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Abstract: Biopolymer coatings exhibit outstanding potential in various biomedical applications,
due to their flexible functionalization. In this review, we have discussed the latest developments in
biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and
drug delivery applications, and summarized the latest research advancements. Polymer coatings are
used to modify surface properties to satisfy certain requirements or include additional functionalities
for different biomedical applications. Additionally, polymer coatings with different inorganic ions
may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of
biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review
primarily focuses on specific polymers for coating applications and different polymer coatings for
increased functionalization. We aim to provide broad overview of latest developments in the various
kind of biopolymer coatings for biomedical applications, in order to highlight the most important
results in the literatures, and to offer a potential outline for impending progress and perspective.
Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on
nanomaterials for biomedical applications has also been discussed, and the latest research results
have been reported.
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1. Introduction

Tissue engineering research is the combination of materials science, engineering, chemistry, biology,
and medicine; hence, it can be considered an interdisciplinary scientific research field. The regeneration
of adult tissue following an injury or degeneration is quiet a limited process. Although promising results
have been observed in certain laboratory studies, clinical trials are limited, due to certain hindrances
posed by cell integration, migration, and survival. Hence, in tissue engineering, the optimization of
biointerfaces, their integration with the corresponding tissues, and dominance over their properties
are the key guidelines for the development of novel materials. A wide range of polymers can be used in
biomedical applications, and there are numerous approaches for utilizing polymers in medical implants
and devices. In the biomedical field, synthetic biodegradable polymers find applications in various fields.
Biopolymers exhibit good bioactivity, bioresorbability, and nontoxicity. A detailed understanding of
biopolymer structure and properties can increase the applicability of biopolymers in various medical
processes and improve their use as promising and versatile candidates for coatings in such applications.

In tissue engineering, it is important to provide appropriate biointerfaces, understand the process
of their integration with tissues, and control their properties. This control is especially important in
the construction of drug or biomolecule delivery systems. Control over the delivery system can be
achieved using suitable combinations of polymers and bioactive molecules. Over the past decades,
the importance of polymer matrices in hybrid biomaterials has been established based on the wide
variety of choices available, ranging from synthetic to natural biopolymers with a good combination of
flexibility, biodegradability, adjustable mechanical properties, bioactivity, and low toxicity. Further,
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polymeric hybrid materials can be prepared as “smart” materials, using which functionality can be
achieved through physical, chemical, or biological stimuli.

Polymer coatings are increasingly popular in various diverse applications and segments.
From simple coatings to nanoparticle incorporated functionalized composite coatings, these polymer
coatings provide a strong functionalities to their host materials. It can be applied in various materials
of choice such as metals, ceramics, polymers and nanoparticles. In biomedical field, polymeric coatings
can play a vital role for the development of next generation biomaterials and instruments. They can be
applied as corrosion resistance, functionalize the surface, wear resistance, improve bioactivity and
even can be used as a switchable smart materials. Smart polymer coatings are the recent advancement
in the polymer coatings. Various reports indicated that, polymer are smart and have the capability
to respond to numerous stimuli, such as temperature, light, magnetic field, electric field and pH [1].
In the medical field, these smart polymers are mainly used in drug delivery applications where the
drugs can be loaded in these polymer or polymer coatings and can be delivered at the chosen location
with the aid of a stimuli. Further, shape memory polymers are gaining interest and are promising
candidates for bone tissue engineering applications.

Another interesting aspect of the polymer coatings is the formation of the composite with other
polymers or inorganic compounds. The development of polymer-based composites are one of the main
approaches in resolving the glitches associated with the polymers in biomedical applications. Balanced
physical, chemical and biological properties can be achieved through blending the polymers with
other materials. After the emergence of nanotechnology, nanoparticle incorporation in with polymer
base materials provide improved functional characteristics. In drug delivery field, polymer based
nanocarriers are very promising owing to their ability for the encapsulation of drugs, controlled delivery,
sustained release and bioactivity. By incorporating suitable nanofillers, polymer nanocomposites can
be designed for versatile applications.

This review aims to offer an overview of the latest progress in the biopolymer coatings and their
applications in various biomedical field, to highlight the most important results in the literature, and to
offer a potential outline for impending progress and perspective. Initially, brief overview of the polymer
coatings and their methods are described. Then, the short survey on the polymer coatings on metal
surfaces are described. Further, various biopolymer coatings and their application in the biomedical
fields are described separately. Finally, the application of biopolymer coatings on nanoparticles are
discussed. There are numerous reports available for biopolymer coatings and various polymers are
used for biomedical coatings. In this review, very recent research reports are taken into account and
some specific biopolymers are given emphasis based on their wide application and coating ability in
biomedical field along with some standout reports are provided.

2. Polymer Coatings and Films

Polymer coating is an approach for surface property modification undertaken to satisfy the
requirements of multiple practical applications. It is a coating or paint produced using polymers with
better properties than existing ones. Polymer coatings have been used in various applications, such as
adhesion, scratch and abrasion resistance, corrosion resistance, wettability, and bioactivity. Polymer
coatings are considered highly useful in biomedical applications because they provide flexibility with
respect to the chemical groups that can be attached to surfaces, which are beneficial for biomaterial
and tissue interactions. Furthermore, their mechanical and elastic properties are comparable to those
of biological tissues. Various methods have been established and implemented for the fabrication
of polymer coatings for different applications. Highly efficient coatings with advanced properties
can be produced through a prudent choice of material, coating methods, and production parameters.
The inherent surface properties of polymers, such as poor wettability and low surface area, lead to
substandard bioactivity and make it challenging to use these in implants. Conversely, polymer-coated
implants can serve as biomimetic surfaces in the body [2]. Polymers can also be used to coat the surface
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of nanoparticles to improve their performance in the delivery of biomolecules and drugs. Polymer
coatings can be used to improve both hardness adjustment and component delivery.

3. Biopolymer Coating Methods

There are various biopolymer coating materials available, which are well-documented in the
literature. Since this review specifically focuses on polymer coatings, this section briefly discusses
some of the main coating methods used for biopolymer coatings. The assembly of polymer into
coatings and films can be done various methods such as layer by layer (LBL) [3,4], polymer brushes,
dip coating, Langmuir-Blodgett (LB) [4–6], plasma based coating methods, spin coatings and hydrogels.
In LBL method, positively and negatively charged polyelectrolytes are coated successively. There are
number of charged polyelectrolytes are available to produce LBL film and coatings. The biggest
advantage of the LBL process is its flexibility to produce the polymer coatings. Recently Landry et al.
reviewed self-assembled layers and multilayer polymer coatings for tissue engineering applications [3].
LBL polymer films as drug delivery carriers was reviewed by Park et al. [4]. LB films are often
considered as alternate for LBL process in which the substrates are drawing at a steadily at a constant
speed from the polymer solutions. In LBL, molecules from the bulk solution are coated on the
substrate, whereas in LB, molecules from the solution surface are coated on the substrates. Leontidis
described about LB films and compared it with LBL method [5]. Polymer brush is another popular
and interesting surface modification technique in which soft material is covalently tethered on the
surface of the substrate [7] and has potential applications in various fields. Various researchers have
reviewed the applications of polymer brushes in biomedical field [7–9]. Plasma based polymer coatings
(especially non-thermal plasmas) are enable us to have controlled polymer coatings on any substrate
surfaces for various applications. This coating method provides strong adhesion to extensive range of
substrates, such as metals and ceramics. Further, this plasma coatings allows to coat even complex
shapes. Plasma based polymer coatings were reviewed and reported by various researchers [10–12].
Similarly, various other methods such as dip coating and spin coatings are used for polymer coatings.
These methods are simple, cost effective and the coating parameters can be changed easily. In a dip
coating process, the substrate is dipped into a polymer coating solution and kept in this solution
for some times, which allow substrate to absorb the polymer molecules. After that, the substrate
is withdraw from the solution and dried. Evan a large substrates can be uniformly coated by this
dip coating process. Various parameters such as solution viscosity, dipping time, drawing speed
and drying atmosphere. In spin coating, polymer solution is added dropwise in the center of the
substrate, which may be either still or set in to rotate in low speed. After that, the rotation of the
substrate is increased to high velocity to facilitate homogenous spreading of the polymer solutions on
the substrates with the combined effect of centrifugal force and surface tension. Here, the thickness of
the coating was achieved by rotation speed, viscosity and surface tension. Very recently, Song et al.
reviewed various biopolymer based coating methods [13].

4. Biopolymer Coatings on Metal Implants

In multiple industrial applications, metal surfaces coated with organic layers provide numerous
advanced features with high potential for applicability. This technique permits the tailoring of
various characteristics, such as elasticity, wettability, bioactivity, and adhesiveness [14]. Biodegradable
polymer coatings can be applied as corrosion resistance coatings in implants to prevent corrosion post
implantation [2].

Improved bioactivity, corrosion resistance, and antifouling properties were achieved for 316L
stainless steel (SS) by applying a pseudopeptide polymer coating. Liu et al. [15] used poly(2-
methyl-2-oxazoline) (PMOXA) as a pseudopeptide polymer to produce a non-brush bionic polymer
coating by electrochemical assembly on a 316L SS surface. bioactivity and anti-fouling properties were
observed for PMOXA with a modest degree of hydrolysis and molecular weight. Further, they found
that cell migration and proliferation were enhanced by these coatings. It was claimed that the coating
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could successfully modify the surface of the complex 3D vascular stent, which could have potential
applicability in the prevention of late stent thrombosis and in-stent restenosis [15].

Gnedenkov et al. suggested a unique method for producing composite polymer coatings on the
surface of the magnesium alloy MA8 [16]. Significant improvements were reported in the protective
and antifriction properties of the magnesium alloy surfaces owing to the special treatment of plasma
electrolytic oxidation (PEO) coatings by super-dispersed polytetrafluoroethylene (SPTFE). Further,
the authors inferred that the thickness of the composite coating increased due to SPTFE treatment of
the PEO coating. The same group reported a similar PEO-based method for preparing hydroxyapatite-
polytetrafluoroethylene (PTFE) composite coatings on Mg–Mn–Ce alloys for use in resorbable
implants [17]. In this study, the elemental composition, phase, morphology, and multifunctional
corrosion resistance of the composite coatings were reported, and these were confirmed to impart
bioactivity to magnesium implants.

Oosterbeek et al. attempted to produce polymer-bioceramic composite coatings on magnesium to
improve the corrosion resistance of magnesium to increase the degradation time [18]. The composite
coating was produced through a two-step process: Initial bioceramic coating by immersion in a
supersaturated calcium phosphate solution, followed by polylactic acid coating using a dip coating
process. Mechanical testing of this composite coating revealed that the polymer-only coating showed
greater adhesion strength compared to the polymer-bioceramic composite coating owing to the poor
bonding between the bioceramic layer and the substrate. The presence of corrosion resistance also
indicated that the polymer-only coating had a longer period than the other composite coatings.

Recently, similar studies on conferring corrosion resistance and inducing biological properties in
magnesium alloys for implant applications were successfully implemented using calcium phosphate/

collagen (CaP/Col) composite coatings [19]. Chemical conversion and dip-coating methods were adapted to
fabricate composite coatings. The CaP/Col coating effectively reduced the degradation rate of magnesium
alloys and increased osteoblast adhesion in the optimal microenvironment and interface created.

In the following section, we have reviewed specific biopolymer coatings as well as the coatings that
can be used to modify these polymer surfaces for better utilization in specific biomedical applications.

5. Biopolymer Coatings for Surface Modification

5.1. Polyvinylidene Fluoride (PVDF)

PVDF is a polymer used widely in medical applications and has been studied extensively. It possesses
enhanced biological, textile, and piezoelectric properties, and it is a highly non-reactive thermoplastic
fluoropolymer [20,21]. Surgical meshes and sutures require non-reactivity, whereas wound-healing
applications require piezoelectricity [21]. Hence, this material is considered suitable for various
biomedical applications such as tissue engineering [22–27], physiological signal detection [28–32],
and antimicrobial and antifouling material development [22,33–38]. However, it is difficult to produce
coatings for biomedical applications using PVDF because it does not form smooth films and exhibits
issues in adhesion with other substrates. There have been reports of effective coating using PVDF
and its copolymers using the spin coating and Langmuir–Blodgett (LB) methods. Yin et al. reviewed
studies reporting the application of PVDF and its copolymer films using the spin coating and LB
methods [39]. Several studies have reported that PVDF, along with other materials, form a composite
or combination of materials that offer the advantages of both materials [22–24,28,29,31,33,35–39].

Tien et al. [28] fabricated a flexible electronic skin (e-skin) that mimics the functions of the
human finger. The device was designed on top of a flexible platform with an array of pressure and
temperature sensor pixels, which could be used as a channel using an organic semiconductor (pentacene).
The gate dielectric material was produced from a mixture of poly(vinylidenefluoride-trifluoroethylene)
(P(VDF-TrFE)) and BaTiO3 nanoparticles. This device showed high sensitivity and could be used
successfully as e-skin. Hybrid ZnO nanoneedles and PVDF films were fabricated for applications
in wireless real-time pressure sensors to monitor the heart rate. These were highly sensitive and
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wearable, and could detect pressure as low as 4 Pa [31]. A similar type of temperature-sensing material
with high thermal responsivity, stability, and reproducibility was constructed by Trung et al. [40].
This temperature sensor used reduced graphene oxide (R-GO) instead of BaTiO3 and formed a
nanocomposite with P(VDF-TrFE, (R-GO/P(VDF-TrFE)), which acted as a sensing layer. This sensor
was reported to be mechanically flexible, optically transparent, and highly responsive to temperature
changes (could detect temperature changes as low as 0.1 ◦C).

Apart from the PVDF coating, electrospinning of PVDF, and its copolymers and composites with
different nanomaterials can be performed to utilize advantages of both materials. These composites
are mostly used in energy harvesting and environmental remediation applications [41–44]. In recent
times, only a limited number of reports have been published on their applications in the biomedical
field. In a recent report, a self-powered piezo-organic-e-skin sensor was constructed using highly
aligned PVDF nanofibers as piezoelectric active components and polyaniline-coated PVDF NF mats as
flexible electrodes (Figure 1) [45]. This sensor was used for human health monitoring, and exhibited
remarkable sensitivity to human finger touch (10 V under 10 kPa) by converting mechanical energy into
electric energy. It was also designed to monitor various human gestures such as bending, stretching,
compression, movement, coughing, and swallowing.
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Figure 1. (a) electrospinning process, (b) photograph of the large-scale prepared mat of highly aligned 
PVDF NFs arrays; enlarged view exhibits the structure from respective section, (c) structure of 
oxidant-contained yellowish PVDF NFs mat before PANI coating, (d) VPP process, (e) structure of 
deepbluish PVDF NFs mat after PANI coating, (f) electrode assembling, (g) lamination process, (h) 
PDMS encapsulation of POESS design, (i) photographs of POESS with demonstration of flexibility.
Schematic illustration of the piezo-organic-e-skin sensor design architecture. (Reprinted with 
permission from [45] Copyright (2020), American Chemical Society.).

Electrospun PVDF-nanosilica scaffolds were prepared, and their mechanical and piezoelectric 
properties were studied for biomedical applications by Haddadi et al. [46]. Hydrophilic and 
hydrophobic silica nanoparticles were used to construct the composite fiber, and the average fiber 
diameter was increased by nanoparticle addition. Hydrophilic silica nanoparticles showed higher 
tensile strength compared to other fibers owing to their higher dispersion and compatibility. The
piezoelectric property was enhanced upon the addition of silica nanoparticles; however, the addition
of hydrophilic silica led to an increase in the output voltage [46]. 

Figure 1. (a) electrospinning process, (b) photograph of the large-scale prepared mat of highly
aligned PVDF NFs arrays; enlarged view exhibits the structure from respective section, (c) structure
of oxidant-contained yellowish PVDF NFs mat before PANI coating, (d) VPP process, (e) structure
of deepbluish PVDF NFs mat after PANI coating, (f) electrode assembling, (g) lamination process,
(h) PDMS encapsulation of POESS design, (i) photographs of POESS with demonstration of flexibility.
Schematic illustration of the piezo-organic-e-skin sensor design architecture. (Reprinted with permission
from [45] Copyright (2020), American Chemical Society).
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Electrospun PVDF-nanosilica scaffolds were prepared, and their mechanical and piezoelectric
properties were studied for biomedical applications by Haddadi et al. [46]. Hydrophilic and hydrophobic
silica nanoparticles were used to construct the composite fiber, and the average fiber diameter was
increased by nanoparticle addition. Hydrophilic silica nanoparticles showed higher tensile strength
compared to other fibers owing to their higher dispersion and compatibility. The piezoelectric property
was enhanced upon the addition of silica nanoparticles; however, the addition of hydrophilic silica led
to an increase in the output voltage [46].

The blending of PVDF with a conducting polymer is a method for increasing electrical output
from PVDF. Sengupta et al. [47] prepared PVDF blends with various polymers (polypyrrole (PPy),
polyaniline (PANI), and a modified PANI with L-glutamic acid (referred to as PANILGA/P-LGA)) to
obtain different electrically active membranes. Bioactivity, electrical conductivity, β-phase content,
and the nanostructures formed were analyzed, and bioactivity was observed to decrease in the
following order: p-LGA/PVDF > PANI/PVDF > PPy/PVDF > PVDF. Furthermore, while P-LGA/PVDF
exhibited higher bioactivity and electrical conductivity, it also exhibited high cytotoxicity toward
HeLa (cancer) cells (Figure 2). Hence, this composite material can be of interest in certain specific
biomedical applications.
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Figure 2. Viability of (a) HeLa cells and (b) MC3T3 cells on PVDF and PVDF:CP electrospun fibers
(control: PVDF). ** and **** signifies p < 0.01 (1d) and p < 0.0001 (1d), respectively, for both HeLa and
MC3T3 culture (1d); #### signifies p < 0.0001 (3d). CP, conducting polymers; PVDF, poly(vinylidene
fluoride) (Reprinted with permission from [47] Copyright (2020), John Wiley and Sons).

Wang et al. [48] described the optimized electrospinning conditions for P(VDF-TrFE) nanofiber
formation and its effect on the piezoelectricity of P(VDF-TrFE). This nanofiber scaffold was then
implanted in SD rats as energy harvesters, and cell proliferation and cell alignment growth were
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studied. The P(VDF-TrFE) implant provided a maximum voltage and current of 6 mV and 6 nA,
respectively. Furthermore, the fibroblasts proliferated and aligned seamlessly along the electrospinning
direction of the nanofibers, and proliferation was observed to be enhanced by 1.6-fold. Based on this,
the authors claimed that the P(VDF-TrFE) scaffold could be used as a suitable tissue engineering and
wound healing material [48].

5.2. Polymethyl Methacrylate (PMMA)

PMMA is a synthetic polymer that is lightweight, cost effective, easy to manipulate, and contains
harmless subunits; these properties make it suitable for usage in biomedical applications. It is
broadly used for various medical applications, such as drug delivery, as well as in tools such as bone
cement and microsensors [49]. PMMA is also the material of choice for the production of denture
base, orthodontic retainers, and repair in dentistry [49,50]. It exhibits good mechanical properties,
slow degradation, low toxicity, and inertness. Due to these properties, it is widely used in hip-joint
transplantation. Its non-biodegradable nature makes it suitable for the construction of permanent
and mechanically stable structures, such as those used in bone tissue engineering [49,51]. The issues
associated with the coating of organic materials on metal surfaces include poor adhesion between
these two components. To address this, polymers can be covalently anchored to the substrate surface
to generate an adhesive interlayer.

A 1–2-µm PMMA layer was incorporated on a Ti substrate through alkali activation of the
surface [52]. This was achieved through the initial alkali activation of the Ti substrate followed by
surface-initiated atom transfer radical polymerization. This was performed in a heated NaOH solution.
This treatment produced a porous Ti layer rich in hydroxyl groups. Next, using phosphonic acid as the
coupling agent, the polymerization initiator was covalently grafted onto the surface [53]. The coating
was approximately of 1.9 µm and was stable in a simulated body solution. Additionally, it exhibited
good bioactivity [52]. This method can pave the way for hybrid prosthesis using personalized
medicine. In another study, the same method was used to develop a TI/PMMA/Ti sandwich structure
and study their adhesion and formability. A high bonding strength and optimal formability were
achieved. The results showed that there was no failure or delamination between the Ti and PMMA
interfaces. Hence, this type of coating and adhesion method will be advantageous in future biomedical
applications. Furthermore, the same authors reported the production of a hybrid Ti/PMMA-layered
material and analyzed multiple mechanical characterizations using the same [14]. The mechanical
characterization of the thick PMMA layers on Ti substrates was performed using nanoindentation as
well as different atomic force microscopy techniques. Each of these methods indicates the mechanical
properties at different scales (Figure 3).

Biomaterial modelling for optimized methacrylate coating for Ti implant was proposed by
Sun et al. [54]. They applied cheminformatics methods to methacrylated proteins to estimate their
suitability as Ti implants coatings. They found that the bioactivity of Ti implants was higher than that
of uncoated samples when methacrylated proteins such as GelMA were used. In addition, this coating
was less susceptible to biofilm formation, which reduced the risk of osteomyelitis, which ultimately
leads to implant fixation. The development of hybrid nanoparticle coating derived from bio-polymer
was reported by Galvão et al. [55]. PMMA nanoparticles were synthesized in the presence of
poly(diallyldimethyl ammonium) chloride (PDDA) by emulsion polymerization. The antimicrobial
coating was created by spin coating or casting and drying of the nanoparticle dispersion using different
substrates such as Si, glass, or polystyrene sheets. At its highest relative content, PDD:PMMA mostly
produced homogeneous coatings. The presence of PDDA in the coatings significantly inhibited
bacterial activity, which was tested in Escherichia coli and Staphylococcus aureus. The coatings were
suggested to be suitable for different biomedical applications.
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The deposition of PMMA/chitosan-silver (PMMA/AgNPs-CS) nanoparticles on a soft rubber
substrate was achieved by immersion method which improved antibacterial activity [56].
Positively charged AgNPs-CS (38 nm) was heterocoagulated on the negatively charged PMMA
cores (496 nm) to produce PMMA/AgNPs-CS, which was then deposited on the rubber substrate.
Antibacterial activity toward E. coli and S. aureus was amplified on the coating surface (Figure 4).
Furthermore, the cytotoxicity of L-929 fibroblast cells was also reduced by these coatings. However,
inhibition of the L-929 fibroblast cells was not observed. This study showed that these types of coatings
can be applied to various soft substrates in different biomedical applications.
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5.3. Polypropylene (PP)

PP has been widely used in medical applications, especially as a surgical mesh to strengthen
weakened tissues. PP is a thermoplastic polymer with different densities and can be classified into
copolymer and homopolymer components. In the biomedical field, PP mesh has been extensively
used in urogynecology [57] and hernia repair owing to specific characteristics, such as inertness,
hydrophobicity, and strong mechanical properties, even while being lightweight [58]. It also finds
applications in other areas of medicine such as breast reconstruction or as a supportive soft tissue
structure and blood oxygenator membrane. In addition, it exhibits low potential of carcinogenesis in
the human body [59]. However, certain complications are also associated with its use, including the
induction of infections and inflammatory responses within the body, which lead to a slow healing
process, insufficient drug absorption, and immune system response. Due to its high hydrophobicity,
it exerts adverse effects such as tissue damage and insertion resistance in the human body occasionally.
Hence, even though PP is a good material, its application is limited owing to its poor biological
properties. Therefore, to use PP in medical applications in the human body, surface treatment for
improving bioactivity is necessary.

Recently, Saitaer et al. [58] reported the surface modification of a PP hernia mesh using polydopamine
(PDA) modified with cold oxygen plasma. This modification led to improved drug absorption and
longer release, and also imparted antibacterial properties. Plasma treatment is one of the best methods
conventionally used for surface modification for inducing chemical functionality and surface charge
and for increasing surface hydrophilicity [60]. Plasma-enhanced chemical vapor deposition (PECVD)
was used to modify the surface of PP implants with different chemicals to produce charged PP
substrates for layer-by-layer (LBL) coatings [60]. This PECVD method increased hydrophilicity and
the number of functional reactive groups available for molecule grafting, and was found to be suitable
for LBL deposition on PP substrates.

To tackle the high hydrophobicity of the PP surface, Jang et al. [61] developed a matrix combining
polyvinyl pyrrolidone (PVP) and cross-linked polyethyleneglycolacrylate (PEGDA) to produce a
stable hydrogel forming layer (PVP:PEGDA) that exhibited hydrophilicity and bioactivity. This study
revealed that the hydrophilic nature of the film improved, and the mechanical as well as adhesive
strength of the PP surface could be optimized by adjusting the PVP and PEGDA ratio. Compared
to the PVP film, the combination of the PVP:PEGDA films showed 7-fold higher tensile strain at the
breaking point, and 54-fold higher adhesion strength, respectively. This type of surface modification
can be useful for the development of PP medical products.

Cross-linked poly(styryl bisphosphonate) (poly(StBP)) thin coatings (thickness: 163 ± 8 and
175 ± 7 nm) were applied to corona-treated PP films by UV curing for bone tissue engineering
applications by Steinmetz et al. [62]. Initially, poly(StBP) nanoparticles were prepared and mixed with
poly(ethylene glycol) dimethacrylate and a photo-initiator. Next, they were spread on the PP film
and cured using UV radiation. The authors observed that the poly(StBP) nanoparticle-embedded
coating induced apatite crystal growth (Figure 5), which resulted from the strong affinity of poly(StBP)
toward calcium ions. Furthermore, the coating exhibited durability and optical properties. The authors
claimed that this coating method could be useful in various bone tissue engineering applications.
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permission from [62] Copyright (2020), Elsevier).

5.4. Polydimethylsiloxane (PDMS)

PDMS is a synthetic material that is used extensively in various biomedical tools such as surgical
implants, catheters, contact lenses, pacemaker encapsulants, and biosensors, as well as in drug delivery
and DNA sequencing owing to its excellent properties, such as bioactivity, greater flexibility, ease of
fabrication, oxygen permeability, optical transparency, and low toxicity [63,64]. Furthermore, it can be
used as an ideal organ-on-chip substrate to study stem cell behavior. The characteristics of this material
make it a suitable candidate for studying cell activities, such as topography, stretching, and mechanical
and electrical stimulations for designing materials for tissue engineering applications [63]. However,
the interaction of PDMS with cells is limited, which necessitates the modification of its surface
characteristics to achieve the desired properties. Similar to PP, plasma treatments can be used to modify
the surface of PDMS by the creation of hydroxyl groups.

Gehlen et al. [63] reported a novel, one-step PDMS coating method using engineered anchor
peptides fused to a cell-adhesive peptide sequence (glycine-arginine-glycine-aspartateserine). In this
method, hydrophobic interactions were used to attach the anchor peptides to the PDMS surface
by dipping the PDMS substrates in an anchor peptide solution (Figure 6). Binding performance,
cell attachment of fibroblasts, and endothelial cells were studied, and the coating conditions were
optimized. The authors claimed that this method employed mild conditions and room temperature,
and could be easily used to functionalize biomedical devices with sensitive and complex components.

Ultralow friction was established in an aqueous environment for using PDMS by bonding of
a poly(acrylamide–acrylic acid) hydrogel coating on the surface of the substrate [65]. Bonding was
achieved through chemical modification of the PDMS surface and successive reaction with acrylic
acid moieties. The product reduced friction by two orders of magnitude in an aqueous environment,
which had a friction coefficient (µ) as low as 0.003 [65]. A chlorhexidine (CHX)-loaded PDMS-based
coating was applied on the surface of a 3D-printed dental polymer to induce surface wettability,
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microstructure, and antibacterial activity [66]. CHX was encapsulated in silica nanoparticles and added
to PDMS to produce an antibacterial coating material. This was coated as a thin film on a 3D printed
specimen using oxygen plasma and by subsequent heat treatment. This coating eventually increased
the surface hydrophobicity and reduced the irregularities. Furthermore, it notably reduced bacterial
colony formation compared to that in the uncoated samples.Polymers 2020, 12, x FOR PEER REVIEW 12 of 28 
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PDMS with enhanced hemocompatibility was developed for medical implant or device application
by modifying the surface using a PDA and hyaluronic acid (HA/PDA) composite [67], as shown
in Figure 7. Enhanced hemocompatibility was observed for a particular HA/PDA composition,
using which platelet adhesion and activation were reduced, compared to that observed in other
combinations of PDMS and HA or PDA coatings. Furthermore, it was observed that along with
hemocompatibility, anti-inflammatory effects and cytotoxicity could also be altered by adjusting the
HA and PDA composition on the PDMS surface. These advantages can be useful for the development
of medical implants and devices.
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Another interesting and single-step surface modification for producing a long-lasting hydrophilic
surface was performed using microwell arrays, as reported by Oyama et al. [68]. In this method,
a low-energy electron beam (55 kV) was used to irradiate PDMS films in an air-produced silica-like
layer with a thickness of 40 µm. This modified surface showed prolonged hydrophilicity for more than
10 months in aqueous medium. These microwells were able to trap cells/single cells and provide stable
and promising cell adherent environments (Figure 8). Since no chemical was used in this method
for surface modification, the intrinsic bioactivity of PDMS was retained. This notable and promising
result revealed that the platform could be interesting in lab-on-chip applications, medical applications,
drug screening, and stem cell studies [68].
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In another study, Mahmoodi et al. [69] reported the surface modification of PDMS using PTFE
coatings to avert the absorption and adhesion of solvents onto PDMS microchannel walls, which can
be used for the encapsulation of anti-inflammatory drugs. The results showed that after the coating,
the microchannels exhibited super hydrophobicity (140.30◦), which effectively prevented the adhesion
and absorption of solvents by the drug-loaded nanoparticles. Furthermore, the drug release and
encapsulation efficiency were favorably altered by the coatings without any toxicity.

5.5. Polyurethane (PU)

Among synthetic polymers used in medical applications, PU is used only a small fraction
in spite of its application in various fields. PU coatings have significant uses in various fields,
including biomedical applications. In the medical field, it is primarily used to manufacture pacemaker
lead coatings, breast implant coatings, and vascular devices. In recent times, PU has garnered
significant attention owing to its bioactivity, biodegradability, and adaptive physical and chemical
forms. Furthermore, its physical and mechanical characteristics are similar to those of natural
tissues [70,71]. PUs consist of alternating hard and soft segments (HS and SS). The SS has an elastomeric
character, whereas the HS offers additional strength owing to the hydrogen bond-containing urethane
linkages [72,73]. Its biodegradability, physicochemical properties, and other properties can be adjusted
by altering the ratio between the SS and HS components, chemical composition, and molar weight of
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PU in specific applications [70,74]. Joseph et al. reviewed the biomedical applications of PU and its
coatings [75].

New biodegradable freestanding PU films were produced without using any catalyst by Barrioni
et al. [70]. The authors developed an HS using hexamethylene diisocyanate and glycerol and an SS
using poly(caprolactone) triol and low-molecular-weight PEG. A highly homogeneous PU structure
with an interconnected network was formed. The deformation at break reached 425.4%, and the elastic
modulus and tensile strength were 1.6 MPs, and 3.6 MPa, respectively.

Bacterial resistance PU coatings for medical devices were developed by Roohpour et al. [76].
To inhibit microbial film formation, silver lactate and silver sulfadiazine were capped with the polymer.
The silver ions were found to be covalently bonded with PU without affecting its mechanical properties,
while an adequate bactericidal effect was exerted even when the silver content was low. This material
can be used for developing medical device coatings and associated applications. In another study,
the water resistance and bioactivity of PU were improved by the addition of isopropyl myristate,
which modified the hydrophobicity of PU [77]. The surface properties of PU changed and its surface
energy was reduced. The modified PU exhibited considerably lower water permeability than the silicon
packing materials available currently. This may be considered a suitable material for electronic implants.
Recently, PUs for medical implants and devices have been prepared by 3D printing, and the latest
developments in the 3D printing of PU in biomedical fields have been reported by Griffin et al. [78].
Similarly, a review on bio-based PU for biomedical applications was published by Wendels et al. [79].
Apart from regular coatings, PU/graphene based electrospun nanocomposite fibers were reported to
increase the electroconductivity, bioactivity and mechanical properties [80].

6. Other Biopolymer Coatings

Apart from the polymers mentioned above, various other biopolymers such as poly lactic acid
(PLA), Poly (lactide-co-glycolic) acid (PLGA), Polycaprolactone (PCL), polyethylene (PE) and some
natural polymers such as collagen and chitosan are also used for various biomedical applications.
PLA is recyclable, hydrophobic aliphatic polyester used for various biomedical applications, such as
medical devices, tissue engineering, drug delivery and 3D printed scaffolds. ZnO nanoparticles
embedded in PLA was dip coated on Mg alloy (AZ31), which helped to control the degradation and
promote antibacterial activity [81]. Incorporation of ZnO in PLA matrix provide control over surface
topography and Mg degradation rate. A free-standing PLLA micro-chamber array was developed
by dip coat PLLA solution on PDMS stamp followed by drug loading and sealing with pre-coated
polymer substrate, for drug delivery application [82]. A low frequency ultrasound trigger the release
of drug and in vitro test revealed that the full cargo of drug was completely released in 13 days under
physiological condition. It can be used as a smart polymer which can deliver the drug by stimuli.

Another biodegradable polyester is PCL which showed brilliant properties, such as bioactivity,
biodegradability and flexible mechanical properties. In biomedical field, PCL can be used for tissue
engineering applications, drug delivery and bone graft material. An -g based alloy was coated with
PCL or PCL nanocomposite coatings to improve its functionalities, such as osteogenesis, bioactivity
and adhesion strength. Kim et al. provide a uniform coating of PCL on Mg screw to improve
its osteogenesis [83]. In order to increase the adhesion between Mg and PCL, plasma electrolytic
oxidation (PEO) was performed and then PCL was coated by dip coating method. With an optimized
coating conditions, thick and dense bone formation was found around the PCL coated screw in
rat femur. In another study, PCL/fluorine doped apatite (FHA) composite duplex coatings was
performed by dip coating method, on the Mg alloy to improve its biological properties and control the
degradation rate of Mg alloy [84]. The bilayer PCL/FHA coatings provide good corrosion resistance
and biomineralization formation, which can be used for implant applications. In another study,
in order to improve the antifogging and low oxygen barrier of PCL, multilayer coatings of poly(vinyl
alcohol) (PVA) and tannic acid (TA) bilayers were used which reduced the oxygen permeability with
the presence of 20 bilayers and fogging was controlled with five bilayers [85]. This work opens up a
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way to design transparent biodegradable coatings with oxygen barrier and antifogging properties for
various applications. PCL based PU electrospun microfiber with apatite nanoparticles were prepared
to enhance the biological characteristic and shape memory properties. This composite nanofibers
showed controlled drug delivery [86]. The addition of apatite with various ratio to determine the
shape memory features and 3 wt% of HA showed excellent recovery with short recovery time.

Natural polymers such as chitosan and collagen were also used as coatings for improve the
functionalities of the biomaterials. Various reports are available for the chitosan coatings for biomedical
applications. One of the coating method is electrophoretic deposition. Various recent reports provide
an overview of this coating method [87–89]. Avcu et al. recently reviewed the chitosan based composite
coatings for biomedical applications [89]. Very recently, Frank et al. provides a comprehensive review
about chitosan coatings on nanoparticles [90]. Chitosan coatings for nanoparticles are carried out in
two ways: (i) Initial preparation of nanoparticle and then adding chitosan solution to the nanoparticles,
(ii) addition of chitosan during nanoparticle preparation (Figure 9).
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Collagen is another natural polymer and is the richest constituent of ECM. As expected, coating a
biomaterial with collagen can improve its bioactivity, its ability to form an interface between the host
tissue and the implants. Various reports proved that cell proliferation, differentiation and adhesion as
well as new tissue formation was improved with the collagen coatings [91,92]. The cell spreading and
growth can greatly influenced by the solvent used to prepare the collagen coatings [93]. In order to
increase the mesenchymal stem cell (MSCs) adhesion, survival and proliferation collagen coatings
were tried and found to be effective [92]. A combination of collagen coatings on chitosan shown to
promote cell attachment and distribution [94].

7. Biopolymer Coatings on Nanoparticles

In a nanoparticle system, surface optimization is needed for the practical use of nanoparticles in
clinical applications. In systematic drug delivery systems, surface functionalization and coatings on
nanoparticles can be highly useful for altering the selectivity of nanoparticles in the delivery procedure
to produce a system with better targeted drug delivery potential. The choice of the coating material
is particularly important in biomedical applications, since in some cases, surface modification may
alter the properties of nanoparticles, and consequently, its performance in clinical applications. This is
especially true for magnetic nanoparticles (MNPs), as some coatings may change their magnetic
properties. In medical applications, it is important to consider parameters, such as bioactivity, toxicity,
stability, and support for anchorage of other functional groups, since these coatings play a vital role
and can perform multiple functions simultaneously. One of the best tools in this respect is universal
polymer coating, which can be applied to a variety of material surfaces and has outstanding prospects
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for biomedical applications owing to the flexible surface modification process and absence of substrate
conditions, such as stiffness and topography [95].

MNPs are used in various applications and have been considered suitable candidates for biological
applications in recent years. They are used for magnetic resonance imaging (MRI), diagnostic imaging,
magneto-optical based immunoassays, and magnetic hyperthermia induction in tumors [96,97]. To use
MNPs in the aforementioned applications, it should be ensured that these do not agglomerate due to
colloidal or magnetic forces in a given medium. To overcome these challenges, MNPs should be coated
with materials that support solubilization in a medium. Biopolymers can satisfy these requirements
owing to their bioactivity and biodegradability [90].

Iron oxide nano-rods were coated with polymers to improve their colloidal stability in aqueous
media by Marins et al. [97]. Three different polymers were coated (Figure 10), and experimental and
theoretical evaluations were performed to study the colloidal stability of the nano-rods. Improved
nano-rod colloidal stability was observed. The results also showed that this method could be useful
for increasing the colloidal stability of rod-like nanoparticles in biomedical applications, where perfect
colloidal stability is a necessity. In another recent study, Pereira et al. [96] reported the suitability of
chitosan-based hydrogel coatings for magnetic particles for potential drug delivery applications. In the
mentioned study, a polyelectrolyte complex of chitosan and Sterculia striata gum was used as a coating
material. The coating was found to be present on the negatively charged outer layer of the magnetic
particles. Unlike the previous study, this study revealed that the Fe3O4 nanoparticles aggregated and
formed large clusters. The results obtained showed that hydrogel-coated Fe3O4 could be a suitable
candidate for drug delivery applications.
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Figure 10. Schematic illustration of iron oxide nanorods coated with linear bisphosphonate−poly
(ethylene glycol) (OPT), polyacrylic sodium salt (PAA), and polymethacrylate backbone/PEG side chain
comb polymer (PCP). (Reprinted with permission from [97]. Copyright (2018), American Chemical
Society).

Poly(2-(methylsulfinyl) ethyl acrylate) (PMSEA), a highly hydrophilic sulfoxide polymer, was used
to modify the surface of the iron oxide nanoparticles to improve their circulation in blood and minimize
protein fouling [98]. The particles produced exhibited superior colloidal stability under physiological
conditions. Compared to conventional polymer coatings (PEGA), PMSEA coatings provided an
enhanced toxicity profile and reduced macrophage and protein interactions. Furthermore, the results
indicated the remarkably low fouling properties of PMSEA. Hence, this polymer coating could be of
interest in biomedical applications, especially in advanced therapeutic and diagnostic applications.

Chitosan was also used as a thermoresponsive coating on magnetic silica nanoparticles for
controlled drug release and magnetic hypothermia applications. Pon-On et al. [99] encapsulated
magnetic silica particles within a chitosan-g-N-isopropylacrylamide polymer matrix. This material
exhibited superior paramagnetic behavior, and in an alternating magnetic field (AMF), it acted as a
heat source with a specific absorption rate of 8.36 Wg−1. The drug doxorubicin (DOX) encapsulated
in this particle was sensitive to heat and pH; hence, the authors studied the drug release profile
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using external heat and internal heat produced using an AMF. Approximately at neutral pH (7.4) and
under external heating, the drug release was considerably slower. At an acidic pH under internal
heating by AMF (4.0), the release was much more rapid. Owing to its in vitro toxicity, the DOX-loaded
chitosan-coated magnetic silica nanoparticle exhibited stronger anticancer activity than free DOX.
This study demonstrated a promising application of pH/thermos-chemotherapy using an AMF drug
delivery system.

Mg0.5Co0.5Fe2O4 MNPs were functionalized using chitosan (CS) coatings to enhance the delivery
of the loaded anticancer drug 5-fluorouracil (5FU) for the formation of CS-Mg0.5Co0.5Fe2O4-5FU [100].
At physiological pH and under acidic conditions, these small, spherical nanocomposites exhibited
stability and sustained drug release for more than 48 h. Furthermore, these exhibited improved and
selective anticancer activities compared to the free drug. Bioactive polymer-coated paramagnetic
(Fe3O4) MNPs were prepared by Zarouni et al. [101] for DOX delivery in breast cancer treatment.
The pH-responsive polymer-coated MNPs were controlled by magnetic and pH values. The size of
these nanoparticles was approximately 20 nm, and these had a high encapsulation efficiency. The MNPs
exhibited a gate-like action, and rapid release was observed at pH 5.8, which ceased at pH 7.4.

For precise targeting and improved biological interactions, the surfaces of gold nanoparticles
(AuNPs) have been modified in several studies, and these have become more popular in recent times.
Owing to their unique physical and optical properties, AuNPs have garnered significant attention
in various biomedical applications. Furthermore, it is easy to functionalize AuNPs using various
materials, such as ligands, proteins, DNA, antibodies, and polymeric materials. These properties
can be useful in several medical applications. LBL polymer-coated AuNPs have been used as
carriers for delivering cancer drugs, such as imatinib mesylate (IM) [102]. AuNPs were prepared
and functionalized using polyvinylpyrrolidone and polyethylene imine. Subsequently, they were
successively coated with anionic poly(styrenesulfonate) and cationic polyethylene imine. The AgNPs
produced were loaded with IM to produce IM-PSS/PEI-AuNPs (Figure 11). The characterization of
the nanoparticles formed showed that the loading efficiency was better than that reported in other
studies, and an in vitro study revealed that skin penetration was enhanced by 6.2-fold compared
to that achieved by passive application. At concentrations greater than 50 µM and 31 µM for gold,
and IM, respectively, the IM-PSS/PEI-AuNPs exhibited considerably higher inhibition of cancer cell
growth than pure IM. Hence, this nanoparticle may serve as a promising tool for treating melanoma
compared to IM alone [102]. Similarly, several research reports have been published on the biomedical
applications of polymer-coated AuNPs, including drug delivery, gene therapy, and photothermal
therapy and imaging. A review of the latest developments in the use of polymer-coated AuNPs in
biomedical applications was published by Fuller et al. [103]. Gold-ferric oxide superparamagnetic
nanoparticles (Au–Fe3O4 NPs) were coated with poly-L-lysine (PLL) to deliver the nanoparticles to
cells in breast cancer treatment [104]. Owing to properties such as surface plasmon resonance and super
paramagnetic effect, Au can be used as a nano-thermal ablator and MRI contrast agent, respectively.
To use PLL-Au–Fe3O4 NPs in photothermal therapy, these nanoparticles were incubated with breast
cancer cells, and their intracellular uptake and cytotoxicity were studied by NIR laser irradiation at
808 nm. The results showed that this material served as an all-in-one theranostic agent and could be
used for both diagnostics and photothermal ablation of breast tumors. Table 1 summarizes all the
findings from this review.
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Table 1. Summary of the polymer coatings for biomedical applications.

Coatings Material Coating Method Substrate/Nanoparticle Applications Area Refs.

poly(2-methyl-2-oxazoline)
(PMOXA)

Electrochemical non brush bionic
coating 316L stainless steel bioactivity, antifouling properties, prevent late

stent thrombosis and in-stent restenosis [15]

Polytetrafluoroethylene PEO coating magnesium alloy MA8 protective and antifriction properties [16]

hydroxyapatite-
polytetrafluoroethylene PEO coating Mg–Mn–Ce alloys corrosion resistance and impart bioactivity [17]

1. CaP coating
2. polylactic acid immersion dip coating magnesium corrosion resistance and elongation of

degradation time [18]

phosphate/collagen (CaP/Col)
composite coatings

Chemical conversion and dip
coating Magnesium alloys corrosion resistance and inducing bioactivity [19]

PVDF Spin coating Free standing ZnO grown film wearable and wireless pressure sensor for
heart rate monitoring [31]

R-GO/P(VDF-TrFE) liquid phase blending
Spin coating Flexible and glass substrate flexible, optically transparent, and highly

responsive temperature sensor [40]

polyaniline-coated PVDF Electrospinning in situ conversion Aluminum foil Human health monitoring [45]

PVDF-nanosilica Electrospinning Aluminum foil Increased piezoelectric property for
biomedical application [46]

PVDF/conducting polymer Electrospinning aluminum foil Electrical conductivity and bioactivity [47]

P(VDF-TrFE) Electrospinning aluminum foil implanted energy harvester, bioactivity [48]

PMMA
Alkali activation and

surface-initiated atom transfer
radical polymerization

Titanium hybrid prosthesis, bioactivity [52,53]

methacrylate modelling Titanium less susceptible biofilm formation
coating, bioactivity [54]

PMMA/PDDA spin coating or casting and drying Si, glass, or polystyrene sheets Antimicrobial coating [55]

PMMA/AgNPs-CS immersion method Soft rubber Antimicrobial coating [56]

PDA cold oxygen plasma PP hernia mesh drug absorption and longer release,
antibacterial properties [58]

PVP:PEGDA Cross-linking PP hydrophilicity and bioactivity [61]

Poly(StBP) Spreading and curing with UV PP Bone tissue engineering [62]

cell-adhesive peptide Dip coating PDMS functionalize biomedical devices with sensitive
and complex components [63]
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Table 1. Cont.

Coatings Material Coating Method Substrate/Nanoparticle Applications Area Refs.

poly(acrylamide–acrylic acid) Chemical bonding PDMS Ultralow friction coatings [65]

chlorhexidine (CHX)-loaded
PDMS oxygen plasma and heat treatment 3D-printed dental polymer induce surface wettability, microstructure,

and antibacterial activity [66]

PDA and hyaluronic acid drop casting PDMS Hemocompatible medical device and implant [67]

PDMS low-energy electron beam
irradiation PDMS long-lasting hydrophilic surface [68]

PTFE Printing/Solution injection and
curing PDMS To encapsulate anti-inflammatory drugs,

super hydrophobicity [69]

PU casting Freestanding films Biodegradable material for
biomedical application [70]

PU/Ag end-capped with functional
groups freestanding developing medical device coatings and

associated applications [76]

Isopropyl Myristate casting PU bioactivity and low water permeability [77]

PU/graphene electrospinning Aluminum foil electroconductivity, bioactivity and mechanical
properties [80]

PLA/ZnO Dip coating Mg alloy (AZ31) Reduced Mg degradation rate [81]

PLLA Dip coating PDMS stamp Drug delivery application [82]

PCL PEO and dip coating Mg screw Bone forming ability and osteogenesis [83]

PCL/FHA composite duplex
coating Dip coatings Mg alloy bioactivity and controlled Mg degradation [84]

PCL/PU/apatite Electrospinning Aluminum foil controlled drug delivery [86]

Different polymer coatings Polymer adsorption Iron oxide nanorods perfectly stabile colloidal nanoparticle for
medical application [97]

PMSEA RAFT polymerization iron oxide nanoparticles extended blood circulation time and
reduced accumulation [90]

Chitosan encapsulation magnetic silica nanoparticles pH/thermos-chemotherapy using an AMF
drug delivery system [99]

Chitosan adsorption Mg0.5Co0.5Fe2O4 Drug delivery [100]

Chitosan -PMAA in situ polymerization Fe3O4 MNPs DOX delivery in breast cancer treatment [101]

PSS/PEI LBL AuNPs Drug delivery to the layers of skin in
melanoma treatment [102]
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8. Conclusions and Future Prospects

Tissue engineering is an important field in life science research that deals with multidisciplinary and
interdisciplinary approaches. In recent times, it has undergone an exponential progress. Polymer-based
hybrid materials are garnering attention rapidly, and the development of pioneering coating methods
as well as imaging and characterization techniques, along with the availability of new materials
and combinations, may help customize biomaterials for specific tissue engineering applications.
Among various surface modification methods, surface modification with suitable polymeric materials
can be successfully used for practical biomedical applications. However, it is essential to select the
appropriate substrate material, polymer, coating method, and most importantly, the area of the material
to be used in clinical applications. Hence, it is important to understand the underlying mechanism,
and preferable to use theoretical strategies for the development of such coatings. Similarly, in a
nanoparticle system, nanoparticles can be used as promising candidates for biomedical applications;
however, there are multiple parameters to be considered. Polymer coatings on these materials can
help address multiple issues, such as immediate adsorption by proteins and uptake by macrophages.
Various nanoparticles that can be modified using different polymer coating methods and have a
high potential for use in biomedical applications have been developed and tested. Most of the
results discussed above were reported from laboratory studies, and the development of coatings
and complicated structures for clinical applications on a large scale is yet to be implemented.
The advancements in this field have paved the way for the development of stealth polymer coatings
with multifunctional attributes for addressing common challenges experienced in tissue engineering.
Compared to other industrial applications, strong evidence of the optimal performance of biomedical
coatings in biological environments is necessary before there practical application can be approved
in clinical settings. This continues to pose a challenge to advancements in this field, and qualitative
research and development are warranted.
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