0
=

Ac

bc
2s

+
Bc

bc
2

(
s + 1

τc
1

) + Cc

bc
2

(
s + 1

τc
2

) (18)

where:

τc
1 = −

µc
1

Ec
1

, τc
2 = −

µc
2

Ec
2

and Ac = σc
0

(
1

Ec
0
+

1
Ec

1
+

1
Ec

2

)
, Bc = −σc

0
1

Ec
1

and Cc = −σc
0

1
Ec

2
.

The inverse Laplace transform of the strain-time function yields

εc(t) = σc
0

(
1

Ec
0
+

(
1

Ec
1

(
1− e

−
t
τc

1

)
+

1
Ec

2

(
1− e

−
t
τc

2

)))
(19)

or, in the general form:

εc(t) = σ0

 1
Ec

0
+

n∑
i=1

1
Ec

i

(
1− e

−
t
τc

i

) (20)
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where: σc
0—constant stress, n—number of basic models, i—consecutive number of the model, τc

i —delay
of elasticity of the i-th Kelvin model expressed by:

τc
i =

µc
i

Ec
i

(21)

where: µc
i —viscosity of the i-th model and Ec

i —elastic modulus of the i-th model.
Thus,

εc(t) = εc
0 + εc

1(1− e
−

t
τc

1 ) + εc
2(1− e

−
t
τc

2 ) (22)

is the transformed strain-time function.

4. Results and Discussion

Figure 7a–c show the stress relaxation test results and the corresponding best fit curves obtained for
the three types of specimen differing in the build direction (X, Y and Z, respectively). The experimental
stress relaxation curve is a black continuous line while the best fit stress relaxation curve approximated
by Equation (15) is a broken line in red, blue and green. Each figure includes values calculated by
the program using a certain number of iterations. These are the parameters Er

0, Er
1, Er

2, τr
1 and τr

2
describing the Maxwell–Wiechert model. There are also approximation errors with the goodness of fit
data including the reduced chi-squared χ2 and the R-squared R2.
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Figure 7. The results of the stress relaxation tests and the best fit curves: 1—experimental stress
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Each experimental stress relaxation curve was approximated by Equation (15); this required
determining the parameters Er

0, Er
1, Er

2, τr
1 and τr

2. The Levenberg–Marquardt algorithm, which is an
iterative procedure, was used for curve fitting. The results are given in Table 1.

Table 1. Parameters describing the stress relaxation curves for the three types of Alumide specimen.

Build
Direction

Er
0

(MPa)
Er

1
(MPa)

Er
2

(MPa)
τr

1
(s)

τr
2

(s)

X 226.77 5.37 9.69 182 4675
Y 233.06 4.97 6.39 154 3978
Z 241.54 5.61 7.73 153 3274

From the discussion of Equation (15), it is clear that, for t = 0, the stress is:

σr(t) = εr
0

(
Er

0 + Er
1 + Er

2

)
. (23)

If we assume that
Er

s = Er
0 + Er

1 + Er
2 (24)

then the stress for t = 0 is:
σr(0) = σr

s = εr
0 Er

s (25)

where: Er
s—equivalent modulus of elasticity. However, when t→∞, the limit of Equation (15) is:

σr(t∞) = σr
0 = εr

0 Er
0. (26)

The equivalent elastic moduli and stresses obtained for the different types of specimen at t = 0
and t→∞ in the stress relaxation tests are given in Table 2.
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Table 2. Equivalent elastic moduli and stresses for t = 0 and t→∞.

Build Direction Er
s

(MPa)
σr

s
(MPa)

σr
0

(MPa)

X 241.83 12.09 11.34
Y 244.42 12.22 11.65
Z 254.88 12.74 12.08

The relaxation times τr
1 and τr

2 are the ratios of elastic moduli to dynamic viscosities:

τr
1 =

µr
1

Er
1

, τr
2 =

µr
2

Er
2

(27)

where: µr
1 and µr

2—dynamic viscosities.
The formulae in Equation (27) and the data in Table 1 were used to calculate the coefficients µr

1
and µr

2 for each specimen type. The values, rounded to the nearest integers, are provided in Table 3.

Table 3. Coefficients µr
1 and µr

2 for the different types of specimen.

Build Direction µr
1

(MPa·s)
µr

2
(MPa·s)

X 977 45,300
Y 765 25,419
Z 858 25,419

From the experimental data, it is evident that the polymer-aluminum composite Alumide (all
build directions considered) shows slightly lower anisotropy than pure polyamide [19]. The composite
material also exhibits lower stress relaxation and creep than pure polyamide P12 additively
manufactured through SLS.

The creep test data and the best fit curves are shown in Figure 8.
Each experimental creep curve was approximated by Equation (22); this involved determining

the parameters εc
0, εc

1, εc
2, τc

1 and τc
2. The curve fitting was performed using the Levenberg–Marquardt

algorithm. The results are provided in Table 4.

Table 4. Parameters describing the creep curves for the specimens fabricated through SLS from Alumide.

Build
Direction

εc
0

(%)
εc

1
(%)

εc
2

(%)
τc

1
(s)

τc
2

(s)

X 1.78 0.04 0.13 128 11,550
Y 1.54 0.03 0.07 101 7633
Z 1.76 0.05 0.12 150 10,282
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The elastic moduli Ec
0, Ec

1 and Ec
2, and viscosities µc

1 and µc
2 for the Kelvin–Voight model, illustrated

in Figure 4, were calculated from the experimental data using Equation (21). It is important to note
that, in the case of creep, the times τc

1 and τc
2 are the retardation times or delays of elasticity of the

constituent models. The calculation results obtained for this model are given in Table 5.

Table 5. Elastic moduli and dynamic viscosities obtained for the Kelvin–Voight model (Figure 8).

Build
Direction

Ec
0

(MPa)
Ec

1
(MPa)

Ec
2

(MPa)
µc

1
(MPa·s)

µc
2

(MPa·s)

X 214.59 9549 2938 1,222,272 33,933,900
Y 248.03 12,732 5456 1,285,932 41,645,648
Z 217.03 7639 3183 1,145,850 11,781,629,700

From the discussion of Equation (19), it is clear that, at t = 0, the strain is:

εc(0) = εc
0 =

σc
0

Ec
0

. (28)

However, when t→∞, the limit of Equation (19) is:

εc(t∞) = εc
Z = σc

0

(
1

Ec
0
+

1
Ec

1
+

1
Ec

2

)
(29)
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where
1
Ec

z
=

1
Ec

0
+

1
Ec

1
+

1
Ec

2
(30)

with Ec
z being the equivalent elastic modulus.

The equivalent elastic moduli and strains obtained for the three different types of specimen at
t = 0 and t→∞ during the stress relaxation tests are given in Table 6.

Table 6. Equivalent elastic moduli and strains at t = 0 and t→∞.

Build Direction Ec
z

(MPa)
εc

s
(%)

εc
Z

(%)

X 195.88 1.78 1.95
Y 232.90 1.54 1.64
Z 197.91 1.76 1.93

The experimental creep data indicate that, at the predetermined level of stress, the same for all
specimens, the creep deformation was low; there were no clear differences in creep behavior between
the three groups of specimens.

5. Conclusions

The specimens fabricated through SLS from Alumide, a polymer-aluminum powder blend,
were tested to determine the material stress relaxation and creep according to the build direction.
The experimental results show that there are no clear differences in stress relaxation or creep deformation
between the three types of specimen (three build directions).

The build direction was observed to affect the material dynamic viscosity in the stress relaxation
and creep tests (µr

2 and µc
2, respectively).

The Maxwell–Wiechert model and the Kelvin–Voight model used to describe the stress relaxation
and creep behaviors, respectively, were reported to be fully suitable to fit the experimental curves.
The experimental and best fit curves coincided well. As a result, it is possible to determine the
coefficients of the elastic modulus and dynamic viscosity. The findings can be used to perform a variety
of calculations and simulations for any object SLS-fabricated from the material tested.
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Nomenclature

a0, a1, a2, an, b0, b1, b2 and bn coefficients of the general equation,
ar

0, ar
1, ar

2, br
0, br

1 and br
2 coefficients of the stress relaxation equation,

ac
0, ac

1, ac
2, bc

0, bc
1 and bc

2 coefficients of the creep equation,
D specimen diameter,
Ec

0, Ec
1 and Ec

2 elastic moduli for the five-parameter Kelvin–Voight model,
Ec

z equivalent elastic modulus for the Kelvin–Voight model,
Ec

i elastic modulus of the i-th model for creep,
Er

0, Er
1 and Er

2 elastic moduli for the five-parameter Maxwell–Wiechert model,
Er

s equivalent elastic modulus for the Maxwell–Wiechert model,
Er

i elastic modulus of the i-th model for relaxation stress,
H specimen height,
H(t) Heaviside function,
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δ(t) Dirac delta function,
εc creep strain,
εc

0, εc
1 and εc

2 strain for the five-parameter Kelvin–Voight model,
εr

0 predetermined strain for stress relaxation,
µc

i viscosity of the i-th model for creep,
µc

1 and µc
2 dynamic viscosities in the creep equation,

µr
1 and µr

2 dynamic viscosities in the stress relaxation equation,
τc

i delay of elasticity of the i-th Kelvin model,
τc

1 and τc
2 retardation times,

τr
1 and τr

2 relaxation times,
σr stress relaxation,
σc

0 constant stress for creep.
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